Properties

Label 275.4.b.c.199.3
Level $275$
Weight $4$
Character 275.199
Analytic conductor $16.226$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,4,Mod(199,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.199");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 275.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.2255252516\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 11)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.3
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 275.199
Dual form 275.4.b.c.199.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.732051i q^{2} +5.92820i q^{3} +7.46410 q^{4} -4.33975 q^{6} -16.9282i q^{7} +11.3205i q^{8} -8.14359 q^{9} +O(q^{10})\) \(q+0.732051i q^{2} +5.92820i q^{3} +7.46410 q^{4} -4.33975 q^{6} -16.9282i q^{7} +11.3205i q^{8} -8.14359 q^{9} -11.0000 q^{11} +44.2487i q^{12} +74.6410i q^{13} +12.3923 q^{14} +51.4256 q^{16} +82.7846i q^{17} -5.96152i q^{18} +67.9230 q^{19} +100.354 q^{21} -8.05256i q^{22} +13.3538i q^{23} -67.1103 q^{24} -54.6410 q^{26} +111.785i q^{27} -126.354i q^{28} -168.995 q^{29} -65.4974 q^{31} +128.210i q^{32} -65.2102i q^{33} -60.6025 q^{34} -60.7846 q^{36} -40.8564i q^{37} +49.7231i q^{38} -442.487 q^{39} +274.928 q^{41} +73.4641i q^{42} -2.28719i q^{43} -82.1051 q^{44} -9.77568 q^{46} -71.8461i q^{47} +304.862i q^{48} +56.4359 q^{49} -490.764 q^{51} +557.128i q^{52} -149.005i q^{53} -81.8320 q^{54} +191.636 q^{56} +402.662i q^{57} -123.713i q^{58} -545.631 q^{59} +101.303 q^{61} -47.9474i q^{62} +137.856i q^{63} +317.549 q^{64} +47.7372 q^{66} -411.641i q^{67} +617.913i q^{68} -79.1642 q^{69} -470.636 q^{71} -92.1896i q^{72} +610.600i q^{73} +29.9090 q^{74} +506.985 q^{76} +186.210i q^{77} -323.923i q^{78} +978.225 q^{79} -882.559 q^{81} +201.261i q^{82} +26.1539i q^{83} +749.051 q^{84} +1.67434 q^{86} -1001.84i q^{87} -124.526i q^{88} +352.887 q^{89} +1263.54 q^{91} +99.6743i q^{92} -388.282i q^{93} +52.5950 q^{94} -760.056 q^{96} -847.585i q^{97} +41.3140i q^{98} +89.5795 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 16 q^{4} - 52 q^{6} - 88 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 16 q^{4} - 52 q^{6} - 88 q^{9} - 44 q^{11} + 8 q^{14} - 16 q^{16} - 144 q^{19} + 152 q^{21} - 504 q^{24} - 80 q^{26} - 288 q^{29} - 68 q^{31} + 104 q^{34} - 160 q^{36} - 800 q^{39} + 1072 q^{41} - 176 q^{44} - 628 q^{46} + 780 q^{49} - 328 q^{51} + 220 q^{54} + 240 q^{56} - 1268 q^{59} + 1680 q^{61} - 448 q^{64} + 572 q^{66} - 1924 q^{69} - 1356 q^{71} - 12 q^{74} + 864 q^{76} - 632 q^{79} - 2588 q^{81} + 1472 q^{84} - 312 q^{86} + 3684 q^{89} + 2560 q^{91} + 1984 q^{94} - 1904 q^{96} + 968 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.732051i 0.258819i 0.991591 + 0.129410i \(0.0413082\pi\)
−0.991591 + 0.129410i \(0.958692\pi\)
\(3\) 5.92820i 1.14088i 0.821338 + 0.570442i \(0.193228\pi\)
−0.821338 + 0.570442i \(0.806772\pi\)
\(4\) 7.46410 0.933013
\(5\) 0 0
\(6\) −4.33975 −0.295282
\(7\) − 16.9282i − 0.914037i −0.889457 0.457019i \(-0.848917\pi\)
0.889457 0.457019i \(-0.151083\pi\)
\(8\) 11.3205i 0.500301i
\(9\) −8.14359 −0.301615
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) 44.2487i 1.06446i
\(13\) 74.6410i 1.59244i 0.605009 + 0.796219i \(0.293170\pi\)
−0.605009 + 0.796219i \(0.706830\pi\)
\(14\) 12.3923 0.236570
\(15\) 0 0
\(16\) 51.4256 0.803525
\(17\) 82.7846i 1.18107i 0.807011 + 0.590536i \(0.201084\pi\)
−0.807011 + 0.590536i \(0.798916\pi\)
\(18\) − 5.96152i − 0.0780636i
\(19\) 67.9230 0.820138 0.410069 0.912055i \(-0.365505\pi\)
0.410069 + 0.912055i \(0.365505\pi\)
\(20\) 0 0
\(21\) 100.354 1.04281
\(22\) − 8.05256i − 0.0780369i
\(23\) 13.3538i 0.121064i 0.998166 + 0.0605319i \(0.0192797\pi\)
−0.998166 + 0.0605319i \(0.980720\pi\)
\(24\) −67.1103 −0.570784
\(25\) 0 0
\(26\) −54.6410 −0.412153
\(27\) 111.785i 0.796776i
\(28\) − 126.354i − 0.852808i
\(29\) −168.995 −1.08212 −0.541061 0.840983i \(-0.681977\pi\)
−0.541061 + 0.840983i \(0.681977\pi\)
\(30\) 0 0
\(31\) −65.4974 −0.379474 −0.189737 0.981835i \(-0.560763\pi\)
−0.189737 + 0.981835i \(0.560763\pi\)
\(32\) 128.210i 0.708268i
\(33\) − 65.2102i − 0.343989i
\(34\) −60.6025 −0.305684
\(35\) 0 0
\(36\) −60.7846 −0.281410
\(37\) − 40.8564i − 0.181534i −0.995872 0.0907669i \(-0.971068\pi\)
0.995872 0.0907669i \(-0.0289318\pi\)
\(38\) 49.7231i 0.212267i
\(39\) −442.487 −1.81679
\(40\) 0 0
\(41\) 274.928 1.04723 0.523617 0.851954i \(-0.324582\pi\)
0.523617 + 0.851954i \(0.324582\pi\)
\(42\) 73.4641i 0.269899i
\(43\) − 2.28719i − 0.00811146i −0.999992 0.00405573i \(-0.998709\pi\)
0.999992 0.00405573i \(-0.00129098\pi\)
\(44\) −82.1051 −0.281314
\(45\) 0 0
\(46\) −9.77568 −0.0313336
\(47\) − 71.8461i − 0.222975i −0.993766 0.111488i \(-0.964438\pi\)
0.993766 0.111488i \(-0.0355615\pi\)
\(48\) 304.862i 0.916729i
\(49\) 56.4359 0.164536
\(50\) 0 0
\(51\) −490.764 −1.34746
\(52\) 557.128i 1.48576i
\(53\) − 149.005i − 0.386178i −0.981181 0.193089i \(-0.938149\pi\)
0.981181 0.193089i \(-0.0618506\pi\)
\(54\) −81.8320 −0.206221
\(55\) 0 0
\(56\) 191.636 0.457293
\(57\) 402.662i 0.935681i
\(58\) − 123.713i − 0.280074i
