Properties

Label 275.6.a.a.1.1
Level $275$
Weight $6$
Character 275.1
Self dual yes
Analytic conductor $44.106$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,6,Mod(1,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 275.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,4,15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(44.1055504486\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 275.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +15.0000 q^{3} -16.0000 q^{4} +60.0000 q^{6} -10.0000 q^{7} -192.000 q^{8} -18.0000 q^{9} -121.000 q^{11} -240.000 q^{12} +1148.00 q^{13} -40.0000 q^{14} -256.000 q^{16} -686.000 q^{17} -72.0000 q^{18} -384.000 q^{19} -150.000 q^{21} -484.000 q^{22} -3709.00 q^{23} -2880.00 q^{24} +4592.00 q^{26} -3915.00 q^{27} +160.000 q^{28} -5424.00 q^{29} -6443.00 q^{31} +5120.00 q^{32} -1815.00 q^{33} -2744.00 q^{34} +288.000 q^{36} -12063.0 q^{37} -1536.00 q^{38} +17220.0 q^{39} -1528.00 q^{41} -600.000 q^{42} +4026.00 q^{43} +1936.00 q^{44} -14836.0 q^{46} -7168.00 q^{47} -3840.00 q^{48} -16707.0 q^{49} -10290.0 q^{51} -18368.0 q^{52} +29862.0 q^{53} -15660.0 q^{54} +1920.00 q^{56} -5760.00 q^{57} -21696.0 q^{58} -6461.00 q^{59} -16980.0 q^{61} -25772.0 q^{62} +180.000 q^{63} +28672.0 q^{64} -7260.00 q^{66} -29999.0 q^{67} +10976.0 q^{68} -55635.0 q^{69} +31023.0 q^{71} +3456.00 q^{72} -1924.00 q^{73} -48252.0 q^{74} +6144.00 q^{76} +1210.00 q^{77} +68880.0 q^{78} +65138.0 q^{79} -54351.0 q^{81} -6112.00 q^{82} +102714. q^{83} +2400.00 q^{84} +16104.0 q^{86} -81360.0 q^{87} +23232.0 q^{88} +17415.0 q^{89} -11480.0 q^{91} +59344.0 q^{92} -96645.0 q^{93} -28672.0 q^{94} +76800.0 q^{96} -66905.0 q^{97} -66828.0 q^{98} +2178.00 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107 0.353553 0.935414i \(-0.384973\pi\)
0.353553 + 0.935414i \(0.384973\pi\)
\(3\) 15.0000 0.962250 0.481125 0.876652i \(-0.340228\pi\)
0.481125 + 0.876652i \(0.340228\pi\)
\(4\) −16.0000 −0.500000
\(5\) 0 0
\(6\) 60.0000 0.680414
\(7\) −10.0000 −0.0771356 −0.0385678 0.999256i \(-0.512280\pi\)
−0.0385678 + 0.999256i \(0.512280\pi\)
\(8\) −192.000 −1.06066
\(9\) −18.0000 −0.0740741
\(10\) 0 0
\(11\) −121.000 −0.301511
\(12\) −240.000 −0.481125
\(13\) 1148.00 1.88401 0.942006 0.335597i \(-0.108938\pi\)
0.942006 + 0.335597i \(0.108938\pi\)
\(14\) −40.0000 −0.0545431
\(15\) 0 0
\(16\) −256.000 −0.250000
\(17\) −686.000 −0.575707 −0.287854 0.957674i \(-0.592942\pi\)
−0.287854 + 0.957674i \(0.592942\pi\)
\(18\) −72.0000 −0.0523783
\(19\) −384.000 −0.244032 −0.122016 0.992528i \(-0.538936\pi\)
−0.122016 + 0.992528i \(0.538936\pi\)
\(20\) 0 0
\(21\) −150.000 −0.0742238
\(22\) −484.000 −0.213201
\(23\) −3709.00 −1.46197 −0.730983 0.682396i \(-0.760938\pi\)
−0.730983 + 0.682396i \(0.760938\pi\)
\(24\) −2880.00 −1.02062
\(25\) 0 0
\(26\) 4592.00 1.33220
\(27\) −3915.00 −1.03353
\(28\) 160.000 0.0385678
\(29\) −5424.00 −1.19764 −0.598818 0.800885i \(-0.704363\pi\)
−0.598818 + 0.800885i \(0.704363\pi\)
\(30\) 0 0
\(31\) −6443.00 −1.20416 −0.602080 0.798436i \(-0.705661\pi\)
−0.602080 + 0.798436i \(0.705661\pi\)
\(32\) 5120.00 0.883883
\(33\) −1815.00 −0.290129
\(34\) −2744.00 −0.407087
\(35\) 0 0
\(36\) 288.000 0.0370370
\(37\) −12063.0 −1.44861 −0.724304 0.689481i \(-0.757839\pi\)
−0.724304 + 0.689481i \(0.757839\pi\)
\(38\) −1536.00 −0.172557
\(39\) 17220.0 1.81289
\(40\) 0 0
\(41\) −1528.00 −0.141959 −0.0709796 0.997478i \(-0.522613\pi\)
−0.0709796 + 0.997478i \(0.522613\pi\)
\(42\) −600.000 −0.0524841
\(43\) 4026.00 0.332049 0.166025 0.986122i \(-0.446907\pi\)
0.166025 + 0.986122i \(0.446907\pi\)
\(44\) 1936.00 0.150756
\(45\) 0 0
\(46\) −14836.0 −1.03377
\(47\) −7168.00 −0.473318 −0.236659 0.971593i \(-0.576052\pi\)
−0.236659 + 0.971593i \(0.576052\pi\)
\(48\) −3840.00 −0.240563
\(49\) −16707.0 −0.994050
\(50\) 0 0
\(51\) −10290.0 −0.553975
\(52\) −18368.0 −0.942006
\(53\) 29862.0 1.46026 0.730128 0.683310i \(-0.239460\pi\)
0.730128 + 0.683310i \(0.239460\pi\)
\(54\) −15660.0 −0.730815
\(55\) 0 0
\(56\) 1920.00 0.0818147
\(57\) −5760.00 −0.234820
\(58\) −21696.0 −0.846856
\(59\) −6461.00 −0.241640 −0.120820 0.992674i \(-0.538552\pi\)
−0.120820 + 0.992674i \(0.538552\pi\)
\(60\) 0 0
\(61\) −16980.0 −0.584269 −0.292135 0.956377i \(-0.594366\pi\)
−0.292135 + 0.956377i \(0.594366\pi\)
\(62\) −25772.0 −0.851469
\(63\) 180.000 0.00571375
\(64\) 28672.0 0.875000
\(65\) 0 0
\(66\) −7260.00 −0.205152
\(67\) −29999.0 −0.816432 −0.408216 0.912885i \(-0.633849\pi\)
−0.408216 + 0.912885i \(0.633849\pi\)
\(68\) 10976.0 0.287854
\(69\) −55635.0 −1.40678
\(70\) 0 0
\(71\) 31023.0 0.730362 0.365181 0.930937i \(-0.381007\pi\)
0.365181 + 0.930937i \(0.381007\pi\)
\(72\) 3456.00 0.0785674
\(73\) −1924.00 −0.0422569 −0.0211285 0.999777i \(-0.506726\pi\)
−0.0211285 + 0.999777i \(0.506726\pi\)
\(74\) −48252.0 −1.02432
\(75\) 0 0
\(76\) 6144.00 0.122016
