Properties

Label 275.4.b.b.199.3
Level $275$
Weight $4$
Character 275.199
Analytic conductor $16.226$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,4,Mod(199,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.199");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 275.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.2255252516\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{17})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.3
Root \(-2.56155i\) of defining polynomial
Character \(\chi\) \(=\) 275.199
Dual form 275.4.b.b.199.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.43845i q^{2} +0.561553i q^{3} +5.93087 q^{4} -0.807764 q^{6} +31.0540i q^{7} +20.0388i q^{8} +26.6847 q^{9} +O(q^{10})\) \(q+1.43845i q^{2} +0.561553i q^{3} +5.93087 q^{4} -0.807764 q^{6} +31.0540i q^{7} +20.0388i q^{8} +26.6847 q^{9} -11.0000 q^{11} +3.33050i q^{12} -45.6155i q^{13} -44.6695 q^{14} +18.6222 q^{16} +40.4536i q^{17} +38.3845i q^{18} -91.2699 q^{19} -17.4384 q^{21} -15.8229i q^{22} +32.2462i q^{23} -11.2529 q^{24} +65.6155 q^{26} +30.1468i q^{27} +184.177i q^{28} -35.8702 q^{29} +311.702 q^{31} +187.098i q^{32} -6.17708i q^{33} -58.1904 q^{34} +158.263 q^{36} +368.147i q^{37} -131.287i q^{38} +25.6155 q^{39} -393.602 q^{41} -25.0843i q^{42} -351.602i q^{43} -65.2396 q^{44} -46.3845 q^{46} +230.155i q^{47} +10.4573i q^{48} -621.349 q^{49} -22.7168 q^{51} -270.540i q^{52} +406.902i q^{53} -43.3645 q^{54} -622.285 q^{56} -51.2529i q^{57} -51.5975i q^{58} +368.725 q^{59} -322.825 q^{61} +448.366i q^{62} +828.665i q^{63} -120.153 q^{64} +8.88540 q^{66} -442.233i q^{67} +239.925i q^{68} -18.1080 q^{69} +667.745 q^{71} +534.729i q^{72} -84.5701i q^{73} -529.560 q^{74} -541.310 q^{76} -341.594i q^{77} +36.8466i q^{78} +411.983 q^{79} +703.557 q^{81} -566.176i q^{82} -835.619i q^{83} -103.425 q^{84} +505.761 q^{86} -20.1430i q^{87} -220.427i q^{88} +799.853 q^{89} +1416.54 q^{91} +191.248i q^{92} +175.037i q^{93} -331.066 q^{94} -105.065 q^{96} -768.945i q^{97} -893.778i q^{98} -293.531 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 34 q^{4} + 38 q^{6} + 82 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 34 q^{4} + 38 q^{6} + 82 q^{9} - 44 q^{11} - 22 q^{14} + 594 q^{16} + 6 q^{19} - 78 q^{21} - 614 q^{24} + 180 q^{26} + 442 q^{29} + 282 q^{31} - 1346 q^{34} - 340 q^{36} + 20 q^{39} - 288 q^{41} + 374 q^{44} - 268 q^{46} - 630 q^{49} + 742 q^{51} + 1550 q^{54} - 2250 q^{56} + 172 q^{59} - 310 q^{61} - 5618 q^{64} - 418 q^{66} + 76 q^{69} + 3174 q^{71} - 3182 q^{74} - 5406 q^{76} + 2588 q^{79} + 1132 q^{81} + 782 q^{84} - 2232 q^{86} + 3554 q^{89} + 2780 q^{91} + 1364 q^{94} + 6086 q^{96} - 902 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.43845i 0.508568i 0.967130 + 0.254284i \(0.0818398\pi\)
