Properties

Label 275.5.c.a.76.1
Level $275$
Weight $5$
Character 275.76
Self dual yes
Analytic conductor $28.427$
Analytic rank $0$
Dimension $1$
CM discriminant -11
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,5,Mod(76,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.76"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 275.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,-7,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.4267398481\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 76.1
Character \(\chi\) \(=\) 275.76

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7.00000 q^{3} +16.0000 q^{4} -32.0000 q^{9} +121.000 q^{11} -112.000 q^{12} +256.000 q^{16} -167.000 q^{23} +791.000 q^{27} -553.000 q^{31} -847.000 q^{33} -512.000 q^{36} +2113.00 q^{37} +1936.00 q^{44} +1918.00 q^{47} -1792.00 q^{48} +2401.00 q^{49} +718.000 q^{53} +4487.00 q^{59} +4096.00 q^{64} +7753.00 q^{67} +1169.00 q^{69} +7607.00 q^{71} -2945.00 q^{81} -6433.00 q^{89} -2672.00 q^{92} +3871.00 q^{93} +9793.00 q^{97} -3872.00 q^{99} +O(q^{100})\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(3\) −7.00000 −0.777778 −0.388889 0.921285i \(-0.627141\pi\)
−0.388889 + 0.921285i \(0.627141\pi\)
\(4\) 16.0000 1.00000
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) −32.0000 −0.395062
\(10\) 0 0
\(11\) 121.000 1.00000
\(12\) −112.000 −0.777778
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 256.000 1.00000
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −167.000 −0.315690 −0.157845 0.987464i \(-0.550455\pi\)
−0.157845 + 0.987464i \(0.550455\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 791.000 1.08505
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) −553.000 −0.575442 −0.287721 0.957714i \(-0.592898\pi\)
−0.287721 + 0.957714i \(0.592898\pi\)
\(32\) 0 0
\(33\) −847.000 −0.777778
\(34\) 0 0
\(35\) 0 0
\(36\) −512.000 −0.395062
\(37\) 2113.00 1.54346 0.771731 0.635949i \(-0.219391\pi\)
0.771731 + 0.635949i \(0.219391\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 1936.00 1.00000
\(45\) 0 0
\(46\) 0 0
\(47\) 1918.00 0.868266 0.434133 0.900849i \(-0.357055\pi\)
0.434133 + 0.900849i \(0.357055\pi\)
\(48\) −1792.00 −0.777778
\(49\) 2401.00 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 718.000 0.255607 0.127803 0.991800i \(-0.459207\pi\)
0.127803 + 0.991800i \(0.459207\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4487.00 1.28900 0.644499 0.764605i \(-0.277066\pi\)
0.644499 + 0.764605i \(0.277066\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 4096.00 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 7753.00 1.72711 0.863555 0.504254i \(-0.168232\pi\)
0.863555 + 0.504254i \(0.168232\pi\)
\(68\) 0 0
\(69\) 1169.00 0.245537
\(70\) 0 0
\(71\) 7607.00 1.50903 0.754513 0.656285i \(-0.227873\pi\)
0.754513 + 0.656285i \(0.227873\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) −2945.00 −0.448865
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6433.00 −0.812145 −0.406072 0.913841i \(-0.633102\pi\)
−0.406072 + 0.913841i \(0.633102\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −2672.00 −0.315690
\(93\) 3871.00 0.447566
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 9793.00 1.04081 0.520406 0.853919i \(-0.325781\pi\)
0.520406 + 0.853919i \(0.325781\pi\)
\(98\) 0 0
\(99\) −3872.00 −0.395062
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) −14882.0 −1.40277 −0.701386 0.712782i \(-0.747435\pi\)
−0.701386 + 0.712782i \(0.747435\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 12656.0 1.08505
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) −14791.0 −1.20047
\(112\) 0 0
\(113\) −20687.0 −1.62010 −0.810048 0.586364i \(-0.800559\pi\)
−0.810048 + 0.586364i \(0.800559\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 14641.0 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) −8848.00 −0.575442
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) −13552.0 −0.777778
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −32687.0 −1.74154 −0.870771 0.491689i \(-0.836380\pi\)
−0.870771 + 0.491689i \(0.836380\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) −13426.0 −0.675318
\(142\) 0 0
\(143\) 0 0
\(144\) −8192.00 −0.395062
\(145\) 0 0
\(146\) 0 0