\(77\) 1210.00 0.0232573
\(78\) 68880.0 1.28191
\(79\) 65138.0 1.17427 0.587133 0.809490i \(-0.300256\pi\)
0.587133 + 0.809490i \(0.300256\pi\)
\(80\) 0 0
\(81\) −54351.0 −0.920439
\(82\) −6112.00 −0.100380
\(83\) 102714. 1.63657 0.818285 0.574813i \(-0.194925\pi\)
0.818285 + 0.574813i \(0.194925\pi\)
\(84\) 2400.00 0.0371119
\(85\) 0 0
\(86\) 16104.0 0.234794
\(87\) −81360.0 −1.15243
\(88\) 23232.0 0.319801
\(89\) 17415.0 0.233050 0.116525 0.993188i \(-0.462825\pi\)
0.116525 + 0.993188i \(0.462825\pi\)
\(90\) 0 0
\(91\) −11480.0 −0.145324
\(92\) 59344.0 0.730983
\(93\) −96645.0 −1.15870
\(94\) −28672.0 −0.334687
\(95\) 0 0
\(96\) 76800.0 0.850517
\(97\) −66905.0 −0.721987 −0.360993 0.932568i \(-0.617562\pi\)
−0.360993 + 0.932568i \(0.617562\pi\)
\(98\) −66828.0 −0.702900
\(99\) 2178.00 0.0223342
\(100\) 0 0
\(101\) 96730.0 0.943534 0.471767 0.881723i \(-0.343616\pi\)
0.471767 + 0.881723i \(0.343616\pi\)
\(102\) −41160.0 −0.391719
\(103\) 95704.0 0.888868 0.444434 0.895812i \(-0.353405\pi\)
0.444434 + 0.895812i \(0.353405\pi\)
\(104\) −220416. −1.99830
\(105\) 0 0
\(106\) 119448. 1.03256
\(107\) 32658.0 0.275759 0.137880 0.990449i \(-0.455971\pi\)
0.137880 + 0.990449i \(0.455971\pi\)
\(108\) 62640.0 0.516764
\(109\) −185438. −1.49497 −0.747485 0.664279i \(-0.768739\pi\)
−0.747485 + 0.664279i \(0.768739\pi\)
\(110\) 0 0
\(111\) −180945. −1.39392
\(112\) 2560.00 0.0192839
\(113\) −72849.0 −0.536695 −0.268347 0.963322i \(-0.586478\pi\)
−0.268347 + 0.963322i \(0.586478\pi\)
\(114\) −23040.0 −0.166043
\(115\) 0 0
\(116\) 86784.0 0.598818
\(117\) −20664.0 −0.139556
\(118\) −25844.0 −0.170866
\(119\) 6860.00 0.0444075
\(120\) 0 0
\(121\) 14641.0 0.0909091
\(122\) −67920.0 −0.413141
\(123\) −22920.0 −0.136600
\(124\) 103088. 0.602080
\(125\) 0 0
\(126\) 720.000 0.00404023
\(127\) 78184.0 0.430139 0.215069 0.976599i \(-0.431002\pi\)
0.215069 + 0.976599i \(0.431002\pi\)
\(128\) −49152.0 −0.265165
\(129\) 60390.0 0.319515
\(130\) 0 0
\(131\) −462.000 −0.00235214 −0.00117607 0.999999i \(-0.500374\pi\)
−0.00117607 + 0.999999i \(0.500374\pi\)
\(132\) 29040.0 0.145065
\(133\) 3840.00 0.0188236
\(134\) −119996. −0.577304
\(135\) 0 0
\(136\) 131712. 0.610630
\(137\) −296233. −1.34844 −0.674221 0.738530i \(-0.735520\pi\)
−0.674221 + 0.738530i \(0.735520\pi\)
\(138\) −222540. −0.994742
\(139\) −399818. −1.75519 −0.877597 0.479398i \(-0.840855\pi\)
−0.877597 + 0.479398i \(0.840855\pi\)
\(140\) 0 0
\(141\) −107520. −0.455451
\(142\) 124092. 0.516444
\(143\) −138908. −0.568051
\(144\) 4608.00 0.0185185
\(145\) 0 0
\(146\) −7696.00 −0.0298802
\(147\) −250605. −0.956525
\(148\) 193008. 0.724304
\(149\) 72670.0 0.268157 0.134079 0.990971i \(-0.457193\pi\)
0.134079 + 0.990971i \(0.457193\pi\)
\(150\) 0 0
\(151\) −303082. −1.08173 −0.540864 0.841110i \(-0.681902\pi\)
−0.540864 + 0.841110i \(0.681902\pi\)
\(152\) 73728.0 0.258835
\(153\) 12348.0 0.0426450
\(154\) 4840.00 0.0164454
\(155\) 0 0
\(156\) −275520. −0.906445
\(157\) 532987. 1.72571 0.862854 0.505453i \(-0.168674\pi\)
0.862854 + 0.505453i \(0.168674\pi\)
\(158\) 260552. 0.830332
\(159\) 447930. 1.40513
\(160\) 0 0
\(161\) 37090.0 0.112770
\(162\) −217404. −0.650849
\(163\) −282076. −0.831567 −0.415783 0.909464i \(-0.636493\pi\)
−0.415783 + 0.909464i \(0.636493\pi\)
\(164\) 24448.0 0.0709796
\(165\) 0 0
\(166\) 410856. 1.15723
\(167\) 573588. 1.59151 0.795754 0.605620i \(-0.207075\pi\)
0.795754 + 0.605620i \(0.207075\pi\)
\(168\) 28800.0 0.0787262
\(169\) 946611. 2.54950
\(170\) 0 0
\(171\) 6912.00 0.0180765
\(172\) −64416.0 −0.166025
\(173\) 386286. 0.981282 0.490641 0.871362i \(-0.336763\pi\)
0.490641 + 0.871362i \(0.336763\pi\)
\(174\) −325440. −0.814888
\(175\) 0 0
\(176\) 30976.0 0.0753778
\(177\) −96915.0 −0.232519
\(178\) 69660.0 0.164791
\(179\) 545079. 1.27153 0.635765 0.771882i \(-0.280685\pi\)
0.635765 + 0.771882i \(0.280685\pi\)
\(180\) 0 0
\(181\) −279485. −0.634106 −0.317053 0.948408i \(-0.602693\pi\)
−0.317053 + 0.948408i \(0.602693\pi\)
\(182\) −45920.0 −0.102760
\(183\) −254700. −0.562213
\(184\) 712128. 1.55065
\(185\) 0 0
\(186\) −386580. −0.819327
\(187\) 83006.0 0.173582
\(188\) 114688. 0.236659
\(189\) 39150.0 0.0797218
\(190\) 0 0
\(191\) −444437. −0.881509 −0.440755 0.897628i \(-0.645289\pi\)
−0.440755 + 0.897628i \(0.645289\pi\)
\(192\) 430080. 0.841969
\(193\) 18476.0 0.0357038 0.0178519 0.999841i \(-0.494317\pi\)
0.0178519 + 0.999841i \(0.494317\pi\)
\(194\) −267620. −0.510522
\(195\) 0 0
\(196\) 267312. 0.497025
\(197\) −270182. −0.496010 −0.248005 0.968759i \(-0.579775\pi\)
−0.248005 + 0.968759i \(0.579775\pi\)
\(198\) 8712.00 0.0157926
\(199\) 43320.0 0.0775453 0.0387727 0.999248i \(-0.487655\pi\)
0.0387727 + 0.999248i \(0.487655\pi\)
\(200\) 0 0
\(201\) −449985. −0.785612
\(202\) 386920. 0.667180
\(203\) 54240.0 0.0923803
\(204\) 164640. 0.276987
\(205\) 0 0
\(206\) 382816. 0.628524
