Properties

Label 275.6.a.a
Level $275$
Weight $6$
Character orbit 275.a
Self dual yes
Analytic conductor $44.106$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,6,Mod(1,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(44.1055504486\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 4 q^{2} + 15 q^{3} - 16 q^{4} + 60 q^{6} - 10 q^{7} - 192 q^{8} - 18 q^{9} - 121 q^{11} - 240 q^{12} + 1148 q^{13} - 40 q^{14} - 256 q^{16} - 686 q^{17} - 72 q^{18} - 384 q^{19} - 150 q^{21} - 484 q^{22}+ \cdots + 2178 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
4.00000 15.0000 −16.0000 0 60.0000 −10.0000 −192.000 −18.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 275.6.a.a 1
5.b even 2 1 11.6.a.a 1
5.c odd 4 2 275.6.b.a 2
15.d odd 2 1 99.6.a.c 1
20.d odd 2 1 176.6.a.c 1
35.c odd 2 1 539.6.a.c 1
40.e odd 2 1 704.6.a.c 1
40.f even 2 1 704.6.a.h 1
55.d odd 2 1 121.6.a.b 1
165.d even 2 1 1089.6.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
11.6.a.a 1 5.b even 2 1
99.6.a.c 1 15.d odd 2 1
121.6.a.b 1 55.d odd 2 1
176.6.a.c 1 20.d odd 2 1
275.6.a.a 1 1.a even 1 1 trivial
275.6.b.a 2 5.c odd 4 2
539.6.a.c 1 35.c odd 2 1
704.6.a.c 1 40.e odd 2 1
704.6.a.h 1 40.f even 2 1
1089.6.a.c 1 165.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} - 4 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(275))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 4 \) Copy content Toggle raw display
$3$ \( T - 15 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 10 \) Copy content Toggle raw display
$11$ \( T + 121 \) Copy content Toggle raw display
$13$ \( T - 1148 \) Copy content Toggle raw display
$17$ \( T + 686 \) Copy content Toggle raw display
$19$ \( T + 384 \) Copy content Toggle raw display
$23$ \( T + 3709 \) Copy content Toggle raw display
$29$ \( T + 5424 \) Copy content Toggle raw display
$31$ \( T + 6443 \) Copy content Toggle raw display
$37$ \( T + 12063 \) Copy content Toggle raw display
$41$ \( T + 1528 \) Copy content Toggle raw display
$43$ \( T - 4026 \) Copy content Toggle raw display
$47$ \( T + 7168 \) Copy content Toggle raw display
$53$ \( T - 29862 \) Copy content Toggle raw display
$59$ \( T + 6461 \) Copy content Toggle raw display
$61$ \( T + 16980 \) Copy content Toggle raw display
$67$ \( T + 29999 \) Copy content Toggle raw display
$71$ \( T - 31023 \) Copy content Toggle raw display
$73$ \( T + 1924 \) Copy content Toggle raw display
$79$ \( T - 65138 \) Copy content Toggle raw display
$83$ \( T - 102714 \) Copy content Toggle raw display
$89$ \( T - 17415 \) Copy content Toggle raw display
$97$ \( T + 66905 \) Copy content Toggle raw display
show more
show less