\(147\) −16807.0 −0.777778
\(148\) 33808.0 1.54346
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 3073.00 0.124670 0.0623352 0.998055i \(-0.480145\pi\)
0.0623352 + 0.998055i \(0.480145\pi\)
\(158\) 0 0
\(159\) −5026.00 −0.198805
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 48238.0 1.81557 0.907787 0.419431i \(-0.137770\pi\)
0.907787 + 0.419431i \(0.137770\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 28561.0 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 30976.0 1.00000
\(177\) −31409.0 −1.00255
\(178\) 0 0
\(179\) −57193.0 −1.78499 −0.892497 0.451053i \(-0.851048\pi\)
−0.892497 + 0.451053i \(0.851048\pi\)
\(180\) 0 0
\(181\) 3647.00 0.111321 0.0556607 0.998450i \(-0.482273\pi\)
0.0556607 + 0.998450i \(0.482273\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 30688.0 0.868266
\(189\) 0 0
\(190\) 0 0
\(191\) −48313.0 −1.32433 −0.662167 0.749357i \(-0.730363\pi\)
−0.662167 + 0.749357i \(0.730363\pi\)
\(192\) −28672.0 −0.777778
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 38416.0 1.00000
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) −79198.0 −1.99990 −0.999949 0.0100501i \(-0.996801\pi\)
−0.999949 + 0.0100501i \(0.996801\pi\)
\(200\) 0 0
\(201\) −54271.0 −1.34331
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 5344.00 0.124717
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 11488.0 0.255607
\(213\) −53249.0 −1.17369
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −98567.0 −1.98208 −0.991041 0.133555i \(-0.957361\pi\)
−0.991041 + 0.133555i \(0.957361\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 82607.0 1.57524 0.787618 0.616163i \(-0.211314\pi\)
0.787618 + 0.616163i \(0.211314\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 71792.0 1.28900
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) −43456.0 −0.735931
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −74473.0 −1.18209 −0.591046 0.806638i \(-0.701285\pi\)
−0.591046 + 0.806638i \(0.701285\pi\)
\(252\) 0 0
\(253\) −20207.0 −0.315690
\(254\) 0 0
\(255\) 0 0
\(256\) 65536.0 1.00000
\(257\) 95998.0 1.45344 0.726718 0.686936i \(-0.241045\pi\)
0.726718 + 0.686936i \(0.241045\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 45031.0 0.631668
\(268\) 124048. 1.72711
\(269\) −13678.0 −0.189024 −0.0945122 0.995524i \(-0.530129\pi\)
−0.0945122 + 0.995524i \(0.530129\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 18704.0 0.245537
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 17696.0 0.227335
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 121712. 1.50903
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 83521.0 1.00000
\(290\) 0 0
\(291\) −68551.0 −0.809520
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 95711.0 1.08505
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 104174. 1.09104
\(310\) 0 0
\(311\) 35042.0 0.362300 0.181150 0.983455i \(-0.442018\pi\)
0.181150 + 0.983455i \(0.442018\pi\)
\(312\) 0 0
\(313\) 125713. 1.28319 0.641596 0.767043i \(-0.278273\pi\)
0.641596 + 0.767043i \(0.278273\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 191953. 1.91019 0.955095 0.296301i \(-0.0957532\pi\)
0.955095 + 0.296301i \(0.0957532\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −47120.0 −0.448865
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 97847.0 0.893082 0.446541 0.894763i \(-0.352656\pi\)
0.446541 + 0.894763i \(0.352656\pi\)
\(332\) 0 0
\(333\) −67616.0 −0.609763
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 144809. 1.26007
\(340\) 0 0
\(341\) −66913.0 −0.575442
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −141407. −1.13481 −0.567403 0.823440i \(-0.692052\pi\)
−0.567403 + 0.823440i \(0.692052\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −102928. −0.812145
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 130321. 1.00000
\(362\) 0 0
\(363\) −102487. −0.777778
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −133847. −0.993749 −0.496874 0.867823i \(-0.665519\pi\)
−0.496874 + 0.867823i \(0.665519\pi\)
\(368\) −42752.0 −0.315690
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 61936.0 0.447566
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −269593. −1.87685 −0.938426 0.345479i \(-0.887716\pi\)