\(59\) −545.631 −1.20398 −0.601992 0.798502i \(-0.705626\pi\)
−0.601992 + 0.798502i \(0.705626\pi\)
\(60\) 0 0
\(61\) 101.303 0.212631 0.106315 0.994332i \(-0.466095\pi\)
0.106315 + 0.994332i \(0.466095\pi\)
\(62\) − 47.9474i − 0.0982150i
\(63\) 137.856i 0.275687i
\(64\) 317.549 0.620212
\(65\) 0 0
\(66\) 47.7372 0.0890310
\(67\) − 411.641i − 0.750596i −0.926904 0.375298i \(-0.877540\pi\)
0.926904 0.375298i \(-0.122460\pi\)
\(68\) 617.913i 1.10195i
\(69\) −79.1642 −0.138120
\(70\) 0 0
\(71\) −470.636 −0.786679 −0.393339 0.919393i \(-0.628680\pi\)
−0.393339 + 0.919393i \(0.628680\pi\)
\(72\) − 92.1896i − 0.150898i
\(73\) 610.600i 0.978977i 0.872010 + 0.489488i \(0.162816\pi\)
−0.872010 + 0.489488i \(0.837184\pi\)
\(74\) 29.9090 0.0469844
\(75\) 0 0
\(76\) 506.985 0.765199
\(77\) 186.210i 0.275593i
\(78\) − 323.923i − 0.470219i
\(79\) 978.225 1.39315 0.696576 0.717483i \(-0.254706\pi\)
0.696576 + 0.717483i \(0.254706\pi\)
\(80\) 0 0
\(81\) −882.559 −1.21064
\(82\) 201.261i 0.271044i
\(83\) 26.1539i 0.0345875i 0.999850 + 0.0172938i \(0.00550505\pi\)
−0.999850 + 0.0172938i \(0.994495\pi\)
\(84\) 749.051 0.972955
\(85\) 0 0
\(86\) 1.67434 0.00209940
\(87\) − 1001.84i − 1.23458i
\(88\) − 124.526i − 0.150846i
\(89\) 352.887 0.420292 0.210146 0.977670i \(-0.432606\pi\)
0.210146 + 0.977670i \(0.432606\pi\)
\(90\) 0 0
\(91\) 1263.54 1.45555
\(92\) 99.6743i 0.112954i
\(93\) − 388.282i − 0.432935i
\(94\) 52.5950 0.0577102
\(95\) 0 0
\(96\) −760.056 −0.808051
\(97\) − 847.585i − 0.887208i −0.896223 0.443604i \(-0.853700\pi\)
0.896223 0.443604i \(-0.146300\pi\)
\(98\) 41.3140i 0.0425851i
\(99\) 89.5795 0.0909402
\(100\) 0 0
\(101\) 1293.46 1.27430 0.637150 0.770740i \(-0.280113\pi\)
0.637150 + 0.770740i \(0.280113\pi\)
\(102\) − 359.264i − 0.348750i
\(103\) − 1725.24i − 1.65042i −0.564828 0.825209i \(-0.691057\pi\)
0.564828 0.825209i \(-0.308943\pi\)
\(104\) −844.974 −0.796697
\(105\) 0 0
\(106\) 109.079 0.0999502
\(107\) 484.179i 0.437452i 0.975786 + 0.218726i \(0.0701901\pi\)
−0.975786 + 0.218726i \(0.929810\pi\)
\(108\) 834.372i 0.743402i
\(109\) 64.2563 0.0564645 0.0282323 0.999601i \(-0.491012\pi\)
0.0282323 + 0.999601i \(0.491012\pi\)
\(110\) 0 0
\(111\) 242.205 0.207109
\(112\) − 870.543i − 0.734452i
\(113\) − 2005.08i − 1.66922i −0.550839 0.834612i \(-0.685692\pi\)
0.550839 0.834612i \(-0.314308\pi\)
\(114\) −294.769 −0.242172
\(115\) 0 0
\(116\) −1261.39 −1.00963
\(117\) − 607.846i − 0.480302i
\(118\) − 399.429i − 0.311614i
\(119\) 1401.39 1.07954
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 74.1587i 0.0550329i
\(123\) 1629.83i 1.19477i
\(124\) −488.879 −0.354054
\(125\) 0 0
\(126\) −100.918 −0.0713530
\(127\) − 109.605i − 0.0765816i −0.999267 0.0382908i \(-0.987809\pi\)
0.999267 0.0382908i \(-0.0121913\pi\)
\(128\) 1258.14i 0.868791i
\(129\) 13.5589 0.00925423
\(130\) 0 0
\(131\) 1156.71 0.771469 0.385734 0.922610i \(-0.373948\pi\)
0.385734 + 0.922610i \(0.373948\pi\)
\(132\) − 486.736i − 0.320946i
\(133\) − 1149.82i − 0.749636i
\(134\) 301.342 0.194269
\(135\) 0 0
\(136\) −937.164 −0.590891
\(137\) − 198.323i − 0.123678i −0.998086 0.0618391i \(-0.980303\pi\)
0.998086 0.0618391i \(-0.0196965\pi\)
\(138\) − 57.9522i − 0.0357480i
\(139\) 2900.14 1.76969 0.884844 0.465888i \(-0.154265\pi\)
0.884844 + 0.465888i \(0.154265\pi\)
\(140\) 0 0
\(141\) 425.918 0.254389
\(142\) − 344.529i − 0.203607i
\(143\) − 821.051i − 0.480138i
\(144\) −418.789 −0.242355
\(145\) 0 0
\(146\) −446.990 −0.253378
\(147\) 334.564i 0.187717i
\(148\) − 304.956i − 0.169373i
\(149\) −3488.34 −1.91796 −0.958980 0.283472i \(-0.908514\pi\)
−0.958980 + 0.283472i \(0.908514\pi\)
\(150\) 0 0
\(151\) −1163.32 −0.626953 −0.313477 0.949596i \(-0.601494\pi\)
−0.313477 + 0.949596i \(0.601494\pi\)
\(152\) 768.923i 0.410315i
\(153\) − 674.164i − 0.356228i
\(154\) −136.315 −0.0713286
\(155\) 0 0
\(156\) −3302.77 −1.69508
\(157\) − 342.057i − 0.173880i −0.996214 0.0869398i \(-0.972291\pi\)
0.996214 0.0869398i \(-0.0277088\pi\)
\(158\) 716.111i 0.360574i
\(159\) 883.333 0.440584
\(160\) 0 0
\(161\) 226.056 0.110657
\(162\) − 646.078i − 0.313338i
\(163\) − 1394.89i − 0.670285i −0.942167 0.335142i \(-0.891216\pi\)
0.942167 0.335142i \(-0.108784\pi\)
\(164\) 2052.09 0.977082
\(165\) 0 0
\(166\) −19.1460 −0.00895191
\(167\) − 478.703i − 0.221815i −0.993831 0.110908i \(-0.964624\pi\)
0.993831 0.110908i \(-0.0353758\pi\)
\(168\) 1136.06i 0.521718i
\(169\) −3374.28 −1.53586
\(170\) 0 0
\(171\) −553.138 −0.247365
\(172\) − 17.0718i − 0.00756809i
\(173\) 1808.58i 0.794822i 0.917641 + 0.397411i \(0.130091\pi\)
−0.917641 + 0.397411i \(0.869909\pi\)
\(174\) 733.395 0.319532
\(175\) 0 0
\(176\) −565.682 −0.242272
\(177\) − 3234.61i − 1.37361i
\(178\) 258.331i 0.108780i
\(179\) 4429.85 1.84973 0.924867 0.380292i \(-0.124176\pi\)
0.924867 + 0.380292i \(0.124176\pi\)
\(180\) 0 0
\(181\) 3409.17 1.40001 0.700005 0.714138i \(-0.253181\pi\)
0.700005 + 0.714138i \(0.253181\pi\)
\(182\) 924.974i 0.376723i
\(183\) 600.543i 0.242587i
\(184\) −151.172 −0.0605682
\(185\) 0 0
\(186\) 284.242 0.112052
\(187\) − 910.631i − 0.356106i
\(188\) − 536.267i − 0.208039i
\(189\) 1892.31 0.728283
\(190\) 0 0
