Properties

Label 275.6
Level 275
Weight 6
Dimension 13410
Nonzero newspaces 21
Sturm bound 36000
Trace bound 6

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 21 \)
Sturm bound: \(36000\)
Trace bound: \(6\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(275))\).

Total New Old
Modular forms 15280 13778 1502
Cusp forms 14720 13410 1310
Eisenstein series 560 368 192

Trace form

\( 13410 q - 37 q^{2} - 61 q^{3} - 253 q^{4} - 190 q^{5} + 935 q^{6} + 1018 q^{7} - 365 q^{8} - 2727 q^{9} - 840 q^{10} + 180 q^{11} + 18 q^{12} + 1604 q^{13} + 4164 q^{14} + 2380 q^{15} + 8775 q^{16} - 1182 q^{17}+ \cdots - 2144257 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(275))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
275.6.a \(\chi_{275}(1, \cdot)\) 275.6.a.a 1 1
275.6.a.b 3
275.6.a.c 3
275.6.a.d 4
275.6.a.e 5
275.6.a.f 6
275.6.a.g 8
275.6.a.h 8
275.6.a.i 8
275.6.a.j 8
275.6.a.k 10
275.6.a.l 14
275.6.b \(\chi_{275}(199, \cdot)\) 275.6.b.a 2 1
275.6.b.b 6
275.6.b.c 6
275.6.b.d 8
275.6.b.e 10
275.6.b.f 12
275.6.b.g 16
275.6.b.h 16
275.6.e \(\chi_{275}(32, \cdot)\) n/a 176 2
275.6.g \(\chi_{275}(16, \cdot)\) n/a 592 4
275.6.h \(\chi_{275}(26, \cdot)\) n/a 368 4
275.6.i \(\chi_{275}(56, \cdot)\) n/a 504 4
275.6.j \(\chi_{275}(81, \cdot)\) n/a 592 4
275.6.k \(\chi_{275}(36, \cdot)\) n/a 592 4
275.6.l \(\chi_{275}(31, \cdot)\) n/a 592 4
275.6.n \(\chi_{275}(104, \cdot)\) n/a 592 4
275.6.t \(\chi_{275}(14, \cdot)\) n/a 592 4
275.6.y \(\chi_{275}(34, \cdot)\) n/a 496 4
275.6.z \(\chi_{275}(49, \cdot)\) n/a 352 4
275.6.ba \(\chi_{275}(4, \cdot)\) n/a 592 4
275.6.bb \(\chi_{275}(9, \cdot)\) n/a 592 4
275.6.bf \(\chi_{275}(28, \cdot)\) n/a 1184 8
275.6.bg \(\chi_{275}(13, \cdot)\) n/a 1184 8
275.6.bl \(\chi_{275}(17, \cdot)\) n/a 1184 8
275.6.bm \(\chi_{275}(7, \cdot)\) n/a 704 8
275.6.bn \(\chi_{275}(2, \cdot)\) n/a 1184 8
275.6.bo \(\chi_{275}(87, \cdot)\) n/a 1184 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(275))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(275)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 2}\)