−0.938426 + 0.345479i \(0.887716\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −276647. −1.88594 −0.942971 0.332874i \(-0.891981\pi\)
−0.942971 + 0.332874i \(0.891981\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 156688. 1.04081
\(389\) 3167.00 0.0209290 0.0104645 0.999945i \(-0.496669\pi\)
0.0104645 + 0.999945i \(0.496669\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) −61952.0 −0.395062
\(397\) −308882. −1.95980 −0.979900 0.199491i \(-0.936071\pi\)
−0.979900 + 0.199491i \(0.936071\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −311998. −1.94027 −0.970137 0.242558i \(-0.922014\pi\)
−0.970137 + 0.242558i \(0.922014\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 255673. 1.54346
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 228809. 1.35453
\(412\) −238112. −1.40277
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −282478. −1.60900 −0.804501 0.593951i \(-0.797567\pi\)
−0.804501 + 0.593951i \(0.797567\pi\)
\(420\) 0 0
\(421\) 196082. 1.10630 0.553151 0.833081i \(-0.313425\pi\)
0.553151 + 0.833081i \(0.313425\pi\)
\(422\) 0 0
\(423\) −61376.0 −0.343019
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 202496. 1.08505
\(433\) 374353. 1.99667 0.998333 0.0577127i \(-0.0183807\pi\)
0.998333 + 0.0577127i \(0.0183807\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) −76832.0 −0.395062
\(442\) 0 0
\(443\) 194473. 0.990950 0.495475 0.868622i \(-0.334994\pi\)
0.495475 + 0.868622i \(0.334994\pi\)
\(444\) −236656. −1.20047
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −15073.0 −0.0747665 −0.0373832 0.999301i \(-0.511902\pi\)
−0.0373832 + 0.999301i \(0.511902\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −330992. −1.62010
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 427513. 1.99429 0.997143 0.0755399i \(-0.0240680\pi\)
0.997143 + 0.0755399i \(0.0240680\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −419447. −1.92328 −0.961642 0.274308i \(-0.911551\pi\)
−0.961642 + 0.274308i \(0.911551\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −21511.0 −0.0969658
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −22976.0 −0.100981
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 234256. 1.00000
\(485\) 0 0
\(486\) 0 0
\(487\) −291287. −1.22818 −0.614092 0.789235i \(-0.710477\pi\)
−0.614092 + 0.789235i \(0.710477\pi\)
\(488\) 0 0
\(489\) −337666. −1.41211
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −141568. −0.575442
\(497\) 0 0
\(498\) 0 0
\(499\) −135598. −0.544568 −0.272284 0.962217i \(-0.587779\pi\)
−0.272284 + 0.962217i \(0.587779\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −199927. −0.777778
\(508\) 0 0
\(509\) 495887. 1.91402 0.957012 0.290050i \(-0.0936719\pi\)
0.957012 + 0.290050i \(0.0936719\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 232078. 0.868266
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 124607. 0.459057 0.229529 0.973302i \(-0.426282\pi\)
0.229529 + 0.973302i \(0.426282\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −216832. −0.777778
\(529\) −251952. −0.900340
\(530\) 0 0
\(531\) −143584. −0.509234
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 400351. 1.38833
\(538\) 0 0
\(539\) 290521. 1.00000
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) −25529.0 −0.0865833
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) −522992. −1.74154
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) −214816. −0.675318
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 338191. 1.03004
\(574\) 0 0
\(575\) 0 0
\(576\) −131072. −0.395062
\(577\) −447167. −1.34313 −0.671565 0.740946i \(-0.734378\pi\)
−0.671565 + 0.740946i \(0.734378\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 86878.0 0.255607
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −587762. −1.70579 −0.852894 0.522083i \(-0.825155\pi\)
−0.852894 + 0.522083i \(0.825155\pi\)
\(588\) −268912. −0.777778
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 540928. 1.54346
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 554386. 1.55548
\(598\) 0 0
\(599\) −707998. −1.97323 −0.986617 0.163058i \(-0.947864\pi\)
−0.986617 + 0.163058i \(0.947864\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) −248096. −0.682315