\(191\) 2923.75 1.10762 0.553810 0.832643i \(-0.313173\pi\)
0.553810 + 0.832643i \(0.313173\pi\)
\(192\) 1882.49i 0.707590i
\(193\) − 2484.18i − 0.926505i −0.886226 0.463253i \(-0.846682\pi\)
0.886226 0.463253i \(-0.153318\pi\)
\(194\) 620.475 0.229626
\(195\) 0 0
\(196\) 421.244 0.153514
\(197\) 5125.67i 1.85375i 0.375369 + 0.926876i \(0.377516\pi\)
−0.375369 + 0.926876i \(0.622484\pi\)
\(198\) 65.5768i 0.0235371i
\(199\) 7.69219 0.00274013 0.00137006 0.999999i \(-0.499564\pi\)
0.00137006 + 0.999999i \(0.499564\pi\)
\(200\) 0 0
\(201\) 2440.29 0.856343
\(202\) 946.879i 0.329813i
\(203\) 2860.78i 0.989100i
\(204\) −3663.11 −1.25720
\(205\) 0 0
\(206\) 1262.96 0.427160
\(207\) − 108.748i − 0.0365146i
\(208\) 3838.46i 1.27956i
\(209\) −747.154 −0.247281
\(210\) 0 0
\(211\) 3107.34 1.01383 0.506915 0.861996i \(-0.330786\pi\)
0.506915 + 0.861996i \(0.330786\pi\)
\(212\) − 1112.19i − 0.360309i
\(213\) − 2790.03i − 0.897509i
\(214\) −354.444 −0.113221
\(215\) 0 0
\(216\) −1265.46 −0.398628
\(217\) 1108.75i 0.346853i
\(218\) 47.0388i 0.0146141i
\(219\) −3619.76 −1.11690
\(220\) 0 0
\(221\) −6179.13 −1.88078
\(222\) 177.306i 0.0536037i
\(223\) − 12.3185i − 0.00369913i −0.999998 0.00184957i \(-0.999411\pi\)
0.999998 0.00184957i \(-0.000588736\pi\)
\(224\) 2170.37 0.647383
\(225\) 0 0
\(226\) 1467.82 0.432027
\(227\) − 4615.90i − 1.34964i −0.737983 0.674820i \(-0.764221\pi\)
0.737983 0.674820i \(-0.235779\pi\)
\(228\) 3005.51i 0.873003i
\(229\) −5074.63 −1.46437 −0.732186 0.681105i \(-0.761500\pi\)
−0.732186 + 0.681105i \(0.761500\pi\)
\(230\) 0 0
\(231\) −1103.89 −0.314419
\(232\) − 1913.11i − 0.541386i
\(233\) 211.683i 0.0595184i 0.999557 + 0.0297592i \(0.00947405\pi\)
−0.999557 + 0.0297592i \(0.990526\pi\)
\(234\) 444.974 0.124311
\(235\) 0 0
\(236\) −4072.64 −1.12333
\(237\) 5799.12i 1.58942i
\(238\) 1025.89i 0.279406i
\(239\) −4312.49 −1.16716 −0.583581 0.812055i \(-0.698349\pi\)
−0.583581 + 0.812055i \(0.698349\pi\)
\(240\) 0 0
\(241\) −996.584 −0.266372 −0.133186 0.991091i \(-0.542521\pi\)
−0.133186 + 0.991091i \(0.542521\pi\)
\(242\) 88.5781i 0.0235290i
\(243\) − 2213.80i − 0.584426i
\(244\) 756.133 0.198387
\(245\) 0 0
\(246\) −1193.12 −0.309230
\(247\) 5069.85i 1.30602i
\(248\) − 741.464i − 0.189851i
\(249\) −155.046 −0.0394603
\(250\) 0 0
\(251\) −276.892 −0.0696306 −0.0348153 0.999394i \(-0.511084\pi\)
−0.0348153 + 0.999394i \(0.511084\pi\)
\(252\) 1028.97i 0.257219i
\(253\) − 146.892i − 0.0365021i
\(254\) 80.2364 0.0198208
\(255\) 0 0
\(256\) 1619.36 0.395352
\(257\) 3235.18i 0.785233i 0.919702 + 0.392617i \(0.128430\pi\)
−0.919702 + 0.392617i \(0.871570\pi\)
\(258\) 9.92581i 0.00239517i
\(259\) −691.626 −0.165929
\(260\) 0 0
\(261\) 1376.23 0.326384
\(262\) 846.772i 0.199671i
\(263\) 207.944i 0.0487544i 0.999703 + 0.0243772i \(0.00776027\pi\)
−0.999703 + 0.0243772i \(0.992240\pi\)
\(264\) 738.213 0.172098
\(265\) 0 0
\(266\) 841.723 0.194020
\(267\) 2091.99i 0.479504i
\(268\) − 3072.53i − 0.700316i
\(269\) −5033.04 −1.14078 −0.570390 0.821374i \(-0.693208\pi\)
−0.570390 + 0.821374i \(0.693208\pi\)
\(270\) 0 0
\(271\) 1487.01 0.333319 0.166660 0.986015i \(-0.446702\pi\)
0.166660 + 0.986015i \(0.446702\pi\)
\(272\) 4257.25i 0.949021i
\(273\) 7490.51i 1.66061i
\(274\) 145.183 0.0320102
\(275\) 0 0
\(276\) −590.890 −0.128867
\(277\) 235.836i 0.0511552i 0.999673 + 0.0255776i \(0.00814250\pi\)
−0.999673 + 0.0255776i \(0.991858\pi\)
\(278\) 2123.05i 0.458029i
\(279\) 533.384 0.114455
\(280\) 0 0
\(281\) −4915.01 −1.04343 −0.521717 0.853118i \(-0.674708\pi\)
−0.521717 + 0.853118i \(0.674708\pi\)
\(282\) 311.794i 0.0658406i
\(283\) − 5199.56i − 1.09216i −0.837733 0.546081i \(-0.816119\pi\)
0.837733 0.546081i \(-0.183881\pi\)
\(284\) −3512.87 −0.733981
\(285\) 0 0
\(286\) 601.051 0.124269
\(287\) − 4654.04i − 0.957210i
\(288\) − 1044.09i − 0.213624i
\(289\) −1940.29 −0.394930
\(290\) 0 0
\(291\) 5024.65 1.01220
\(292\) 4557.58i 0.913398i
\(293\) − 8880.92i − 1.77075i −0.464881 0.885373i \(-0.653903\pi\)
0.464881 0.885373i \(-0.346097\pi\)
\(294\) −244.918 −0.0485846
\(295\) 0 0
\(296\) 462.515 0.0908215
\(297\) − 1229.63i − 0.240237i
\(298\) − 2553.64i − 0.496405i
\(299\) −996.743 −0.192786
\(300\) 0 0
\(301\) −38.7180 −0.00741417
\(302\) − 851.612i − 0.162267i
\(303\) 7667.90i 1.45383i
\(304\) 3492.99 0.659001
\(305\) 0 0
\(306\) 493.522 0.0921987
\(307\) 1497.93i 0.278474i 0.990259 + 0.139237i \(0.0444650\pi\)
−0.990259 + 0.139237i \(0.955535\pi\)
\(308\) 1389.89i 0.257131i
\(309\) 10227.6 1.88293
\(310\) 0 0
\(311\) −7484.71 −1.36469 −0.682345 0.731030i \(-0.739040\pi\)
−0.682345 + 0.731030i \(0.739040\pi\)
\(312\) − 5009.18i − 0.908939i
\(313\) − 658.363i − 0.118891i −0.998232 0.0594455i \(-0.981067\pi\)
0.998232 0.0594455i \(-0.0189333\pi\)
\(314\) 250.403 0.0450034
\(315\) 0 0
\(316\) 7301.57 1.29983
\(317\) − 233.708i − 0.0414080i −0.999786 0.0207040i \(-0.993409\pi\)
0.999786 0.0207040i \(-0.00659076\pi\)
\(318\) 646.645i 0.114032i
\(319\) 1858.94 0.326272
\(320\) 0 0
\(321\) −2870.31 −0.499082
\(322\) 165.485i 0.0286401i
\(323\) 5622.98i 0.968641i
\(324\) −6587.51 −1.12955
\(325\) 0 0
\(326\) 1021.13 0.173482