\(207\) 66762.0 0.108294
\(208\) −293888. −0.471003
\(209\) 46464.0 0.0735785
\(210\) 0 0
\(211\) 1.02968e6 1.59220 0.796100 0.605165i \(-0.206893\pi\)
0.796100 + 0.605165i \(0.206893\pi\)
\(212\) −477792. −0.730128
\(213\) 465345. 0.702791
\(214\) 130632. 0.194991
\(215\) 0 0
\(216\) 751680. 1.09622
\(217\) 64430.0 0.0928835
\(218\) −741752. −1.05710
\(219\) −28860.0 −0.0406617
\(220\) 0 0
\(221\) −787528. −1.08464
\(222\) −723780. −0.985653
\(223\) −461281. −0.621160 −0.310580 0.950547i \(-0.600523\pi\)
−0.310580 + 0.950547i \(0.600523\pi\)
\(224\) −51200.0 −0.0681789
\(225\) 0 0
\(226\) −291396. −0.379501
\(227\) 855570. 1.10202 0.551012 0.834497i \(-0.314242\pi\)
0.551012 + 0.834497i \(0.314242\pi\)
\(228\) 92160.0 0.117410
\(229\) −665805. −0.838993 −0.419497 0.907757i \(-0.637793\pi\)
−0.419497 + 0.907757i \(0.637793\pi\)
\(230\) 0 0
\(231\) 18150.0 0.0223793
\(232\) 1.04141e6 1.27028
\(233\) −1.20934e6 −1.45934 −0.729671 0.683798i \(-0.760327\pi\)
−0.729671 + 0.683798i \(0.760327\pi\)
\(234\) −82656.0 −0.0986813
\(235\) 0 0
\(236\) 103376. 0.120820
\(237\) 977070. 1.12994
\(238\) 27440.0 0.0314009
\(239\) −571482. −0.647154 −0.323577 0.946202i \(-0.604886\pi\)
−0.323577 + 0.946202i \(0.604886\pi\)
\(240\) 0 0
\(241\) −267080. −0.296209 −0.148105 0.988972i \(-0.547317\pi\)
−0.148105 + 0.988972i \(0.547317\pi\)
\(242\) 58564.0 0.0642824
\(243\) 136080. 0.147835
\(244\) 271680. 0.292135
\(245\) 0 0
\(246\) −91680.0 −0.0965910
\(247\) −440832. −0.459760
\(248\) 1.23706e6 1.27720
\(249\) 1.54071e6 1.57479
\(250\) 0 0
\(251\) 1.38737e6 1.38998 0.694988 0.719022i \(-0.255410\pi\)
0.694988 + 0.719022i \(0.255410\pi\)
\(252\) −2880.00 −0.00285687
\(253\) 448789. 0.440799
\(254\) 312736. 0.304154
\(255\) 0 0
\(256\) −1.11411e6 −1.06250
\(257\) 885922. 0.836686 0.418343 0.908289i \(-0.362611\pi\)
0.418343 + 0.908289i \(0.362611\pi\)
\(258\) 241560. 0.225931
\(259\) 120630. 0.111739
\(260\) 0 0
\(261\) 97632.0 0.0887137
\(262\) −1848.00 −0.00166322
\(263\) −1.44687e6 −1.28986 −0.644928 0.764243i \(-0.723113\pi\)
−0.644928 + 0.764243i \(0.723113\pi\)
\(264\) 348480. 0.307729
\(265\) 0 0
\(266\) 15360.0 0.0133103
\(267\) 261225. 0.224252
\(268\) 479984. 0.408216
\(269\) −353878. −0.298176 −0.149088 0.988824i \(-0.547634\pi\)
−0.149088 + 0.988824i \(0.547634\pi\)
\(270\) 0 0
\(271\) 525260. 0.434461 0.217231 0.976120i \(-0.430298\pi\)
0.217231 + 0.976120i \(0.430298\pi\)
\(272\) 175616. 0.143927
\(273\) −172200. −0.139838
\(274\) −1.18493e6 −0.953492
\(275\) 0 0
\(276\) 890160. 0.703389
\(277\) 595610. 0.466404 0.233202 0.972428i \(-0.425080\pi\)
0.233202 + 0.972428i \(0.425080\pi\)
\(278\) −1.59927e6 −1.24111
\(279\) 115974. 0.0891970
\(280\) 0 0
\(281\) 732318. 0.553266 0.276633 0.960976i \(-0.410781\pi\)
0.276633 + 0.960976i \(0.410781\pi\)
\(282\) −430080. −0.322052
\(283\) −2.23380e6 −1.65798 −0.828989 0.559264i \(-0.811084\pi\)
−0.828989 + 0.559264i \(0.811084\pi\)
\(284\) −496368. −0.365181
\(285\) 0 0
\(286\) −555632. −0.401673
\(287\) 15280.0 0.0109501
\(288\) −92160.0 −0.0654729
\(289\) −949261. −0.668561
\(290\) 0 0
\(291\) −1.00358e6 −0.694732
\(292\) 30784.0 0.0211285
\(293\) 1.53108e6 1.04191 0.520953 0.853585i \(-0.325577\pi\)
0.520953 + 0.853585i \(0.325577\pi\)
\(294\) −1.00242e6 −0.676365
\(295\) 0 0
\(296\) 2.31610e6 1.53648
\(297\) 473715. 0.311620
\(298\) 290680. 0.189616
\(299\) −4.25793e6 −2.75436
\(300\) 0 0
\(301\) −40260.0 −0.0256128
\(302\) −1.21233e6 −0.764897
\(303\) 1.45095e6 0.907916
\(304\) 98304.0 0.0610081
\(305\) 0 0
\(306\) 49392.0 0.0301546
\(307\) 1.14268e6 0.691956 0.345978 0.938243i \(-0.387547\pi\)
0.345978 + 0.938243i \(0.387547\pi\)
\(308\) −19360.0 −0.0116286
\(309\) 1.43556e6 0.855313
\(310\) 0 0
\(311\) 586956. 0.344116 0.172058 0.985087i \(-0.444958\pi\)
0.172058 + 0.985087i \(0.444958\pi\)
\(312\) −3.30624e6 −1.92286
\(313\) 233857. 0.134924 0.0674621 0.997722i \(-0.478510\pi\)
0.0674621 + 0.997722i \(0.478510\pi\)
\(314\) 2.13195e6 1.22026
\(315\) 0 0
\(316\) −1.04221e6 −0.587133
\(317\) 935503. 0.522874 0.261437 0.965221i \(-0.415804\pi\)
0.261437 + 0.965221i \(0.415804\pi\)
\(318\) 1.79172e6 0.993579
\(319\) 656304. 0.361101
\(320\) 0 0
\(321\) 489870. 0.265349
\(322\) 148360. 0.0797402
\(323\) 263424. 0.140491
\(324\) 869616. 0.460219
\(325\) 0 0
\(326\) −1.12830e6 −0.588007
\(327\) −2.78157e6 −1.43854
\(328\) 293376. 0.150571
\(329\) 71680.0 0.0365097
\(330\) 0 0
\(331\) −1.05823e6 −0.530897 −0.265449 0.964125i \(-0.585520\pi\)
−0.265449 + 0.964125i \(0.585520\pi\)
\(332\) −1.64342e6 −0.818285
\(333\) 217134. 0.107304
\(334\) 2.29435e6 1.12537
\(335\) 0 0
\(336\) 38400.0 0.0185559
\(337\) −506186. −0.242793 −0.121396 0.992604i \(-0.538737\pi\)
−0.121396 + 0.992604i \(0.538737\pi\)
\(338\) 3.78644e6 1.80277
\(339\) −1.09274e6 −0.516435
\(340\) 0 0
\(341\) 779603. 0.363068
\(342\) 27648.0 0.0127820
\(343\) 335140. 0.153812
