Properties

Label 276.1.h.b
Level 276
Weight 1
Character orbit 276.h
Self dual yes
Analytic conductor 0.138
Analytic rank 0
Dimension 1
Projective image \(D_{2}\)
CM/RM discs -23, -276, 12
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 276 = 2^{2} \cdot 3 \cdot 23 \)
Weight: \( k \) = \( 1 \)
Character orbit: \([\chi]\) = 276.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: yes
Analytic conductor: \(0.137741943487\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image \(D_{2}\)
Projective field Galois closure of \(\Q(\sqrt{3}, \sqrt{-23})\)
Artin image $D_4$
Artin field Galois closure of 4.2.3312.1

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} - q^{3} + q^{4} - q^{6} + q^{8} + q^{9} + O(q^{10}) \) \( q + q^{2} - q^{3} + q^{4} - q^{6} + q^{8} + q^{9} - q^{12} - 2q^{13} + q^{16} + q^{18} - q^{23} - q^{24} - q^{25} - 2q^{26} - q^{27} + q^{32} + q^{36} + 2q^{39} - q^{46} + 2q^{47} - q^{48} - q^{49} - q^{50} - 2q^{52} - q^{54} + 2q^{59} + q^{64} + q^{69} - 2q^{71} + q^{72} + 2q^{73} + q^{75} + 2q^{78} + q^{81} - q^{92} + 2q^{94} - q^{96} - q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/276\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(139\) \(185\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
275.1
0
1.00000 −1.00000 1.00000 0 −1.00000 0 1.00000 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
12.b even 2 1 RM by \(\Q(\sqrt{3}) \)
23.b odd 2 1 CM by \(\Q(\sqrt{-23}) \)
276.h odd 2 1 CM by \(\Q(\sqrt{-69}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 276.1.h.b yes 1
3.b odd 2 1 276.1.h.a 1
4.b odd 2 1 276.1.h.a 1
12.b even 2 1 RM 276.1.h.b yes 1
23.b odd 2 1 CM 276.1.h.b yes 1
69.c even 2 1 276.1.h.a 1
92.b even 2 1 276.1.h.a 1
276.h odd 2 1 CM 276.1.h.b yes 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
276.1.h.a 1 3.b odd 2 1
276.1.h.a 1 4.b odd 2 1
276.1.h.a 1 69.c even 2 1
276.1.h.a 1 92.b even 2 1
276.1.h.b yes 1 1.a even 1 1 trivial
276.1.h.b yes 1 12.b even 2 1 RM
276.1.h.b yes 1 23.b odd 2 1 CM
276.1.h.b yes 1 276.h odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(276, [\chi])\):

\( T_{13} + 2 \)
\( T_{47} - 2 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 - T \)
$3$ \( 1 + T \)
$5$ \( 1 + T^{2} \)
$7$ \( 1 + T^{2} \)
$11$ \( ( 1 - T )( 1 + T ) \)
$13$ \( ( 1 + T )^{2} \)
$17$ \( 1 + T^{2} \)
$19$ \( 1 + T^{2} \)
$23$ \( 1 + T \)
$29$ \( ( 1 - T )( 1 + T ) \)
$31$ \( ( 1 - T )( 1 + T ) \)
$37$ \( ( 1 - T )( 1 + T ) \)
$41$ \( ( 1 - T )( 1 + T ) \)
$43$ \( 1 + T^{2} \)
$47$ \( ( 1 - T )^{2} \)
$53$ \( 1 + T^{2} \)
$59$ \( ( 1 - T )^{2} \)
$61$ \( ( 1 - T )( 1 + T ) \)
$67$ \( 1 + T^{2} \)
$71$ \( ( 1 + T )^{2} \)
$73$ \( ( 1 - T )^{2} \)
$79$ \( 1 + T^{2} \)
$83$ \( ( 1 - T )( 1 + T ) \)
$89$ \( 1 + T^{2} \)
$97$ \( ( 1 - T )( 1 + T ) \)
show more
show less