\(327\) 380.924i 0.0644194i
\(328\) 3112.33i 0.523931i
\(329\) −1216.23 −0.203808
\(330\) 0 0
\(331\) 8532.95 1.41696 0.708480 0.705731i \(-0.249381\pi\)
0.708480 + 0.705731i \(0.249381\pi\)
\(332\) 195.215i 0.0322706i
\(333\) 332.718i 0.0547533i
\(334\) 350.435 0.0574100
\(335\) 0 0
\(336\) 5160.76 0.837924
\(337\) − 11691.2i − 1.88979i −0.327373 0.944895i \(-0.606163\pi\)
0.327373 0.944895i \(-0.393837\pi\)
\(338\) − 2470.15i − 0.397509i
\(339\) 11886.5 1.90439
\(340\) 0 0
\(341\) 720.472 0.114416
\(342\) − 404.925i − 0.0640229i
\(343\) − 6761.73i − 1.06443i
\(344\) 25.8921 0.00405817
\(345\) 0 0
\(346\) −1323.98 −0.205715
\(347\) − 4598.79i − 0.711459i −0.934589 0.355729i \(-0.884232\pi\)
0.934589 0.355729i \(-0.115768\pi\)
\(348\) − 7477.80i − 1.15187i
\(349\) −6720.27 −1.03074 −0.515369 0.856968i \(-0.672345\pi\)
−0.515369 + 0.856968i \(0.672345\pi\)
\(350\) 0 0
\(351\) −8343.72 −1.26882
\(352\) − 1410.31i − 0.213551i
\(353\) 5738.70i 0.865270i 0.901569 + 0.432635i \(0.142416\pi\)
−0.901569 + 0.432635i \(0.857584\pi\)
\(354\) 2367.90 0.355515
\(355\) 0 0
\(356\) 2633.99 0.392138
\(357\) 8307.75i 1.23163i
\(358\) 3242.87i 0.478746i
\(359\) 4115.27 0.605001 0.302501 0.953149i \(-0.402179\pi\)
0.302501 + 0.953149i \(0.402179\pi\)
\(360\) 0 0
\(361\) −2245.46 −0.327374
\(362\) 2495.69i 0.362349i
\(363\) 717.313i 0.103717i
\(364\) 9431.18 1.35804
\(365\) 0 0
\(366\) −439.628 −0.0627861
\(367\) − 9662.99i − 1.37440i −0.726469 0.687199i \(-0.758840\pi\)
0.726469 0.687199i \(-0.241160\pi\)
\(368\) 686.729i 0.0972778i
\(369\) −2238.90 −0.315861
\(370\) 0 0
\(371\) −2522.39 −0.352981
\(372\) − 2898.18i − 0.403934i
\(373\) − 141.780i − 0.0196812i −0.999952 0.00984062i \(-0.996868\pi\)
0.999952 0.00984062i \(-0.00313242\pi\)
\(374\) 666.628 0.0921671
\(375\) 0 0
\(376\) 813.334 0.111555
\(377\) − 12613.9i − 1.72321i
\(378\) 1385.27i 0.188494i
\(379\) 2819.73 0.382163 0.191082 0.981574i \(-0.438800\pi\)
0.191082 + 0.981574i \(0.438800\pi\)
\(380\) 0 0
\(381\) 649.760 0.0873707
\(382\) 2140.34i 0.286673i
\(383\) − 6337.84i − 0.845557i −0.906233 0.422778i \(-0.861055\pi\)
0.906233 0.422778i \(-0.138945\pi\)
\(384\) −7458.53 −0.991189
\(385\) 0 0
\(386\) 1818.55 0.239797
\(387\) 18.6259i 0.00244653i
\(388\) − 6326.46i − 0.827776i
\(389\) 8805.25 1.14767 0.573836 0.818970i \(-0.305455\pi\)
0.573836 + 0.818970i \(0.305455\pi\)
\(390\) 0 0
\(391\) −1105.49 −0.142985
\(392\) 638.883i 0.0823176i
\(393\) 6857.23i 0.880156i
\(394\) −3752.25 −0.479786
\(395\) 0 0
\(396\) 668.631 0.0848484
\(397\) − 4315.26i − 0.545534i −0.962080 0.272767i \(-0.912061\pi\)
0.962080 0.272767i \(-0.0879387\pi\)
\(398\) 5.63108i 0 0.000709197i
\(399\) 6816.34 0.855247
\(400\) 0 0
\(401\) 361.681 0.0450411 0.0225206 0.999746i \(-0.492831\pi\)
0.0225206 + 0.999746i \(0.492831\pi\)
\(402\) 1786.42i 0.221638i
\(403\) − 4888.79i − 0.604288i
\(404\) 9654.53 1.18894
\(405\) 0 0
\(406\) −2094.24 −0.255998
\(407\) 449.420i 0.0547345i
\(408\) − 5555.70i − 0.674137i
\(409\) −9220.50 −1.11473 −0.557365 0.830268i \(-0.688188\pi\)
−0.557365 + 0.830268i \(0.688188\pi\)
\(410\) 0 0
\(411\) 1175.70 0.141102
\(412\) − 12877.4i − 1.53986i
\(413\) 9236.55i 1.10049i
\(414\) 79.6092 0.00945067
\(415\) 0 0
\(416\) −9569.74 −1.12787
\(417\) 17192.6i 2.01901i
\(418\) − 546.954i − 0.0640010i
\(419\) 14912.9 1.73876 0.869380 0.494144i \(-0.164519\pi\)
0.869380 + 0.494144i \(0.164519\pi\)
\(420\) 0 0
\(421\) −13486.0 −1.56121 −0.780603 0.625027i \(-0.785088\pi\)
−0.780603 + 0.625027i \(0.785088\pi\)
\(422\) 2274.73i 0.262399i
\(423\) 585.085i 0.0672525i
\(424\) 1686.81 0.193205
\(425\) 0 0
\(426\) 2042.44 0.232292
\(427\) − 1714.87i − 0.194352i
\(428\) 3613.96i 0.408148i
\(429\) 4867.36 0.547782
\(430\) 0 0
\(431\) 406.334 0.0454116 0.0227058 0.999742i \(-0.492772\pi\)
0.0227058 + 0.999742i \(0.492772\pi\)
\(432\) 5748.59i 0.640230i
\(433\) − 1766.69i − 0.196078i −0.995183 0.0980391i \(-0.968743\pi\)
0.995183 0.0980391i \(-0.0312570\pi\)
\(434\) −811.664 −0.0897722
\(435\) 0 0
\(436\) 479.615 0.0526821
\(437\) 907.033i 0.0992889i
\(438\) − 2649.85i − 0.289075i
\(439\) −7824.19 −0.850634 −0.425317 0.905044i \(-0.639837\pi\)
−0.425317 + 0.905044i \(0.639837\pi\)
\(440\) 0 0
\(441\) −459.591 −0.0496265
\(442\) − 4523.44i − 0.486783i
\(443\) 11667.9i 1.25137i 0.780075 + 0.625686i \(0.215181\pi\)
−0.780075 + 0.625686i \(0.784819\pi\)
\(444\) 1807.84 0.193235
\(445\) 0 0
\(446\) 9.01776 0.000957406 0
\(447\) − 20679.6i − 2.18817i
\(448\) − 5375.53i − 0.566897i
\(449\) −16975.3 −1.78421 −0.892107 0.451825i \(-0.850773\pi\)
−0.892107 + 0.451825i \(0.850773\pi\)
\(450\) 0 0
\(451\) −3024.21 −0.315753
\(452\) − 14966.1i − 1.55741i
\(453\) − 6896.42i − 0.715280i
\(454\) 3379.07 0.349312
\(455\) 0 0
\(456\) −4558.33 −0.468122
\(457\) 16192.9i 1.65748i 0.559632 + 0.828741i \(0.310943\pi\)
−0.559632 + 0.828741i \(0.689057\pi\)
\(458\) − 3714.89i − 0.379007i
\(459\) −9254.05 −0.941050
\(460\) 0 0
\(461\) 8586.04 0.867444 0.433722 0.901047i \(-0.357200\pi\)
0.433722 + 0.901047i \(0.357200\pi\)
\(462\) − 808.105i − 0.0813776i
\(463\) − 7917.20i − 0.794694i −0.917668 0.397347i \(-0.869931\pi\)