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 480478. 1.26213 0.631064 0.775731i \(-0.282619\pi\)
0.631064 + 0.775731i \(0.282619\pi\)
\(618\) 0 0
\(619\) 763847. 1.99354 0.996770 0.0803056i \(-0.0255896\pi\)
0.996770 + 0.0803056i \(0.0255896\pi\)
\(620\) 0 0
\(621\) −132097. −0.342539
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 49168.0 0.124670
\(629\) 0 0
\(630\) 0 0
\(631\) 675047. 1.69541 0.847706 0.530466i \(-0.177983\pi\)
0.847706 + 0.530466i \(0.177983\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) −80416.0 −0.198805
\(637\) 0 0
\(638\) 0 0
\(639\) −243424. −0.596158
\(640\) 0 0
\(641\) −269713. −0.656426 −0.328213 0.944604i \(-0.606446\pi\)
−0.328213 + 0.944604i \(0.606446\pi\)
\(642\) 0 0
\(643\) 670873. 1.62263 0.811313 0.584612i \(-0.198753\pi\)
0.811313 + 0.584612i \(0.198753\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 517993. 1.23741 0.618707 0.785621i \(-0.287657\pi\)
0.618707 + 0.785621i \(0.287657\pi\)
\(648\) 0 0
\(649\) 542927. 1.28900
\(650\) 0 0
\(651\) 0 0
\(652\) 771808. 1.81557
\(653\) −824207. −1.93290 −0.966451 0.256850i \(-0.917315\pi\)
−0.966451 + 0.256850i \(0.917315\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 455567. 1.04268 0.521338 0.853350i \(-0.325433\pi\)
0.521338 + 0.853350i \(0.325433\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 689969. 1.54162
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 456976. 1.00000
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 308878. 0.662134 0.331067 0.943607i \(-0.392591\pi\)
0.331067 + 0.943607i \(0.392591\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −578249. −1.22518
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 239687. 0.501982 0.250991 0.967989i \(-0.419243\pi\)
0.250991 + 0.967989i \(0.419243\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 495616. 1.00000
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) −502544. −1.00255
\(709\) 111887. 0.222581 0.111290 0.993788i \(-0.464502\pi\)
0.111290 + 0.993788i \(0.464502\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 92351.0 0.181661
\(714\) 0 0
\(715\) 0 0
\(716\) −915088. −1.78499
\(717\) 0 0
\(718\) 0 0
\(719\) 318647. 0.616385 0.308192 0.951324i \(-0.400276\pi\)
0.308192 + 0.951324i \(0.400276\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 58352.0 0.111321
\(725\) 0 0
\(726\) 0 0
\(727\) −778967. −1.47384 −0.736920 0.675980i \(-0.763720\pi\)
−0.736920 + 0.675980i \(0.763720\pi\)
\(728\) 0 0
\(729\) 542737. 1.02126
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 938113. 1.72711
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −181273. −0.321405 −0.160703 0.987003i \(-0.551376\pi\)
−0.160703 + 0.987003i \(0.551376\pi\)
\(752\) 491008. 0.868266
\(753\) 521311. 0.919405
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.14120e6 1.99145 0.995725 0.0923714i \(-0.0294447\pi\)
0.995725 + 0.0923714i \(0.0294447\pi\)
\(758\) 0 0
\(759\) 141449. 0.245537
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −773008. −1.32433
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −458752. −0.777778
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) −671986. −1.13045
\(772\) 0 0
\(773\) −681842. −1.14110 −0.570551 0.821262i \(-0.693270\pi\)
−0.570551 + 0.821262i \(0.693270\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 920447. 1.50903
\(782\) 0 0
\(783\) 0 0
\(784\) 614656. 1.00000
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) −1.26717e6 −1.99990
\(797\) −1.24181e6 −1.95496 −0.977479 0.211032i \(-0.932317\pi\)
−0.977479 + 0.211032i \(0.932317\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 205856. 0.320847
\(802\) 0 0
\(803\) 0 0
\(804\) −868336. −1.34331
\(805\) 0 0
\(806\) 0 0
\(807\) 95746.0 0.147019
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 784633. 1.15842 0.579211 0.815178i \(-0.303361\pi\)
0.579211 + 0.815178i \(0.303361\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 85504.0 0.124717
\(829\) −706993. −1.02874 −0.514371 0.857568i \(-0.671974\pi\)
−0.514371 + 0.857568i \(0.671974\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −437423. −0.624382
\(838\) 0 0
\(839\) −1.28743e6 −1.82895 −0.914473 0.404648i \(-0.867394\pi\)
−0.914473 + 0.404648i \(0.867394\pi\)
\(840\) 0 0
