Newspace parameters
Level: | \( N \) | \(=\) | \( 275 = 5^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 275.b (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(16.2255252516\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | \(\Q(\zeta_{12})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} - x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 2^{2} \) |
Twist minimal: | no (minimal twist has level 11) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring
\(\beta_{1}\) | \(=\) |
\( \zeta_{12}^{3} \)
|
\(\beta_{2}\) | \(=\) |
\( 2\zeta_{12}^{2} - 1 \)
|
\(\beta_{3}\) | \(=\) |
\( -\zeta_{12}^{3} + 2\zeta_{12} \)
|
\(\zeta_{12}\) | \(=\) |
\( ( \beta_{3} + \beta_1 ) / 2 \)
|
\(\zeta_{12}^{2}\) | \(=\) |
\( ( \beta_{2} + 1 ) / 2 \)
|
\(\zeta_{12}^{3}\) | \(=\) |
\( \beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).
\(n\) | \(101\) | \(177\) |
\(\chi(n)\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
199.1 |
|
− | 2.73205i | − | 7.92820i | 0.535898 | 0 | −21.6603 | − | 3.07180i | − | 23.3205i | −35.8564 | 0 | ||||||||||||||||||||||||||
199.2 | − | 0.732051i | − | 5.92820i | 7.46410 | 0 | −4.33975 | 16.9282i | − | 11.3205i | −8.14359 | 0 | ||||||||||||||||||||||||||||
199.3 | 0.732051i | 5.92820i | 7.46410 | 0 | −4.33975 | − | 16.9282i | 11.3205i | −8.14359 | 0 | ||||||||||||||||||||||||||||||
199.4 | 2.73205i | 7.92820i | 0.535898 | 0 | −21.6603 | 3.07180i | 23.3205i | −35.8564 | 0 | |||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 275.4.b.c | 4 | |
5.b | even | 2 | 1 | inner | 275.4.b.c | 4 | |
5.c | odd | 4 | 1 | 11.4.a.a | ✓ | 2 | |
5.c | odd | 4 | 1 | 275.4.a.b | 2 | ||
15.e | even | 4 | 1 | 99.4.a.c | 2 | ||
15.e | even | 4 | 1 | 2475.4.a.q | 2 | ||
20.e | even | 4 | 1 | 176.4.a.i | 2 | ||
35.f | even | 4 | 1 | 539.4.a.e | 2 | ||
40.i | odd | 4 | 1 | 704.4.a.p | 2 | ||
40.k | even | 4 | 1 | 704.4.a.n | 2 | ||
55.e | even | 4 | 1 | 121.4.a.c | 2 | ||
55.k | odd | 20 | 4 | 121.4.c.c | 8 | ||
55.l | even | 20 | 4 | 121.4.c.f | 8 | ||
60.l | odd | 4 | 1 | 1584.4.a.bc | 2 | ||
65.h | odd | 4 | 1 | 1859.4.a.a | 2 | ||
165.l | odd | 4 | 1 | 1089.4.a.v | 2 | ||
220.i | odd | 4 | 1 | 1936.4.a.w | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
11.4.a.a | ✓ | 2 | 5.c | odd | 4 | 1 | |
99.4.a.c | 2 | 15.e | even | 4 | 1 | ||
121.4.a.c | 2 | 55.e | even | 4 | 1 | ||
121.4.c.c | 8 | 55.k | odd | 20 | 4 | ||
121.4.c.f | 8 | 55.l | even | 20 | 4 | ||
176.4.a.i | 2 | 20.e | even | 4 | 1 | ||
275.4.a.b | 2 | 5.c | odd | 4 | 1 | ||
275.4.b.c | 4 | 1.a | even | 1 | 1 | trivial | |
275.4.b.c | 4 | 5.b | even | 2 | 1 | inner | |
539.4.a.e | 2 | 35.f | even | 4 | 1 | ||
704.4.a.n | 2 | 40.k | even | 4 | 1 | ||
704.4.a.p | 2 | 40.i | odd | 4 | 1 | ||
1089.4.a.v | 2 | 165.l | odd | 4 | 1 | ||
1584.4.a.bc | 2 | 60.l | odd | 4 | 1 | ||
1859.4.a.a | 2 | 65.h | odd | 4 | 1 | ||
1936.4.a.w | 2 | 220.i | odd | 4 | 1 | ||
2475.4.a.q | 2 | 15.e | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{4} + 8T_{2}^{2} + 4 \)
acting on \(S_{4}^{\mathrm{new}}(275, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} + 8T^{2} + 4 \)
$3$
\( T^{4} + 98T^{2} + 2209 \)
$5$
\( T^{4} \)
$7$
\( T^{4} + 296T^{2} + 2704 \)
$11$
\( (T + 11)^{4} \)
$13$
\( T^{4} + 5600 T^{2} + 160000 \)
$17$
\( T^{4} + 8552 T^{2} + \cdots + 11641744 \)
$19$
\( (T^{2} + 72 T - 9504)^{2} \)
$23$
\( T^{4} + 12578 T^{2} + \cdots + 2211169 \)
$29$
\( (T^{2} + 144 T - 4224)^{2} \)
$31$
\( (T^{2} + 34 T - 2063)^{2} \)
$37$
\( T^{4} + 1842 T^{2} + 288369 \)
$41$
\( (T^{2} - 536 T + 71776)^{2} \)
$43$
\( T^{4} + 3336 T^{2} + 17424 \)
$47$
\( T^{4} + 123392 T^{2} + \cdots + 610287616 \)
$53$
\( T^{4} + 139848 T^{2} + \cdots + 2612027664 \)
$59$
\( (T^{2} + 634 T + 48217)^{2} \)
$61$
\( (T^{2} - 840 T + 74832)^{2} \)
$67$
\( T^{4} + 286658 T^{2} + \cdots + 19860983041 \)
$71$
\( (T^{2} + 678 T + 97593)^{2} \)
$73$
\( T^{4} + 1394144 T^{2} + \cdots + 380777853184 \)
$79$
\( (T^{2} + 316 T - 1266044)^{2} \)
$83$
\( T^{4} + 195912 T^{2} + \cdots + 133541136 \)
$89$
\( (T^{2} - 1842 T + 525489)^{2} \)
$97$
\( T^{4} + 2531234 T^{2} + \cdots + 1302339722401 \)
show more
show less