\(344\) −772992. −0.352192
\(345\) 0 0
\(346\) 1.54514e6 0.693871
\(347\) −467636. −0.208490 −0.104245 0.994552i \(-0.533243\pi\)
−0.104245 + 0.994552i \(0.533243\pi\)
\(348\) 1.30176e6 0.576213
\(349\) 304470. 0.133808 0.0669038 0.997759i \(-0.478688\pi\)
0.0669038 + 0.997759i \(0.478688\pi\)
\(350\) 0 0
\(351\) −4.49442e6 −1.94718
\(352\) −619520. −0.266501
\(353\) −2.51868e6 −1.07581 −0.537906 0.843005i \(-0.680785\pi\)
−0.537906 + 0.843005i \(0.680785\pi\)
\(354\) −387660. −0.164416
\(355\) 0 0
\(356\) −278640. −0.116525
\(357\) 102900. 0.0427312
\(358\) 2.18032e6 0.899108
\(359\) −3.01841e6 −1.23607 −0.618034 0.786151i \(-0.712071\pi\)
−0.618034 + 0.786151i \(0.712071\pi\)
\(360\) 0 0
\(361\) −2.32864e6 −0.940448
\(362\) −1.11794e6 −0.448381
\(363\) 219615. 0.0874773
\(364\) 183680. 0.0726622
\(365\) 0 0
\(366\) −1.01880e6 −0.397545
\(367\) −994429. −0.385397 −0.192699 0.981258i \(-0.561724\pi\)
−0.192699 + 0.981258i \(0.561724\pi\)
\(368\) 949504. 0.365491
\(369\) 27504.0 0.0105155
\(370\) 0 0
\(371\) −298620. −0.112638
\(372\) 1.54632e6 0.579351
\(373\) −1.72896e6 −0.643446 −0.321723 0.946834i \(-0.604262\pi\)
−0.321723 + 0.946834i \(0.604262\pi\)
\(374\) 332024. 0.122741
\(375\) 0 0
\(376\) 1.37626e6 0.502030
\(377\) −6.22675e6 −2.25636
\(378\) 156600. 0.0563718
\(379\) 454765. 0.162626 0.0813128 0.996689i \(-0.474089\pi\)
0.0813128 + 0.996689i \(0.474089\pi\)
\(380\) 0 0
\(381\) 1.17276e6 0.413901
\(382\) −1.77775e6 −0.623321
\(383\) −2.27557e6 −0.792673 −0.396336 0.918105i \(-0.629719\pi\)
−0.396336 + 0.918105i \(0.629719\pi\)
\(384\) −737280. −0.255155
\(385\) 0 0
\(386\) 73904.0 0.0252464
\(387\) −72468.0 −0.0245962
\(388\) 1.07048e6 0.360993
\(389\) 389781. 0.130601 0.0653005 0.997866i \(-0.479199\pi\)
0.0653005 + 0.997866i \(0.479199\pi\)
\(390\) 0 0
\(391\) 2.54437e6 0.841665
\(392\) 3.20774e6 1.05435
\(393\) −6930.00 −0.00226335
\(394\) −1.08073e6 −0.350732
\(395\) 0 0
\(396\) −34848.0 −0.0111671
\(397\) 1.61933e6 0.515655 0.257827 0.966191i \(-0.416993\pi\)
0.257827 + 0.966191i \(0.416993\pi\)
\(398\) 173280. 0.0548328
\(399\) 57600.0 0.0181130
\(400\) 0 0
\(401\) −5.54368e6 −1.72162 −0.860810 0.508927i \(-0.830042\pi\)
−0.860810 + 0.508927i \(0.830042\pi\)
\(402\) −1.79994e6 −0.555511
\(403\) −7.39656e6 −2.26865
\(404\) −1.54768e6 −0.471767
\(405\) 0 0
\(406\) 216960. 0.0653228
\(407\) 1.45962e6 0.436772
\(408\) 1.97568e6 0.587579
\(409\) −2.70493e6 −0.799553 −0.399776 0.916613i \(-0.630912\pi\)
−0.399776 + 0.916613i \(0.630912\pi\)
\(410\) 0 0
\(411\) −4.44350e6 −1.29754
\(412\) −1.53126e6 −0.444434
\(413\) 64610.0 0.0186391
\(414\) 267048. 0.0765753
\(415\) 0 0
\(416\) 5.87776e6 1.66525
\(417\) −5.99727e6 −1.68894
\(418\) 185856. 0.0520279
\(419\) 3.37337e6 0.938705 0.469353 0.883011i \(-0.344487\pi\)
0.469353 + 0.883011i \(0.344487\pi\)
\(420\) 0 0
\(421\) −4.52551e6 −1.24441 −0.622204 0.782855i \(-0.713762\pi\)
−0.622204 + 0.782855i \(0.713762\pi\)
\(422\) 4.11874e6 1.12586
\(423\) 129024. 0.0350606
\(424\) −5.73350e6 −1.54884
\(425\) 0 0
\(426\) 1.86138e6 0.496948
\(427\) 169800. 0.0450680
\(428\) −522528. −0.137880
\(429\) −2.08362e6 −0.546607
\(430\) 0 0
\(431\) −684534. −0.177501 −0.0887507 0.996054i \(-0.528287\pi\)
−0.0887507 + 0.996054i \(0.528287\pi\)
\(432\) 1.00224e6 0.258382
\(433\) 4.22591e6 1.08318 0.541589 0.840643i \(-0.317823\pi\)
0.541589 + 0.840643i \(0.317823\pi\)
\(434\) 257720. 0.0656786
\(435\) 0 0
\(436\) 2.96701e6 0.747485
\(437\) 1.42426e6 0.356767
\(438\) −115440. −0.0287522
\(439\) −2.09185e6 −0.518047 −0.259023 0.965871i \(-0.583401\pi\)
−0.259023 + 0.965871i \(0.583401\pi\)
\(440\) 0 0
\(441\) 300726. 0.0736333
\(442\) −3.15011e6 −0.766956
\(443\) −1.56284e6 −0.378361 −0.189180 0.981942i \(-0.560583\pi\)
−0.189180 + 0.981942i \(0.560583\pi\)
\(444\) 2.89512e6 0.696962
\(445\) 0 0
\(446\) −1.84512e6 −0.439226
\(447\) 1.09005e6 0.258034
\(448\) −286720. −0.0674937
\(449\) −3.00449e6 −0.703324 −0.351662 0.936127i \(-0.614383\pi\)
−0.351662 + 0.936127i \(0.614383\pi\)
\(450\) 0 0
\(451\) 184888. 0.0428023
\(452\) 1.16558e6 0.268347
\(453\) −4.54623e6 −1.04089
\(454\) 3.42228e6 0.779248
\(455\) 0 0
\(456\) 1.10592e6 0.249064
\(457\) 2.44552e6 0.547747 0.273874 0.961766i \(-0.411695\pi\)
0.273874 + 0.961766i \(0.411695\pi\)
\(458\) −2.66322e6 −0.593258
\(459\) 2.68569e6 0.595010
\(460\) 0 0
\(461\) 7.79104e6 1.70743 0.853715 0.520741i \(-0.174344\pi\)
0.853715 + 0.520741i \(0.174344\pi\)
\(462\) 72600.0 0.0158246
\(463\) 1.05196e6 0.228059 0.114029 0.993477i \(-0.463624\pi\)
0.114029 + 0.993477i \(0.463624\pi\)
\(464\) 1.38854e6 0.299409
\(465\) 0 0
\(466\) −4.83734e6 −1.03191
\(467\) −3.97003e6 −0.842369 −0.421184 0.906975i \(-0.638385\pi\)
−0.421184 + 0.906975i \(0.638385\pi\)
\(468\) 330624. 0.0697782
\(469\) 299990. 0.0629759
\(470\) 0 0
\(471\) 7.99480e6 1.66056
\(472\) 1.24051e6 0.256298