\(841\) 707281. 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 183808. 0.255607
\(849\) 0 0
\(850\) 0 0
\(851\) −352871. −0.487256
\(852\) −851984. −1.17369
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) −902713. −1.22339 −0.611693 0.791095i \(-0.709511\pi\)
−0.611693 + 0.791095i \(0.709511\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.30464e6 1.75174 0.875868 0.482552i \(-0.160290\pi\)
0.875868 + 0.482552i \(0.160290\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −584647. −0.777778
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −313376. −0.411185
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 658847. 0.848854 0.424427 0.905462i \(-0.360476\pi\)
0.424427 + 0.905462i \(0.360476\pi\)
\(882\) 0 0
\(883\) −317522. −0.407242 −0.203621 0.979050i \(-0.565271\pi\)
−0.203621 + 0.979050i \(0.565271\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −356345. −0.448865
\(892\) −1.57707e6 −1.98208
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1.41720e6 −1.72273 −0.861365 0.507987i \(-0.830390\pi\)
−0.861365 + 0.507987i \(0.830390\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1.50144e6 1.80914 0.904569 0.426327i \(-0.140193\pi\)
0.904569 + 0.426327i \(0.140193\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 1.32171e6 1.57524
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 476224. 0.554181
\(928\) 0 0
\(929\) −808318. −0.936593 −0.468296 0.883571i \(-0.655132\pi\)
−0.468296 + 0.883571i \(0.655132\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −245294. −0.281789
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) −879991. −0.998038
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 1.14867e6 1.28900
\(945\) 0 0
\(946\) 0 0
\(947\) −42407.0 −0.0472865 −0.0236433 0.999720i \(-0.507527\pi\)
−0.0236433 + 0.999720i \(0.507527\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −1.34367e6 −1.48570
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −617712. −0.668866
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1.87879e6 −1.99269 −0.996347 0.0854008i \(-0.972783\pi\)
−0.996347 + 0.0854008i \(0.972783\pi\)
\(972\) −695296. −0.735931
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 408433. 0.427890 0.213945 0.976846i \(-0.431369\pi\)
0.213945 + 0.976846i \(0.431369\pi\)
\(978\) 0 0
\(979\) −778393. −0.812145
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1.52935e6 1.58271 0.791354 0.611358i \(-0.209377\pi\)
0.791354 + 0.611358i \(0.209377\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 538562. 0.548389 0.274194 0.961674i \(-0.411589\pi\)
0.274194 + 0.961674i \(0.411589\pi\)
\(992\) 0 0
\(993\) −684929. −0.694620
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 1.67138e6 1.67473
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.5.c.a.76.1 1
5.2 odd 4 275.5.d.a.274.2 2
5.3 odd 4 275.5.d.a.274.1 2
5.4 even 2 11.5.b.a.10.1 1
11.10 odd 2 CM 275.5.c.a.76.1 1
15.14 odd 2 99.5.c.a.10.1 1
20.19 odd 2 176.5.h.a.65.1 1
40.19 odd 2 704.5.h.b.65.1 1
40.29 even 2 704.5.h.a.65.1 1
55.4 even 10 121.5.d.a.94.1 4
55.9 even 10 121.5.d.a.40.1 4
55.14 even 10 121.5.d.a.112.1 4
55.19 odd 10 121.5.d.a.112.1 4
55.24 odd 10 121.5.d.a.40.1 4
55.29 odd 10 121.5.d.a.94.1 4
55.32 even 4 275.5.d.a.274.2 2
55.39 odd 10 121.5.d.a.118.1 4
55.43 even 4 275.5.d.a.274.1 2
55.49 even 10 121.5.d.a.118.1 4
55.54 odd 2 11.5.b.a.10.1 1
165.164 even 2 99.5.c.a.10.1 1
220.219 even 2 176.5.h.a.65.1 1
440.109 odd 2 704.5.h.a.65.1 1
440.219 even 2 704.5.h.b.65.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.5.b.a.10.1 1 5.4 even 2
11.5.b.a.10.1 1 55.54 odd 2
99.5.c.a.10.1 1 15.14 odd 2
99.5.c.a.10.1 1 165.164 even 2
121.5.d.a.40.1 4 55.9 even 10
121.5.d.a.40.1 4 55.24 odd 10
121.5.d.a.94.1 4 55.4 even 10
121.5.d.a.94.1 4 55.29 odd 10
121.5.d.a.112.1 4 55.14 even 10
121.5.d.a.112.1 4 55.19 odd 10
121.5.d.a.118.1 4 55.39 odd 10
121.5.d.a.118.1 4 55.49 even 10
176.5.h.a.65.1 1 20.19 odd 2
176.5.h.a.65.1 1 220.219 even 2
275.5.c.a.76.1 1 1.1 even 1 trivial
275.5.c.a.76.1 1 11.10 odd 2 CM
275.5.d.a.274.1 2 5.3 odd 4
275.5.d.a.274.1 2 55.43 even 4
275.5.d.a.274.2 2 5.2 odd 4
275.5.d.a.274.2 2 55.32 even 4
704.5.h.a.65.1 1 40.29 even 2
704.5.h.a.65.1 1 440.109 odd 2
704.5.h.b.65.1 1 40.19 odd 2
704.5.h.b.65.1 1 440.219 even 2