0.917668 0.397347i \(-0.130069\pi\)
\(464\) −8690.67 −0.869513
\(465\) 0 0
\(466\) −154.962 −0.0154045
\(467\) 15155.0i 1.50169i 0.660480 + 0.750844i \(0.270353\pi\)
−0.660480 + 0.750844i \(0.729647\pi\)
\(468\) − 4537.03i − 0.448128i
\(469\) −6968.34 −0.686073
\(470\) 0 0
\(471\) 2027.78 0.198376
\(472\) − 6176.82i − 0.602354i
\(473\) 25.1591i 0.00244570i
\(474\) −4245.25 −0.411373
\(475\) 0 0
\(476\) 10460.2 1.00723
\(477\) 1213.44i 0.116477i
\(478\) − 3156.96i − 0.302084i
\(479\) −10001.1 −0.953993 −0.476996 0.878905i \(-0.658275\pi\)
−0.476996 + 0.878905i \(0.658275\pi\)
\(480\) 0 0
\(481\) 3049.56 0.289081
\(482\) − 729.550i − 0.0689421i
\(483\) 1340.11i 0.126246i
\(484\) 903.156 0.0848193
\(485\) 0 0
\(486\) 1620.62 0.151261
\(487\) − 7044.54i − 0.655480i −0.944768 0.327740i \(-0.893713\pi\)
0.944768 0.327740i \(-0.106287\pi\)
\(488\) 1146.80i 0.106379i
\(489\) 8269.21 0.764717
\(490\) 0 0
\(491\) −13326.4 −1.22487 −0.612437 0.790520i \(-0.709811\pi\)
−0.612437 + 0.790520i \(0.709811\pi\)
\(492\) 12165.2i 1.11474i
\(493\) − 13990.2i − 1.27806i
\(494\) −3711.38 −0.338022
\(495\) 0 0
\(496\) −3368.25 −0.304917
\(497\) 7967.02i 0.719054i
\(498\) − 113.501i − 0.0102131i
\(499\) 20069.1 1.80044 0.900218 0.435440i \(-0.143407\pi\)
0.900218 + 0.435440i \(0.143407\pi\)
\(500\) 0 0
\(501\) 2837.85 0.253065
\(502\) − 202.699i − 0.0180217i
\(503\) 7782.35i 0.689856i 0.938629 + 0.344928i \(0.112097\pi\)
−0.938629 + 0.344928i \(0.887903\pi\)
\(504\) −1560.60 −0.137926
\(505\) 0 0
\(506\) 107.532 0.00944744
\(507\) − 20003.4i − 1.75224i
\(508\) − 818.102i − 0.0714516i
\(509\) 1475.93 0.128526 0.0642628 0.997933i \(-0.479530\pi\)
0.0642628 + 0.997933i \(0.479530\pi\)
\(510\) 0 0
\(511\) 10336.4 0.894821
\(512\) 11250.6i 0.971116i
\(513\) 7592.75i 0.653466i
\(514\) −2368.32 −0.203233
\(515\) 0 0
\(516\) 101.205 0.00863431
\(517\) 790.307i 0.0672295i
\(518\) − 506.305i − 0.0429455i
\(519\) −10721.7 −0.906799
\(520\) 0 0
\(521\) 7609.43 0.639875 0.319938 0.947439i \(-0.396338\pi\)
0.319938 + 0.947439i \(0.396338\pi\)
\(522\) 1007.47i 0.0844744i
\(523\) 12452.9i 1.04116i 0.853812 + 0.520581i \(0.174285\pi\)
−0.853812 + 0.520581i \(0.825715\pi\)
\(524\) 8633.82 0.719790
\(525\) 0 0
\(526\) −152.226 −0.0126186
\(527\) − 5422.18i − 0.448186i
\(528\) − 3353.48i − 0.276404i
\(529\) 11988.7 0.985344
\(530\) 0 0
\(531\) 4443.39 0.363139
\(532\) − 8582.34i − 0.699420i
\(533\) 20520.9i 1.66765i
\(534\) −1531.44 −0.124105
\(535\) 0 0
\(536\) 4659.99 0.375524
\(537\) 26261.0i 2.11033i
\(538\) − 3684.44i − 0.295255i
\(539\) −620.795 −0.0496095
\(540\) 0 0
\(541\) 9312.17 0.740039 0.370020 0.929024i \(-0.379351\pi\)
0.370020 + 0.929024i \(0.379351\pi\)
\(542\) 1088.57i 0.0862693i
\(543\) 20210.3i 1.59725i
\(544\) −10613.8 −0.836515
\(545\) 0 0
\(546\) −5483.44 −0.429797
\(547\) 11018.6i 0.861278i 0.902524 + 0.430639i \(0.141712\pi\)
−0.902524 + 0.430639i \(0.858288\pi\)
\(548\) − 1480.31i − 0.115393i
\(549\) −824.968 −0.0641325
\(550\) 0 0
\(551\) −11478.6 −0.887490
\(552\) − 896.179i − 0.0691013i
\(553\) − 16559.6i − 1.27339i
\(554\) −172.644 −0.0132399
\(555\) 0 0
\(556\) 21646.9 1.65114
\(557\) 12018.4i 0.914250i 0.889403 + 0.457125i \(0.151121\pi\)
−0.889403 + 0.457125i \(0.848879\pi\)
\(558\) 390.464i 0.0296231i
\(559\) 170.718 0.0129170
\(560\) 0 0
\(561\) 5398.40 0.406276
\(562\) − 3598.04i − 0.270061i
\(563\) − 8763.89i − 0.656046i −0.944670 0.328023i \(-0.893618\pi\)
0.944670 0.328023i \(-0.106382\pi\)
\(564\) 3179.10 0.237348
\(565\) 0 0
\(566\) 3806.34 0.282672
\(567\) 14940.1i 1.10657i
\(568\) − 5327.84i − 0.393576i
\(569\) 10273.2 0.756895 0.378447 0.925623i \(-0.376458\pi\)
0.378447 + 0.925623i \(0.376458\pi\)
\(570\) 0 0
\(571\) 2602.62 0.190747 0.0953734 0.995442i \(-0.469596\pi\)
0.0953734 + 0.995442i \(0.469596\pi\)
\(572\) − 6128.41i − 0.447975i
\(573\) 17332.6i 1.26366i
\(574\) 3406.99 0.247744
\(575\) 0 0
\(576\) −2585.99 −0.187065
\(577\) 19727.0i 1.42331i 0.702532 + 0.711653i \(0.252053\pi\)
−0.702532 + 0.711653i \(0.747947\pi\)
\(578\) − 1420.39i − 0.102215i
\(579\) 14726.7 1.05703
\(580\) 0 0
\(581\) 442.739 0.0316143
\(582\) 3678.30i 0.261977i
\(583\) 1639.06i 0.116437i
\(584\) −6912.30 −0.489783
\(585\) 0 0
\(586\) 6501.28 0.458303
\(587\) 10116.2i 0.711309i 0.934618 + 0.355654i \(0.115742\pi\)
−0.934618 + 0.355654i \(0.884258\pi\)
\(588\) 2497.22i 0.175142i
\(589\) −4448.78 −0.311221
\(590\) 0 0
\(591\) −30386.0 −2.11491
\(592\) − 2101.07i − 0.145867i
\(593\) 3130.32i 0.216774i 0.994109 + 0.108387i \(0.0345685\pi\)
−0.994109 + 0.108387i \(0.965431\pi\)
\(594\) 900.152 0.0621779
\(595\) 0 0
\(596\) −26037.3 −1.78948
\(597\) 45.6009i 0.00312616i
\(598\) − 729.667i − 0.0498968i
\(599\) −10080.1 −0.687581 −0.343790 0.939046i \(-0.611711\pi\)
−0.343790 + 0.939046i \(0.611711\pi\)
\(600\) 0 0
\(601\) 4777.02 0.324224 0.162112 0.986772i \(-0.448169\pi\)
0.162112 + 0.986772i \(0.448169\pi\)
\(602\) − 28.3435i − 0.00191893i
\(603\) 3352.24i 0.226391i
\(604\) −8683.16 −0.584955
\(605\) 0 0
\(606\) −5613.29 −0.376278
\(607\) 2571.35i 0.171941i 0.996298 + 0.0859703i \(0.0273990\pi\)
−0.996298 + 0.0859703i \(0.972601\pi\)