\(473\) −487146. −0.100117
\(474\) 3.90828e6 0.798987
\(475\) 0 0
\(476\) −109760. −0.0222038
\(477\) −537516. −0.108167
\(478\) −2.28593e6 −0.457607
\(479\) −8.53908e6 −1.70048 −0.850241 0.526393i \(-0.823544\pi\)
−0.850241 + 0.526393i \(0.823544\pi\)
\(480\) 0 0
\(481\) −1.38483e7 −2.72919
\(482\) −1.06832e6 −0.209452
\(483\) 556350. 0.108513
\(484\) −234256. −0.0454545
\(485\) 0 0
\(486\) 544320. 0.104535
\(487\) 1.86487e6 0.356308 0.178154 0.984003i \(-0.442987\pi\)
0.178154 + 0.984003i \(0.442987\pi\)
\(488\) 3.26016e6 0.619711
\(489\) −4.23114e6 −0.800175
\(490\) 0 0
\(491\) 5.15727e6 0.965420 0.482710 0.875780i \(-0.339653\pi\)
0.482710 + 0.875780i \(0.339653\pi\)
\(492\) 366720. 0.0683002
\(493\) 3.72086e6 0.689488
\(494\) −1.76333e6 −0.325099
\(495\) 0 0
\(496\) 1.64941e6 0.301040
\(497\) −310230. −0.0563369
\(498\) 6.16284e6 1.11354
\(499\) 4.53340e6 0.815029 0.407514 0.913199i \(-0.366396\pi\)
0.407514 + 0.913199i \(0.366396\pi\)
\(500\) 0 0
\(501\) 8.60382e6 1.53143
\(502\) 5.54947e6 0.982861
\(503\) −1.71163e6 −0.301641 −0.150821 0.988561i \(-0.548192\pi\)
−0.150821 + 0.988561i \(0.548192\pi\)
\(504\) −34560.0 −0.00606035
\(505\) 0 0
\(506\) 1.79516e6 0.311692
\(507\) 1.41992e7 2.45326
\(508\) −1.25094e6 −0.215069
\(509\) 9.73822e6 1.66604 0.833019 0.553244i \(-0.186610\pi\)
0.833019 + 0.553244i \(0.186610\pi\)
\(510\) 0 0
\(511\) 19240.0 0.00325951
\(512\) −2.88358e6 −0.486136
\(513\) 1.50336e6 0.252214
\(514\) 3.54369e6 0.591627
\(515\) 0 0
\(516\) −966240. −0.159757
\(517\) 867328. 0.142711
\(518\) 482520. 0.0790116
\(519\) 5.79429e6 0.944239
\(520\) 0 0
\(521\) 4.30279e6 0.694474 0.347237 0.937777i \(-0.387120\pi\)
0.347237 + 0.937777i \(0.387120\pi\)
\(522\) 390528. 0.0627301
\(523\) −2.62280e6 −0.419287 −0.209643 0.977778i \(-0.567230\pi\)
−0.209643 + 0.977778i \(0.567230\pi\)
\(524\) 7392.00 0.00117607
\(525\) 0 0
\(526\) −5.78750e6 −0.912066
\(527\) 4.41990e6 0.693243
\(528\) 464640. 0.0725324
\(529\) 7.32034e6 1.13734
\(530\) 0 0
\(531\) 116298. 0.0178993
\(532\) −61440.0 −0.00941179
\(533\) −1.75414e6 −0.267453
\(534\) 1.04490e6 0.158570
\(535\) 0 0
\(536\) 5.75981e6 0.865956
\(537\) 8.17618e6 1.22353
\(538\) −1.41551e6 −0.210842
\(539\) 2.02155e6 0.299717
\(540\) 0 0
\(541\) −2.49634e6 −0.366700 −0.183350 0.983048i \(-0.558694\pi\)
−0.183350 + 0.983048i \(0.558694\pi\)
\(542\) 2.10104e6 0.307211
\(543\) −4.19228e6 −0.610169
\(544\) −3.51232e6 −0.508858
\(545\) 0 0
\(546\) −688800. −0.0988807
\(547\) −1.14323e7 −1.63368 −0.816838 0.576868i \(-0.804275\pi\)
−0.816838 + 0.576868i \(0.804275\pi\)
\(548\) 4.73973e6 0.674221
\(549\) 305640. 0.0432792
\(550\) 0 0
\(551\) 2.08282e6 0.292262
\(552\) 1.06819e7 1.49211
\(553\) −651380. −0.0905778
\(554\) 2.38244e6 0.329798
\(555\) 0 0
\(556\) 6.39709e6 0.877597
\(557\) 9.81529e6 1.34049 0.670247 0.742138i \(-0.266188\pi\)
0.670247 + 0.742138i \(0.266188\pi\)
\(558\) 463896. 0.0630718
\(559\) 4.62185e6 0.625585
\(560\) 0 0
\(561\) 1.24509e6 0.167030
\(562\) 2.92927e6 0.391218
\(563\) 8.19192e6 1.08922 0.544609 0.838690i \(-0.316678\pi\)
0.544609 + 0.838690i \(0.316678\pi\)
\(564\) 1.72032e6 0.227725
\(565\) 0 0
\(566\) −8.93522e6 −1.17237
\(567\) 543510. 0.0709986
\(568\) −5.95642e6 −0.774665
\(569\) −7.54286e6 −0.976687 −0.488344 0.872651i \(-0.662399\pi\)
−0.488344 + 0.872651i \(0.662399\pi\)
\(570\) 0 0
\(571\) −8.69400e6 −1.11591 −0.557956 0.829871i \(-0.688414\pi\)
−0.557956 + 0.829871i \(0.688414\pi\)
\(572\) 2.22253e6 0.284025
\(573\) −6.66656e6 −0.848233
\(574\) 61120.0 0.00774290
\(575\) 0 0
\(576\) −516096. −0.0648148
\(577\) −2.03379e6 −0.254312 −0.127156 0.991883i \(-0.540585\pi\)
−0.127156 + 0.991883i \(0.540585\pi\)
\(578\) −3.79704e6 −0.472744
\(579\) 277140. 0.0343560
\(580\) 0 0
\(581\) −1.02714e6 −0.126238
\(582\) −4.01430e6 −0.491250
\(583\) −3.61330e6 −0.440284
\(584\) 369408. 0.0448202
\(585\) 0 0
\(586\) 6.12432e6 0.736739
\(587\) −3.51780e6 −0.421381 −0.210691 0.977553i \(-0.567571\pi\)
−0.210691 + 0.977553i \(0.567571\pi\)
\(588\) 4.00968e6 0.478263
\(589\) 2.47411e6 0.293854
\(590\) 0 0
\(591\) −4.05273e6 −0.477286
\(592\) 3.08813e6 0.362152
\(593\) 8.34535e6 0.974558 0.487279 0.873246i \(-0.337989\pi\)
0.487279 + 0.873246i \(0.337989\pi\)
\(594\) 1.89486e6 0.220349
\(595\) 0 0
\(596\) −1.16272e6 −0.134079
\(597\) 649800. 0.0746180
\(598\) −1.70317e7 −1.94763
\(599\) 6.15022e6 0.700364 0.350182 0.936682i \(-0.386120\pi\)
0.350182 + 0.936682i \(0.386120\pi\)
\(600\) 0 0
\(601\) −6.86232e6 −0.774970 −0.387485 0.921876i \(-0.626656\pi\)
−0.387485 + 0.921876i \(0.626656\pi\)
\(602\) −161040. −0.0181110
\(603\) 539982. 0.0604764
\(604\) 4.84931e6 0.540864
\(605\) 0 0
\(606\) 5.80380e6 0.641994
\(607\) 9.45536e6 1.04161 0.520807 0.853675i \(-0.325631\pi\)
0.520807 + 0.853675i \(0.325631\pi\)
\(608\) −1.96608e6 −0.215696
\(609\) 813600. 0.0888930
\(610\) 0 0
