Properties

Label 275.5.c.a
Level $275$
Weight $5$
Character orbit 275.c
Self dual yes
Analytic conductor $28.427$
Analytic rank $0$
Dimension $1$
CM discriminant -11
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,5,Mod(76,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.76");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 275.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.4267398481\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 7 q^{3} + 16 q^{4} - 32 q^{9} + 121 q^{11} - 112 q^{12} + 256 q^{16} - 167 q^{23} + 791 q^{27} - 553 q^{31} - 847 q^{33} - 512 q^{36} + 2113 q^{37} + 1936 q^{44} + 1918 q^{47} - 1792 q^{48} + 2401 q^{49}+ \cdots - 3872 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
76.1
0
0 −7.00000 16.0000 0 0 0 0 −32.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by \(\Q(\sqrt{-11}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 275.5.c.a 1
5.b even 2 1 11.5.b.a 1
5.c odd 4 2 275.5.d.a 2
11.b odd 2 1 CM 275.5.c.a 1
15.d odd 2 1 99.5.c.a 1
20.d odd 2 1 176.5.h.a 1
40.e odd 2 1 704.5.h.b 1
40.f even 2 1 704.5.h.a 1
55.d odd 2 1 11.5.b.a 1
55.e even 4 2 275.5.d.a 2
55.h odd 10 4 121.5.d.a 4
55.j even 10 4 121.5.d.a 4
165.d even 2 1 99.5.c.a 1
220.g even 2 1 176.5.h.a 1
440.c even 2 1 704.5.h.b 1
440.o odd 2 1 704.5.h.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
11.5.b.a 1 5.b even 2 1
11.5.b.a 1 55.d odd 2 1
99.5.c.a 1 15.d odd 2 1
99.5.c.a 1 165.d even 2 1
121.5.d.a 4 55.h odd 10 4
121.5.d.a 4 55.j even 10 4
176.5.h.a 1 20.d odd 2 1
176.5.h.a 1 220.g even 2 1
275.5.c.a 1 1.a even 1 1 trivial
275.5.c.a 1 11.b odd 2 1 CM
275.5.d.a 2 5.c odd 4 2
275.5.d.a 2 55.e even 4 2
704.5.h.a 1 40.f even 2 1
704.5.h.a 1 440.o odd 2 1
704.5.h.b 1 40.e odd 2 1
704.5.h.b 1 440.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{5}^{\mathrm{new}}(275, [\chi])\):

\( T_{2} \) Copy content Toggle raw display
\( T_{3} + 7 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 7 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 121 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T + 167 \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T + 553 \) Copy content Toggle raw display
$37$ \( T - 2113 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T \) Copy content Toggle raw display
$47$ \( T - 1918 \) Copy content Toggle raw display
$53$ \( T - 718 \) Copy content Toggle raw display
$59$ \( T - 4487 \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T - 7753 \) Copy content Toggle raw display
$71$ \( T - 7607 \) Copy content Toggle raw display
$73$ \( T \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T + 6433 \) Copy content Toggle raw display
$97$ \( T - 9793 \) Copy content Toggle raw display
show more
show less