\(608\) 8708.43i 0.580877i
\(609\) −16959.3 −1.12845
\(610\) 0 0
\(611\) 5362.67 0.355074
\(612\) − 5032.03i − 0.332366i
\(613\) 12711.9i 0.837564i 0.908087 + 0.418782i \(0.137543\pi\)
−0.908087 + 0.418782i \(0.862457\pi\)
\(614\) −1096.56 −0.0720744
\(615\) 0 0
\(616\) −2107.99 −0.137879
\(617\) − 16236.1i − 1.05939i −0.848189 0.529693i \(-0.822307\pi\)
0.848189 0.529693i \(-0.177693\pi\)
\(618\) 7487.11i 0.487339i
\(619\) −12657.3 −0.821874 −0.410937 0.911664i \(-0.634798\pi\)
−0.410937 + 0.911664i \(0.634798\pi\)
\(620\) 0 0
\(621\) −1492.75 −0.0964607
\(622\) − 5479.19i − 0.353208i
\(623\) − 5973.75i − 0.384162i
\(624\) −22755.2 −1.45983
\(625\) 0 0
\(626\) 481.955 0.0307713
\(627\) − 4429.28i − 0.282119i
\(628\) − 2553.15i − 0.162232i
\(629\) 3382.28 0.214404
\(630\) 0 0
\(631\) −3949.97 −0.249201 −0.124600 0.992207i \(-0.539765\pi\)
−0.124600 + 0.992207i \(0.539765\pi\)
\(632\) 11074.0i 0.696994i
\(633\) 18421.0i 1.15666i
\(634\) 171.086 0.0107172
\(635\) 0 0
\(636\) 6593.29 0.411070
\(637\) 4212.44i 0.262014i
\(638\) 1360.84i 0.0844455i
\(639\) 3832.67 0.237274
\(640\) 0 0
\(641\) −7398.27 −0.455872 −0.227936 0.973676i \(-0.573198\pi\)
−0.227936 + 0.973676i \(0.573198\pi\)
\(642\) − 2101.22i − 0.129172i
\(643\) − 12491.7i − 0.766134i −0.923721 0.383067i \(-0.874868\pi\)
0.923721 0.383067i \(-0.125132\pi\)
\(644\) 1687.31 0.103244
\(645\) 0 0
\(646\) −4116.31 −0.250703
\(647\) 10472.0i 0.636315i 0.948038 + 0.318158i \(0.103064\pi\)
−0.948038 + 0.318158i \(0.896936\pi\)
\(648\) − 9991.02i − 0.605685i
\(649\) 6001.94 0.363015
\(650\) 0 0
\(651\) −6572.92 −0.395719
\(652\) − 10411.6i − 0.625384i
\(653\) 6337.94i 0.379820i 0.981801 + 0.189910i \(0.0608196\pi\)
−0.981801 + 0.189910i \(0.939180\pi\)
\(654\) −278.856 −0.0166730
\(655\) 0 0
\(656\) 14138.4 0.841479
\(657\) − 4972.48i − 0.295274i
\(658\) − 890.339i − 0.0527493i
\(659\) −15196.7 −0.898302 −0.449151 0.893456i \(-0.648274\pi\)
−0.449151 + 0.893456i \(0.648274\pi\)
\(660\) 0 0
\(661\) 2298.17 0.135232 0.0676161 0.997711i \(-0.478461\pi\)
0.0676161 + 0.997711i \(0.478461\pi\)
\(662\) 6246.55i 0.366736i
\(663\) − 36631.1i − 2.14575i
\(664\) −296.075 −0.0173042
\(665\) 0 0
\(666\) −243.566 −0.0141712
\(667\) − 2256.73i − 0.131006i
\(668\) − 3573.09i − 0.206956i
\(669\) 73.0265 0.00422028
\(670\) 0 0
\(671\) −1114.33 −0.0641106
\(672\) 12866.4i 0.738589i
\(673\) 23199.6i 1.32880i 0.747379 + 0.664398i \(0.231312\pi\)
−0.747379 + 0.664398i \(0.768688\pi\)
\(674\) 8558.54 0.489114
\(675\) 0 0
\(676\) −25186.0 −1.43298
\(677\) 2145.38i 0.121793i 0.998144 + 0.0608963i \(0.0193959\pi\)
−0.998144 + 0.0608963i \(0.980604\pi\)
\(678\) 8701.55i 0.492892i
\(679\) −14348.1 −0.810941
\(680\) 0 0
\(681\) 27364.0 1.53978
\(682\) 527.422i 0.0296129i
\(683\) − 29544.6i − 1.65519i −0.561329 0.827593i \(-0.689710\pi\)
0.561329 0.827593i \(-0.310290\pi\)
\(684\) −4128.68 −0.230795
\(685\) 0 0
\(686\) 4949.93 0.275495
\(687\) − 30083.4i − 1.67068i
\(688\) − 117.620i − 0.00651776i
\(689\) 11121.9 0.614964
\(690\) 0 0
\(691\) 27803.1 1.53065 0.765325 0.643644i \(-0.222578\pi\)
0.765325 + 0.643644i \(0.222578\pi\)
\(692\) 13499.5i 0.741579i
\(693\) − 1516.42i − 0.0831227i
\(694\) 3366.55 0.184139
\(695\) 0 0
\(696\) 11341.3 0.617659
\(697\) 22759.8i 1.23686i
\(698\) − 4919.58i − 0.266775i
\(699\) −1254.90 −0.0679036
\(700\) 0 0
\(701\) −19697.8 −1.06130 −0.530652 0.847590i \(-0.678053\pi\)
−0.530652 + 0.847590i \(0.678053\pi\)
\(702\) − 6108.02i − 0.328394i
\(703\) − 2775.09i − 0.148883i
\(704\) −3493.03 −0.187001
\(705\) 0 0
\(706\) −4201.02 −0.223948
\(707\) − 21896.0i − 1.16476i
\(708\) − 24143.5i − 1.28159i
\(709\) −19122.5 −1.01292 −0.506460 0.862263i \(-0.669046\pi\)
−0.506460 + 0.862263i \(0.669046\pi\)
\(710\) 0 0
\(711\) −7966.27 −0.420195
\(712\) 3994.86i 0.210272i
\(713\) − 874.641i − 0.0459405i
\(714\) −6081.70 −0.318770
\(715\) 0 0
\(716\) 33064.8 1.72582
\(717\) − 25565.3i − 1.33160i
\(718\) 3012.59i 0.156586i
\(719\) −1837.44 −0.0953060 −0.0476530 0.998864i \(-0.515174\pi\)
−0.0476530 + 0.998864i \(0.515174\pi\)
\(720\) 0 0
\(721\) −29205.2 −1.50854
\(722\) − 1643.79i − 0.0847307i
\(723\) − 5907.95i − 0.303899i
\(724\) 25446.4 1.30623
\(725\) 0 0
\(726\) −525.109 −0.0268438
\(727\) 7555.46i 0.385442i 0.981254 + 0.192721i \(0.0617312\pi\)
−0.981254 + 0.192721i \(0.938269\pi\)
\(728\) 14303.9i 0.728211i
\(729\) −10705.2 −0.543881
\(730\) 0 0
\(731\) 189.344 0.00958021
\(732\) 4482.51i 0.226337i
\(733\) 11984.6i 0.603905i 0.953323 + 0.301952i \(0.0976384\pi\)
−0.953323 + 0.301952i \(0.902362\pi\)
\(734\) 7073.80 0.355720
\(735\) 0 0
\(736\) −1712.10 −0.0857456
\(737\) 4528.05i 0.226313i
\(738\) − 1638.99i − 0.0817508i
\(739\) 27142.5 1.35109 0.675543 0.737321i \(-0.263909\pi\)
0.675543 + 0.737321i \(0.263909\pi\)
\(740\) 0 0
\(741\) −30055.1 −1.49001
\(742\) − 1846.52i − 0.0913582i
\(743\) − 29222.6i − 1.44290i −0.692467 0.721450i \(-0.743476\pi\)
0.692467 0.721450i \(-0.256524\pi\)
\(744\) 4395.55 0.216598
\(745\) 0 0
\(746\) 103.790 0.00509388
\(747\) − 212.987i − 0.0104321i
\(748\) − 6797.04i − 0.332252i
\(749\) 8196.29 0.399847
\(750\) 0 0