\(611\) −8.22886e6 −0.891737
\(612\) −197568. −0.0213225
\(613\) 4.63658e6 0.498363 0.249182 0.968457i \(-0.419838\pi\)
0.249182 + 0.968457i \(0.419838\pi\)
\(614\) 4.57072e6 0.489287
\(615\) 0 0
\(616\) −232320. −0.0246680
\(617\) −6.05704e6 −0.640542 −0.320271 0.947326i \(-0.603774\pi\)
−0.320271 + 0.947326i \(0.603774\pi\)
\(618\) 5.74224e6 0.604798
\(619\) −5.63994e6 −0.591626 −0.295813 0.955246i \(-0.595591\pi\)
−0.295813 + 0.955246i \(0.595591\pi\)
\(620\) 0 0
\(621\) 1.45207e7 1.51098
\(622\) 2.34782e6 0.243327
\(623\) −174150. −0.0179764
\(624\) −4.40832e6 −0.453223
\(625\) 0 0
\(626\) 935428. 0.0954057
\(627\) 696960. 0.0708009
\(628\) −8.52779e6 −0.862854
\(629\) 8.27522e6 0.833975
\(630\) 0 0
\(631\) 1.12616e6 0.112597 0.0562987 0.998414i \(-0.482070\pi\)
0.0562987 + 0.998414i \(0.482070\pi\)
\(632\) −1.25065e7 −1.24550
\(633\) 1.54453e7 1.53210
\(634\) 3.74201e6 0.369728
\(635\) 0 0
\(636\) −7.16688e6 −0.702566
\(637\) −1.91796e7 −1.87280
\(638\) 2.62522e6 0.255337
\(639\) −558414. −0.0541009
\(640\) 0 0
\(641\) −1.42020e7 −1.36522 −0.682611 0.730782i \(-0.739156\pi\)
−0.682611 + 0.730782i \(0.739156\pi\)
\(642\) 1.95948e6 0.187630
\(643\) −1.60794e6 −0.153371 −0.0766853 0.997055i \(-0.524434\pi\)
−0.0766853 + 0.997055i \(0.524434\pi\)
\(644\) −593440. −0.0563848
\(645\) 0 0
\(646\) 1.05370e6 0.0993423
\(647\) −3.10236e6 −0.291361 −0.145680 0.989332i \(-0.546537\pi\)
−0.145680 + 0.989332i \(0.546537\pi\)
\(648\) 1.04354e7 0.976273
\(649\) 781781. 0.0728573
\(650\) 0 0
\(651\) 966450. 0.0893772
\(652\) 4.51322e6 0.415783
\(653\) −6.88852e6 −0.632183 −0.316091 0.948729i \(-0.602371\pi\)
−0.316091 + 0.948729i \(0.602371\pi\)
\(654\) −1.11263e7 −1.01720
\(655\) 0 0
\(656\) 391168. 0.0354898
\(657\) 34632.0 0.00313014
\(658\) 286720. 0.0258163
\(659\) −1.24134e7 −1.11347 −0.556735 0.830690i \(-0.687946\pi\)
−0.556735 + 0.830690i \(0.687946\pi\)
\(660\) 0 0
\(661\) −8.10994e6 −0.721961 −0.360980 0.932573i \(-0.617558\pi\)
−0.360980 + 0.932573i \(0.617558\pi\)
\(662\) −4.23292e6 −0.375401
\(663\) −1.18129e7 −1.04369
\(664\) −1.97211e7 −1.73584
\(665\) 0 0
\(666\) 868536. 0.0758756
\(667\) 2.01176e7 1.75090
\(668\) −9.17741e6 −0.795754
\(669\) −6.91922e6 −0.597711
\(670\) 0 0
\(671\) 2.05458e6 0.176164
\(672\) −768000. −0.0656052
\(673\) −1.78063e7 −1.51543 −0.757717 0.652584i \(-0.773685\pi\)
−0.757717 + 0.652584i \(0.773685\pi\)
\(674\) −2.02474e6 −0.171680
\(675\) 0 0
\(676\) −1.51458e7 −1.27475
\(677\) −1.55179e7 −1.30125 −0.650626 0.759398i \(-0.725493\pi\)
−0.650626 + 0.759398i \(0.725493\pi\)
\(678\) −4.37094e6 −0.365175
\(679\) 669050. 0.0556909
\(680\) 0 0
\(681\) 1.28336e7 1.06042
\(682\) 3.11841e6 0.256728
\(683\) 2.18106e6 0.178902 0.0894510 0.995991i \(-0.471489\pi\)
0.0894510 + 0.995991i \(0.471489\pi\)
\(684\) −110592. −0.00903823
\(685\) 0 0
\(686\) 1.34056e6 0.108762
\(687\) −9.98708e6 −0.807321
\(688\) −1.03066e6 −0.0830123
\(689\) 3.42816e7 2.75114
\(690\) 0 0
\(691\) 2.29892e7 1.83159 0.915795 0.401647i \(-0.131562\pi\)
0.915795 + 0.401647i \(0.131562\pi\)
\(692\) −6.18058e6 −0.490641
\(693\) −21780.0 −0.00172276
\(694\) −1.87054e6 −0.147424
\(695\) 0 0
\(696\) 1.56211e7 1.22233
\(697\) 1.04821e6 0.0817270
\(698\) 1.21788e6 0.0946163
\(699\) −1.81400e7 −1.40425
\(700\) 0 0
\(701\) 2.34092e6 0.179925 0.0899626 0.995945i \(-0.471325\pi\)
0.0899626 + 0.995945i \(0.471325\pi\)
\(702\) −1.79777e7 −1.37686
\(703\) 4.63219e6 0.353507
\(704\) −3.46931e6 −0.263822
\(705\) 0 0
\(706\) −1.00747e7 −0.760715
\(707\) −967300. −0.0727801
\(708\) 1.55064e6 0.116259
\(709\) −1.92694e7 −1.43964 −0.719820 0.694161i \(-0.755775\pi\)
−0.719820 + 0.694161i \(0.755775\pi\)
\(710\) 0 0
\(711\) −1.17248e6 −0.0869827
\(712\) −3.34368e6 −0.247186
\(713\) 2.38971e7 1.76044
\(714\) 411600. 0.0302155
\(715\) 0 0
\(716\) −8.72126e6 −0.635765
\(717\) −8.57223e6 −0.622724
\(718\) −1.20736e7 −0.874032
\(719\) −2.14665e7 −1.54860 −0.774300 0.632819i \(-0.781898\pi\)
−0.774300 + 0.632819i \(0.781898\pi\)
\(720\) 0 0
\(721\) −957040. −0.0685633
\(722\) −9.31457e6 −0.664997
\(723\) −4.00620e6 −0.285028
\(724\) 4.47176e6 0.317053
\(725\) 0 0
\(726\) 878460. 0.0618558
\(727\) 1.67705e7 1.17682 0.588411 0.808562i \(-0.299754\pi\)
0.588411 + 0.808562i \(0.299754\pi\)
\(728\) 2.20416e6 0.154140
\(729\) 1.52485e7 1.06269
\(730\) 0 0
\(731\) −2.76184e6 −0.191163
\(732\) 4.07520e6 0.281107
\(733\) 1.75373e7 1.20560 0.602798 0.797894i \(-0.294052\pi\)
0.602798 + 0.797894i \(0.294052\pi\)
\(734\) −3.97772e6 −0.272517
\(735\) 0 0
\(736\) −1.89901e7 −1.29221
\(737\) 3.62988e6 0.246163
\(738\) 110016. 0.00743558
\(739\) 1.47387e7 0.992766 0.496383 0.868104i \(-0.334661\pi\)
0.496383 + 0.868104i \(0.334661\pi\)
\(740\) 0 0
\(741\) −6.61248e6 −0.442404
\(742\) −1.19448e6 −0.0796469
\(743\) 4.80946e6 0.319613 0.159806 0.987148i \(-0.448913\pi\)
0.159806 + 0.987148i \(0.448913\pi\)
