Properties

Label 275.6.a.b
Level $275$
Weight $6$
Character orbit 275.a
Self dual yes
Analytic conductor $44.106$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,6,Mod(1,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(44.1055504486\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.54492.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 52x - 38 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} + (\beta_{2} - \beta_1 - 11) q^{3} + ( - 4 \beta_{2} - 6 \beta_1 + 30) q^{4} + (13 \beta_{2} + 10 \beta_1 - 72) q^{6} + (10 \beta_{2} + 30 \beta_1 - 38) q^{7} + ( - 26 \beta_{2} + 188) q^{8}+ \cdots + ( - 2299 \beta_{2} + 1331 \beta_1 - 726) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 34 q^{3} + 84 q^{4} - 206 q^{6} - 84 q^{7} + 564 q^{8} - 7 q^{9} + 363 q^{11} - 992 q^{12} - 486 q^{13} - 1020 q^{14} + 1992 q^{16} - 1086 q^{17} + 3706 q^{18} + 1380 q^{19} - 908 q^{21} + 3066 q^{23}+ \cdots - 847 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 52x - 38 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - 3\nu - 34 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 3\beta_{2} + 3\beta _1 + 34 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−6.29828
8.04796
−0.749680
−8.18772 3.48600 35.0388 0 −28.5424 −145.071 −24.8808 −230.848 0
1.2 −2.20859 −16.8394 −27.1221 0 37.1913 225.525 130.577 40.5643 0
1.3 10.3963 −20.6466 76.0833 0 −214.649 −164.454 458.304 183.283 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 275.6.a.b 3
5.b even 2 1 11.6.a.b 3
5.c odd 4 2 275.6.b.b 6
15.d odd 2 1 99.6.a.g 3
20.d odd 2 1 176.6.a.i 3
35.c odd 2 1 539.6.a.e 3
40.e odd 2 1 704.6.a.t 3
40.f even 2 1 704.6.a.q 3
55.d odd 2 1 121.6.a.d 3
165.d even 2 1 1089.6.a.r 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
11.6.a.b 3 5.b even 2 1
99.6.a.g 3 15.d odd 2 1
121.6.a.d 3 55.d odd 2 1
176.6.a.i 3 20.d odd 2 1
275.6.a.b 3 1.a even 1 1 trivial
275.6.b.b 6 5.c odd 4 2
539.6.a.e 3 35.c odd 2 1
704.6.a.q 3 40.f even 2 1
704.6.a.t 3 40.e odd 2 1
1089.6.a.r 3 165.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} - 90T_{2} - 188 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(275))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 90T - 188 \) Copy content Toggle raw display
$3$ \( T^{3} + 34 T^{2} + \cdots - 1212 \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 84 T^{2} + \cdots - 5380448 \) Copy content Toggle raw display
$11$ \( (T - 121)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} + 486 T^{2} + \cdots - 164136608 \) Copy content Toggle raw display
$17$ \( T^{3} + 1086 T^{2} + \cdots - 331752056 \) Copy content Toggle raw display
$19$ \( T^{3} - 1380 T^{2} + \cdots + 57024000 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 17004325928 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots - 4029189120 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots + 1094344400 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 541788167034 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 201929821568 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 2443875098544 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots + 70174939136 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 1850911309656 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 7759637437060 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots + 15233874751008 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots + 147288561330212 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 1290398551704 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 34539701265952 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots + 1279883216320 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 411597824719824 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 90320980174650 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 10221902527106 \) Copy content Toggle raw display
show more
show less