\(751\) −8859.39 −0.430471 −0.215236 0.976562i \(-0.569052\pi\)
−0.215236 + 0.976562i \(0.569052\pi\)
\(752\) − 3694.73i − 0.179166i
\(753\) − 1641.47i − 0.0794404i
\(754\) 9234.05 0.446000
\(755\) 0 0
\(756\) 14124.4 0.679497
\(757\) − 35734.4i − 1.71571i −0.513896 0.857853i \(-0.671798\pi\)
0.513896 0.857853i \(-0.328202\pi\)
\(758\) 2064.19i 0.0989112i
\(759\) 870.806 0.0416446
\(760\) 0 0
\(761\) 34394.7 1.63838 0.819189 0.573524i \(-0.194424\pi\)
0.819189 + 0.573524i \(0.194424\pi\)
\(762\) 475.658i 0.0226132i
\(763\) − 1087.74i − 0.0516107i
\(764\) 21823.2 1.03342
\(765\) 0 0
\(766\) 4639.62 0.218846
\(767\) − 40726.4i − 1.91727i
\(768\) 9599.92i 0.451051i
\(769\) 11602.7 0.544091 0.272045 0.962284i \(-0.412300\pi\)
0.272045 + 0.962284i \(0.412300\pi\)
\(770\) 0 0
\(771\) −19178.8 −0.895859
\(772\) − 18542.2i − 0.864441i
\(773\) − 12680.6i − 0.590026i −0.955493 0.295013i \(-0.904676\pi\)
0.955493 0.295013i \(-0.0953239\pi\)
\(774\) −13.6351 −0.000633210 0
\(775\) 0 0
\(776\) 9595.09 0.443871
\(777\) − 4100.10i − 0.189305i
\(778\) 6445.89i 0.297039i
\(779\) 18674.0 0.858876
\(780\) 0 0
\(781\) 5176.99 0.237193
\(782\) − 809.276i − 0.0370072i
\(783\) − 18891.0i − 0.862210i
\(784\) 2902.25 0.132209
\(785\) 0 0
\(786\) −5019.84 −0.227801
\(787\) 4417.61i 0.200090i 0.994983 + 0.100045i \(0.0318987\pi\)
−0.994983 + 0.100045i \(0.968101\pi\)
\(788\) 38258.5i 1.72957i
\(789\) −1232.74 −0.0556231
\(790\) 0 0
\(791\) −33942.4 −1.52573
\(792\) 1014.09i 0.0454974i
\(793\) 7561.33i 0.338601i
\(794\) 3158.99 0.141194
\(795\) 0 0
\(796\) 57.4153 0.00255657
\(797\) 27030.1i 1.20132i 0.799504 + 0.600661i \(0.205096\pi\)
−0.799504 + 0.600661i \(0.794904\pi\)
\(798\) 4989.91i 0.221354i
\(799\) 5947.75 0.263350
\(800\) 0 0
\(801\) −2873.77 −0.126766
\(802\) 264.769i 0.0116575i
\(803\) − 6716.60i − 0.295173i
\(804\) 18214.6 0.798979
\(805\) 0 0
\(806\) 3578.85 0.156401
\(807\) − 29836.9i − 1.30150i
\(808\) 14642.6i 0.637533i
\(809\) −23647.0 −1.02767 −0.513835 0.857889i \(-0.671776\pi\)
−0.513835 + 0.857889i \(0.671776\pi\)
\(810\) 0 0
\(811\) 33486.1 1.44988 0.724941 0.688811i \(-0.241867\pi\)
0.724941 + 0.688811i \(0.241867\pi\)
\(812\) 21353.1i 0.922843i
\(813\) 8815.30i 0.380278i
\(814\) −328.999 −0.0141663
\(815\) 0 0
\(816\) −25237.8 −1.08272
\(817\) − 155.353i − 0.00665251i
\(818\) − 6749.88i − 0.288513i
\(819\) −10289.7 −0.439014
\(820\) 0 0
\(821\) 2605.69 0.110766 0.0553832 0.998465i \(-0.482362\pi\)
0.0553832 + 0.998465i \(0.482362\pi\)
\(822\) 860.673i 0.0365200i
\(823\) 31976.2i 1.35434i 0.735828 + 0.677169i \(0.236793\pi\)
−0.735828 + 0.677169i \(0.763207\pi\)
\(824\) 19530.6 0.825705
\(825\) 0 0
\(826\) −6761.62 −0.284827
\(827\) 37759.0i 1.58768i 0.608128 + 0.793839i \(0.291921\pi\)
−0.608128 + 0.793839i \(0.708079\pi\)
\(828\) − 811.707i − 0.0340686i
\(829\) 1137.55 0.0476584 0.0238292 0.999716i \(-0.492414\pi\)
0.0238292 + 0.999716i \(0.492414\pi\)
\(830\) 0 0
\(831\) −1398.08 −0.0583621
\(832\) 23702.2i 0.987649i
\(833\) 4672.03i 0.194329i
\(834\) −12585.9 −0.522557
\(835\) 0 0
\(836\) −5576.83 −0.230716
\(837\) − 7321.60i − 0.302356i
\(838\) 10917.0i 0.450024i
\(839\) 37372.2 1.53782 0.768911 0.639356i \(-0.220799\pi\)
0.768911 + 0.639356i \(0.220799\pi\)
\(840\) 0 0
\(841\) 4170.26 0.170989
\(842\) − 9872.44i − 0.404070i
\(843\) − 29137.2i − 1.19044i
\(844\) 23193.5 0.945917
\(845\) 0 0
\(846\) −428.312 −0.0174062
\(847\) − 2048.31i − 0.0830943i
\(848\) − 7662.68i − 0.310304i
\(849\) 30824.0 1.24603
\(850\) 0 0
\(851\) 545.589 0.0219772
\(852\) − 20825.0i − 0.837387i
\(853\) − 22490.8i − 0.902780i −0.892327 0.451390i \(-0.850928\pi\)
0.892327 0.451390i \(-0.149072\pi\)
\(854\) 1255.37 0.0503021
\(855\) 0 0
\(856\) −5481.16 −0.218858
\(857\) − 43409.5i − 1.73027i −0.501539 0.865135i \(-0.667233\pi\)
0.501539 0.865135i \(-0.332767\pi\)
\(858\) 3563.15i 0.141776i
\(859\) −29533.2 −1.17306 −0.586532 0.809926i \(-0.699507\pi\)
−0.586532 + 0.809926i \(0.699507\pi\)
\(860\) 0 0
\(861\) 27590.1 1.09207
\(862\) 297.457i 0.0117534i
\(863\) 14351.6i 0.566090i 0.959107 + 0.283045i \(0.0913446\pi\)
−0.959107 + 0.283045i \(0.908655\pi\)
\(864\) −14331.9 −0.564331
\(865\) 0 0
\(866\) 1293.31 0.0507488
\(867\) − 11502.4i − 0.450569i
\(868\) 8275.85i 0.323618i
\(869\) −10760.5 −0.420051
\(870\) 0 0
\(871\) 30725.3 1.19528
\(872\) 727.413i 0.0282492i
\(873\) 6902.39i 0.267595i
\(874\) −663.994 −0.0256979
\(875\) 0 0
\(876\) −27018.3 −1.04208
\(877\) 43248.7i 1.66523i 0.553854 + 0.832614i \(0.313156\pi\)
−0.553854 + 0.832614i \(0.686844\pi\)
\(878\) − 5727.71i − 0.220160i
\(879\) 52647.9 2.02021
\(880\) 0 0
\(881\) 3816.13 0.145935 0.0729675 0.997334i \(-0.476753\pi\)
0.0729675 + 0.997334i \(0.476753\pi\)
\(882\) − 336.444i − 0.0128443i
\(883\) 48787.6i 1.85938i 0.368343 + 0.929690i \(0.379925\pi\)
−0.368343 + 0.929690i \(0.620075\pi\)
\(884\) −46121.6 −1.75479
\(885\) 0 0
\(886\) −8541.49 −0.323879
\(887\) − 41495.1i − 1.57077i −0.619009 0.785384i \(-0.712466\pi\)
0.619009 0.785384i \(-0.287534\pi\)
\(888\) 2741.88i 0.103617i
\(889\) −1855.41 −0.0699984
\(890\) 0 0
\(891\) 9708.15 0.365023
\(892\) − 91.9464i − 0.00345134i