\(744\) 1.85558e7 1.22899
\(745\) 0 0
\(746\) −6.91583e6 −0.454985
\(747\) −1.84885e6 −0.121227
\(748\) −1.32810e6 −0.0867912
\(749\) −326580. −0.0212709
\(750\) 0 0
\(751\) 8.29317e6 0.536563 0.268282 0.963341i \(-0.413544\pi\)
0.268282 + 0.963341i \(0.413544\pi\)
\(752\) 1.83501e6 0.118330
\(753\) 2.08105e7 1.33750
\(754\) −2.49070e7 −1.59549
\(755\) 0 0
\(756\) −626400. −0.0398609
\(757\) 352294. 0.0223442 0.0111721 0.999938i \(-0.496444\pi\)
0.0111721 + 0.999938i \(0.496444\pi\)
\(758\) 1.81906e6 0.114994
\(759\) 6.73184e6 0.424159
\(760\) 0 0
\(761\) 1.68985e7 1.05776 0.528878 0.848698i \(-0.322613\pi\)
0.528878 + 0.848698i \(0.322613\pi\)
\(762\) 4.69104e6 0.292672
\(763\) 1.85438e6 0.115315
\(764\) 7.11099e6 0.440755
\(765\) 0 0
\(766\) −9.10229e6 −0.560504
\(767\) −7.41723e6 −0.455253
\(768\) −1.67117e7 −1.02239
\(769\) −36652.0 −0.00223502 −0.00111751 0.999999i \(-0.500356\pi\)
−0.00111751 + 0.999999i \(0.500356\pi\)
\(770\) 0 0
\(771\) 1.32888e7 0.805102
\(772\) −295616. −0.0178519
\(773\) 3.17462e7 1.91093 0.955463 0.295113i \(-0.0953571\pi\)
0.955463 + 0.295113i \(0.0953571\pi\)
\(774\) −289872. −0.0173922
\(775\) 0 0
\(776\) 1.28458e7 0.765783
\(777\) 1.80945e6 0.107521
\(778\) 1.55912e6 0.0923489
\(779\) 586752. 0.0346426
\(780\) 0 0
\(781\) −3.75378e6 −0.220212
\(782\) 1.01775e7 0.595147
\(783\) 2.12350e7 1.23779
\(784\) 4.27699e6 0.248513
\(785\) 0 0
\(786\) −27720.0 −0.00160043
\(787\) −2.01985e7 −1.16247 −0.581236 0.813735i \(-0.697431\pi\)
−0.581236 + 0.813735i \(0.697431\pi\)
\(788\) 4.32291e6 0.248005
\(789\) −2.17031e7 −1.24116
\(790\) 0 0
\(791\) 728490. 0.0413983
\(792\) −418176. −0.0236890
\(793\) −1.94930e7 −1.10077
\(794\) 6.47732e6 0.364623
\(795\) 0 0
\(796\) −693120. −0.0387727
\(797\) −1.55660e7 −0.868023 −0.434011 0.900907i \(-0.642902\pi\)
−0.434011 + 0.900907i \(0.642902\pi\)
\(798\) 230400. 0.0128078
\(799\) 4.91725e6 0.272493
\(800\) 0 0
\(801\) −313470. −0.0172629
\(802\) −2.21747e7 −1.21737
\(803\) 232804. 0.0127409
\(804\) 7.19976e6 0.392806
\(805\) 0 0
\(806\) −2.95863e7 −1.60418
\(807\) −5.30817e6 −0.286920
\(808\) −1.85722e7 −1.00077
\(809\) −2.91667e7 −1.56681 −0.783404 0.621513i \(-0.786518\pi\)
−0.783404 + 0.621513i \(0.786518\pi\)
\(810\) 0 0
\(811\) −1.65215e7 −0.882057 −0.441029 0.897493i \(-0.645386\pi\)
−0.441029 + 0.897493i \(0.645386\pi\)
\(812\) −867840. −0.0461902
\(813\) 7.87890e6 0.418061
\(814\) 5.83849e6 0.308844
\(815\) 0 0
\(816\) 2.63424e6 0.138494
\(817\) −1.54598e6 −0.0810307
\(818\) −1.08197e7 −0.565369
\(819\) 206640. 0.0107648
\(820\) 0 0
\(821\) 5.56614e6 0.288202 0.144101 0.989563i \(-0.453971\pi\)
0.144101 + 0.989563i \(0.453971\pi\)
\(822\) −1.77740e7 −0.917498
\(823\) −1.18801e7 −0.611391 −0.305696 0.952129i \(-0.598889\pi\)
−0.305696 + 0.952129i \(0.598889\pi\)
\(824\) −1.83752e7 −0.942786
\(825\) 0 0
\(826\) 258440. 0.0131798
\(827\) 1.32856e7 0.675489 0.337745 0.941238i \(-0.390336\pi\)
0.337745 + 0.941238i \(0.390336\pi\)
\(828\) −1.06819e6 −0.0541469
\(829\) −653987. −0.0330509 −0.0165254 0.999863i \(-0.505260\pi\)
−0.0165254 + 0.999863i \(0.505260\pi\)
\(830\) 0 0
\(831\) 8.93415e6 0.448798
\(832\) 3.29155e7 1.64851
\(833\) 1.14610e7 0.572282
\(834\) −2.39891e7 −1.19426
\(835\) 0 0
\(836\) −743424. −0.0367892
\(837\) 2.52243e7 1.24453
\(838\) 1.34935e7 0.663765
\(839\) 2.47747e7 1.21508 0.607538 0.794290i \(-0.292157\pi\)
0.607538 + 0.794290i \(0.292157\pi\)
\(840\) 0 0
\(841\) 8.90863e6 0.434331
\(842\) −1.81021e7 −0.879929
\(843\) 1.09848e7 0.532380
\(844\) −1.64749e7 −0.796100
\(845\) 0 0
\(846\) 516096. 0.0247916
\(847\) −146410. −0.00701233
\(848\) −7.64467e6 −0.365064
\(849\) −3.35071e7 −1.59539
\(850\) 0 0
\(851\) 4.47417e7 2.11782
\(852\) −7.44552e6 −0.351395
\(853\) −2.71291e7 −1.27662 −0.638311 0.769779i \(-0.720367\pi\)
−0.638311 + 0.769779i \(0.720367\pi\)
\(854\) 679200. 0.0318679
\(855\) 0 0
\(856\) −6.27034e6 −0.292487
\(857\) 2.84232e7 1.32197 0.660984 0.750400i \(-0.270139\pi\)
0.660984 + 0.750400i \(0.270139\pi\)
\(858\) −8.33448e6 −0.386510
\(859\) 2.65922e7 1.22962 0.614810 0.788675i \(-0.289233\pi\)
0.614810 + 0.788675i \(0.289233\pi\)
\(860\) 0 0
\(861\) 229200. 0.0105368
\(862\) −2.73814e6 −0.125512
\(863\) 2.22500e7 1.01696 0.508479 0.861074i \(-0.330208\pi\)
0.508479 + 0.861074i \(0.330208\pi\)
\(864\) −2.00448e7 −0.913519
\(865\) 0 0
\(866\) 1.69036e7 0.765923
\(867\) −1.42389e7 −0.643323
\(868\) −1.03088e6 −0.0464418
\(869\) −7.88170e6 −0.354055
\(870\) 0 0
\(871\) −3.44389e7 −1.53817
\(872\) 3.56041e7 1.58566
\(873\) 1.20429e6 0.0534805
\(874\) 5.69702e6 0.252272
\(875\) 0 0
\(876\) 461760. 0.0203309
\(877\) −2.83428e7 −1.24435 −0.622176 0.782877i \(-0.713751\pi\)
−0.622176 + 0.782877i \(0.713751\pi\)
\(878\) −8.36739e6 −0.366314
\(879\) 2.29662e7 1.00258
\(880\) 0 0
\(881\) 3.66445e7 1.59063 0.795315 0.606196i \(-0.207305\pi\)
0.795315 + 0.606196i \(0.207305\pi\)
\(882\) 1.20290e6 0.0520666
\(883\) −1.68772e7 −0.728447 −0.364223 0.931312i \(-0.618666\pi\)
−0.364223 + 0.931312i \(0.618666\pi\)
\(884\) 1.26004e7 0.542320
\(885\) 0 0
\(886\) −6.25137e6 −0.267541
\(887\) −2.73941e6 −0.116909 −0.0584544 0.998290i \(-0.518617\pi\)
−0.0584544 + 0.998290i \(0.518617\pi\)
\(888\) 3.47414e7 1.47848
\(889\) −781840. −0.0331790
\(890\) 0 0
\(891\) 6.57647e6 0.277523
\(892\) 7.38050e6 0.310580
\(893\) 2.75251e6 0.115505
\(894\) 4.36020e6 0.182458
\(895\) 0 0
\(896\) 491520. 0.0204537
\(897\) −6.38690e7 −2.65038
\(898\) −1.20180e7 −0.497325
\(899\) 3.49468e7 1.44214
\(900\) 0 0
\(901\) −2.04853e7 −0.840681
\(902\) 739552. 0.0302658
\(903\) −603900. −0.0246460
\(904\) 1.39870e7 0.569251
\(905\) 0 0
\(906\) −1.81849e7 −0.736022
\(907\) 3.13286e7 1.26451 0.632255 0.774760i \(-0.282129\pi\)
0.632255 + 0.774760i \(0.282129\pi\)
\(908\) −1.36891e7 −0.551012
\(909\) −1.74114e6 −0.0698914
\(910\) 0 0
\(911\) −2.49762e7 −0.997081 −0.498541 0.866866i \(-0.666131\pi\)
−0.498541 + 0.866866i \(0.666131\pi\)
\(912\) 1.47456e6 0.0587050
\(913\) −1.24284e7 −0.493444
\(914\) 9.78206e6 0.387316
\(915\) 0 0
\(916\) 1.06529e7 0.419497
\(917\) 4620.00 0.000181434 0
\(918\) 1.07428e7 0.420736
\(919\) −1.10613e7 −0.432032 −0.216016 0.976390i \(-0.569306\pi\)
−0.216016 + 0.976390i \(0.569306\pi\)
\(920\) 0 0
\(921\) 1.71402e7 0.665835
\(922\) 3.11641e7 1.20734
\(923\) 3.56144e7 1.37601
\(924\) −290400. −0.0111897
\(925\) 0 0
\(926\) 4.20784e6 0.161262
\(927\) −1.72267e6 −0.0658420
\(928\) −2.77709e7 −1.05857
\(929\) −2.01739e7 −0.766919 −0.383460 0.923558i \(-0.625267\pi\)
−0.383460 + 0.923558i \(0.625267\pi\)
\(930\) 0 0
\(931\) 6.41549e6 0.242580
\(932\) 1.93494e7 0.729671
\(933\) 8.80434e6 0.331126
\(934\) −1.58801e7 −0.595645
\(935\) 0 0
\(936\) 3.96749e6 0.148022
\(937\) −9.10734e6 −0.338877 −0.169439 0.985541i \(-0.554195\pi\)
−0.169439 + 0.985541i \(0.554195\pi\)
\(938\) 1.19996e6 0.0445307
\(939\) 3.50785e6 0.129831
\(940\) 0 0
\(941\) −3.67709e7 −1.35372 −0.676861 0.736110i \(-0.736660\pi\)
−0.676861 + 0.736110i \(0.736660\pi\)
\(942\) 3.19792e7 1.17420
\(943\) 5.66735e6 0.207540
\(944\) 1.65402e6 0.0604101
\(945\) 0 0
\(946\) −1.94858e6 −0.0707932
\(947\) 4.95743e7 1.79631 0.898156 0.439677i \(-0.144907\pi\)
0.898156 + 0.439677i \(0.144907\pi\)
\(948\) −1.56331e7 −0.564969
\(949\) −2.20875e6 −0.0796125
\(950\) 0 0
\(951\) 1.40325e7 0.503136
\(952\) −1.31712e6 −0.0471013
\(953\) −3.53787e7 −1.26186 −0.630928 0.775841i \(-0.717326\pi\)
−0.630928 + 0.775841i \(0.717326\pi\)
\(954\) −2.15006e6 −0.0764857
\(955\) 0 0
\(956\) 9.14371e6 0.323577
\(957\) 9.84456e6 0.347469
\(958\) −3.41563e7 −1.20242
\(959\) 2.96233e6 0.104013
\(960\) 0 0
\(961\) 1.28831e7 0.449999
\(962\) −5.53933e7 −1.92983
\(963\) −587844. −0.0204266
\(964\) 4.27328e6 0.148105
\(965\) 0 0
\(966\) 2.22540e6 0.0767300
\(967\) −2.78059e7 −0.956248 −0.478124 0.878292i \(-0.658683\pi\)
−0.478124 + 0.878292i \(0.658683\pi\)
\(968\) −2.81107e6 −0.0964237
\(969\) 3.95136e6 0.135188
\(970\) 0 0
\(971\) 1.56835e7 0.533821 0.266910 0.963721i \(-0.413997\pi\)
0.266910 + 0.963721i \(0.413997\pi\)
\(972\) −2.17728e6 −0.0739177
\(973\) 3.99818e6 0.135388
\(974\) 7.45947e6 0.251948
\(975\) 0 0
\(976\) 4.34688e6 0.146067
\(977\) −2.01140e7 −0.674157 −0.337079 0.941476i \(-0.609439\pi\)
−0.337079 + 0.941476i \(0.609439\pi\)
\(978\) −1.69246e7 −0.565810
\(979\) −2.10722e6 −0.0702671
\(980\) 0 0
\(981\) 3.33788e6 0.110739
\(982\) 2.06291e7 0.682655
\(983\) 2.09269e7 0.690750 0.345375 0.938465i \(-0.387752\pi\)
0.345375 + 0.938465i \(0.387752\pi\)
\(984\) 4.40064e6 0.144887
\(985\) 0 0
\(986\) 1.48835e7 0.487541
\(987\) 1.07520e6 0.0351315
\(988\) 7.05331e6 0.229880
\(989\) −1.49324e7 −0.485445
\(990\) 0 0
\(991\) −3.18663e7 −1.03074 −0.515368 0.856969i \(-0.672345\pi\)
−0.515368 + 0.856969i \(0.672345\pi\)
\(992\) −3.29882e7 −1.06434
\(993\) −1.58735e7 −0.510856
\(994\) −1.24092e6 −0.0398362
\(995\) 0 0
\(996\) −2.46514e7 −0.787395
\(997\) −1.38913e6 −0.0442595 −0.0221297 0.999755i \(-0.507045\pi\)
−0.0221297 + 0.999755i \(0.507045\pi\)
\(998\) 1.81336e7 0.576313
\(999\) 4.72266e7 1.49718
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.6.a.a.1.1 1
5.2 odd 4 275.6.b.a.199.2 2
5.3 odd 4 275.6.b.a.199.1 2
5.4 even 2 11.6.a.a.1.1 1
15.14 odd 2 99.6.a.c.1.1 1
20.19 odd 2 176.6.a.c.1.1 1
35.34 odd 2 539.6.a.c.1.1 1
40.19 odd 2 704.6.a.c.1.1 1
40.29 even 2 704.6.a.h.1.1 1
55.54 odd 2 121.6.a.b.1.1 1
165.164 even 2 1089.6.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.6.a.a.1.1 1 5.4 even 2
99.6.a.c.1.1 1 15.14 odd 2
121.6.a.b.1.1 1 55.54 odd 2
176.6.a.c.1.1 1 20.19 odd 2
275.6.a.a.1.1 1 1.1 even 1 trivial
275.6.b.a.199.1 2 5.3 odd 4
275.6.b.a.199.2 2 5.2 odd 4
539.6.a.c.1.1 1 35.34 odd 2
704.6.a.c.1.1 1 40.19 odd 2
704.6.a.h.1.1 1 40.29 even 2
1089.6.a.c.1.1 1 165.164 even 2