\(893\) − 4880.01i − 0.182870i
\(894\) 15138.5 0.566340
\(895\) 0 0
\(896\) 21298.1 0.794107
\(897\) − 5908.90i − 0.219947i
\(898\) − 12426.7i − 0.461788i
\(899\) 11068.7 0.410637
\(900\) 0 0
\(901\) 12335.3 0.456104
\(902\) − 2213.88i − 0.0817228i
\(903\) − 229.528i − 0.00845871i
\(904\) 22698.5 0.835113
\(905\) 0 0
\(906\) 5048.53 0.185128
\(907\) − 21615.3i − 0.791316i −0.918398 0.395658i \(-0.870517\pi\)
0.918398 0.395658i \(-0.129483\pi\)
\(908\) − 34453.6i − 1.25923i
\(909\) −10533.4 −0.384347
\(910\) 0 0
\(911\) 3646.35 0.132611 0.0663057 0.997799i \(-0.478879\pi\)
0.0663057 + 0.997799i \(0.478879\pi\)
\(912\) 20707.1i 0.751844i
\(913\) − 287.693i − 0.0104285i
\(914\) −11854.0 −0.428988
\(915\) 0 0
\(916\) −37877.6 −1.36628
\(917\) − 19581.1i − 0.705151i
\(918\) − 6774.43i − 0.243562i
\(919\) −31280.0 −1.12278 −0.561388 0.827553i \(-0.689733\pi\)
−0.561388 + 0.827553i \(0.689733\pi\)
\(920\) 0 0
\(921\) −8880.05 −0.317707
\(922\) 6285.42i 0.224511i
\(923\) − 35128.7i − 1.25274i
\(924\) −8239.56 −0.293357
\(925\) 0 0
\(926\) 5795.79 0.205682
\(927\) 14049.7i 0.497790i
\(928\) − 21666.9i − 0.766433i
\(929\) −6557.92 −0.231602 −0.115801 0.993272i \(-0.536944\pi\)
−0.115801 + 0.993272i \(0.536944\pi\)
\(930\) 0 0
\(931\) 3833.30 0.134942
\(932\) 1580.02i 0.0555314i
\(933\) − 44370.9i − 1.55695i
\(934\) −11094.2 −0.388665
\(935\) 0 0
\(936\) 6881.13 0.240296
\(937\) 24473.3i 0.853265i 0.904425 + 0.426632i \(0.140300\pi\)
−0.904425 + 0.426632i \(0.859700\pi\)
\(938\) − 5101.18i − 0.177569i
\(939\) 3902.91 0.135641
\(940\) 0 0
\(941\) 15420.8 0.534224 0.267112 0.963665i \(-0.413931\pi\)
0.267112 + 0.963665i \(0.413931\pi\)
\(942\) 1484.44i 0.0513436i
\(943\) 3671.34i 0.126782i
\(944\) −28059.4 −0.967432
\(945\) 0 0
\(946\) −18.4177 −0.000632993 0
\(947\) 33141.2i 1.13722i 0.822609 + 0.568608i \(0.192518\pi\)
−0.822609 + 0.568608i \(0.807482\pi\)
\(948\) 43285.2i 1.48295i
\(949\) −45575.8 −1.55896
\(950\) 0 0
\(951\) 1385.47 0.0472417
\(952\) 15864.5i 0.540096i
\(953\) − 20735.4i − 0.704813i −0.935847 0.352406i \(-0.885363\pi\)
0.935847 0.352406i \(-0.114637\pi\)
\(954\) −888.298 −0.0301464
\(955\) 0 0
\(956\) −32188.9 −1.08898
\(957\) 11020.2i 0.372239i
\(958\) − 7321.32i − 0.246911i
\(959\) −3357.26 −0.113046
\(960\) 0 0
\(961\) −25501.1 −0.856000
\(962\) 2232.44i 0.0748198i
\(963\) − 3942.96i − 0.131942i
\(964\) −7438.60 −0.248528
\(965\) 0 0
\(966\) −981.027 −0.0326750
\(967\) 8178.87i 0.271990i 0.990710 + 0.135995i \(0.0434232\pi\)
−0.990710 + 0.135995i \(0.956577\pi\)
\(968\) 1369.78i 0.0454819i
\(969\) −33334.2 −1.10511
\(970\) 0 0
\(971\) −20576.1 −0.680039 −0.340020 0.940418i \(-0.610434\pi\)
−0.340020 + 0.940418i \(0.610434\pi\)
\(972\) − 16524.1i − 0.545277i
\(973\) − 49094.1i − 1.61756i
\(974\) 5156.96 0.169651
\(975\) 0 0
\(976\) 5209.55 0.170854
\(977\) − 14541.9i − 0.476188i −0.971242 0.238094i \(-0.923477\pi\)
0.971242 0.238094i \(-0.0765226\pi\)
\(978\) 6053.48i 0.197923i
\(979\) −3881.76 −0.126723
\(980\) 0 0
\(981\) −523.277 −0.0170305
\(982\) − 9755.62i − 0.317021i
\(983\) − 29285.7i − 0.950223i −0.879926 0.475111i \(-0.842408\pi\)
0.879926 0.475111i \(-0.157592\pi\)
\(984\) −18450.5 −0.597745
\(985\) 0 0
\(986\) 10241.5 0.330787
\(987\) − 7210.03i − 0.232521i
\(988\) 37841.8i 1.21853i
\(989\) 30.5427 0.000982004 0
\(990\) 0 0
\(991\) −38085.9 −1.22083 −0.610413 0.792083i \(-0.708997\pi\)
−0.610413 + 0.792083i \(0.708997\pi\)
\(992\) − 8397.44i − 0.268769i
\(993\) 50585.1i 1.61658i
\(994\) −5832.26 −0.186105
\(995\) 0 0
\(996\) −1157.28 −0.0368170
\(997\) 26803.6i 0.851434i 0.904856 + 0.425717i \(0.139978\pi\)
−0.904856 + 0.425717i \(0.860022\pi\)
\(998\) 14691.6i 0.465987i
\(999\) 4567.12 0.144642
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.4.b.c.199.3 4
5.2 odd 4 11.4.a.a.1.1 2
5.3 odd 4 275.4.a.b.1.2 2
5.4 even 2 inner 275.4.b.c.199.2 4
15.2 even 4 99.4.a.c.1.2 2
15.8 even 4 2475.4.a.q.1.1 2
20.7 even 4 176.4.a.i.1.1 2
35.27 even 4 539.4.a.e.1.1 2
40.27 even 4 704.4.a.n.1.2 2
40.37 odd 4 704.4.a.p.1.1 2
55.2 even 20 121.4.c.f.81.1 8
55.7 even 20 121.4.c.f.27.2 8
55.17 even 20 121.4.c.f.3.1 8
55.27 odd 20 121.4.c.c.3.2 8
55.32 even 4 121.4.a.c.1.2 2
55.37 odd 20 121.4.c.c.27.1 8
55.42 odd 20 121.4.c.c.81.2 8
55.47 odd 20 121.4.c.c.9.1 8
55.52 even 20 121.4.c.f.9.2 8
60.47 odd 4 1584.4.a.bc.1.2 2
65.12 odd 4 1859.4.a.a.1.2 2
165.32 odd 4 1089.4.a.v.1.1 2
220.87 odd 4 1936.4.a.w.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.4.a.a.1.1 2 5.2 odd 4
99.4.a.c.1.2 2 15.2 even 4
121.4.a.c.1.2 2 55.32 even 4
121.4.c.c.3.2 8 55.27 odd 20
121.4.c.c.9.1 8 55.47 odd 20
121.4.c.c.27.1 8 55.37 odd 20
121.4.c.c.81.2 8 55.42 odd 20
121.4.c.f.3.1 8 55.17 even 20
121.4.c.f.9.2 8 55.52 even 20
121.4.c.f.27.2 8 55.7 even 20
121.4.c.f.81.1 8 55.2 even 20
176.4.a.i.1.1 2 20.7 even 4
275.4.a.b.1.2 2 5.3 odd 4
275.4.b.c.199.2 4 5.4 even 2 inner
275.4.b.c.199.3 4 1.1 even 1 trivial
539.4.a.e.1.1 2 35.27 even 4
704.4.a.n.1.2 2 40.27 even 4
704.4.a.p.1.1 2 40.37 odd 4
1089.4.a.v.1.1 2 165.32 odd 4
1584.4.a.bc.1.2 2 60.47 odd 4
1859.4.a.a.1.2 2 65.12 odd 4
1936.4.a.w.1.1 2 220.87 odd 4
2475.4.a.q.1.1 2 15.8 even 4