−0.967130 + 0.254284i \(0.918160\pi\)
\(3\) 0.561553i 0.108071i 0.998539 + 0.0540354i \(0.0172084\pi\)
−0.998539 + 0.0540354i \(0.982792\pi\)
\(4\) 5.93087 0.741359
\(5\) 0 0
\(6\) −0.807764 −0.0549614
\(7\) 31.0540i 1.67676i 0.545088 + 0.838379i \(0.316496\pi\)
−0.545088 + 0.838379i \(0.683504\pi\)
\(8\) 20.0388i 0.885599i
\(9\) 26.6847 0.988321
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) 3.33050i 0.0801193i
\(13\) − 45.6155i − 0.973190i −0.873628 0.486595i \(-0.838239\pi\)
0.873628 0.486595i \(-0.161761\pi\)
\(14\) −44.6695 −0.852745
\(15\) 0 0
\(16\) 18.6222 0.290971
\(17\) 40.4536i 0.577144i 0.957458 + 0.288572i \(0.0931804\pi\)
−0.957458 + 0.288572i \(0.906820\pi\)
\(18\) 38.3845i 0.502628i
\(19\) −91.2699 −1.10204 −0.551020 0.834492i \(-0.685761\pi\)
−0.551020 + 0.834492i \(0.685761\pi\)
\(20\) 0 0
\(21\) −17.4384 −0.181209
\(22\) − 15.8229i − 0.153339i
\(23\) 32.2462i 0.292339i 0.989260 + 0.146170i \(0.0466945\pi\)
−0.989260 + 0.146170i \(0.953305\pi\)
\(24\) −11.2529 −0.0957075
\(25\) 0 0
\(26\) 65.6155 0.494933
\(27\) 30.1468i 0.214880i
\(28\) 184.177i 1.24308i
\(29\) −35.8702 −0.229688 −0.114844 0.993384i \(-0.536637\pi\)
−0.114844 + 0.993384i \(0.536637\pi\)
\(30\) 0 0
\(31\) 311.702 1.80591 0.902956 0.429733i \(-0.141392\pi\)
0.902956 + 0.429733i \(0.141392\pi\)
\(32\) 187.098i 1.03358i
\(33\) − 6.17708i − 0.0325846i
\(34\) −58.1904 −0.293517
\(35\) 0 0
\(36\) 158.263 0.732700
\(37\) 368.147i 1.63576i 0.575392 + 0.817878i \(0.304850\pi\)
−0.575392 + 0.817878i \(0.695150\pi\)
\(38\) − 131.287i − 0.560462i
\(39\) 25.6155 0.105174
\(40\) 0 0
\(41\) −393.602 −1.49928 −0.749638 0.661848i \(-0.769773\pi\)
−0.749638 + 0.661848i \(0.769773\pi\)
\(42\) − 25.0843i − 0.0921569i
\(43\) − 351.602i − 1.24695i −0.781843 0.623475i \(-0.785720\pi\)
0.781843 0.623475i \(-0.214280\pi\)
\(44\) −65.2396 −0.223528
\(45\) 0 0
\(46\) −46.3845 −0.148674
\(47\) 230.155i 0.714289i 0.934049 + 0.357145i \(0.116250\pi\)
−0.934049 + 0.357145i \(0.883750\pi\)
\(48\) 10.4573i 0.0314455i
\(49\) −621.349 −1.81151
\(50\) 0 0
\(51\) −22.7168 −0.0623724
\(52\) − 270.540i − 0.721483i
\(53\) 406.902i 1.05457i 0.849688 + 0.527286i \(0.176790\pi\)
−0.849688 + 0.527286i \(0.823210\pi\)
\(54\) −43.3645 −0.109281
\(55\) 0 0
\(56\) −622.285 −1.48493
\(57\) − 51.2529i − 0.119098i
\(58\) − 51.5975i − 0.116812i
\(59\) 368.725 0.813626 0.406813 0.913511i \(-0.366640\pi\)
0.406813 + 0.913511i \(0.366640\pi\)
\(60\) 0 0
\(61\) −322.825 −0.677598 −0.338799 0.940859i \(-0.610021\pi\)
−0.338799 + 0.940859i \(0.610021\pi\)
\(62\) 448.366i 0.918429i
\(63\) 828.665i 1.65717i
\(64\) −120.153 −0.234673
\(65\) 0 0
\(66\) 8.88540 0.0165715
\(67\) − 442.233i − 0.806378i −0.915117 0.403189i \(-0.867902\pi\)
0.915117 0.403189i \(-0.132098\pi\)
\(68\) 239.925i 0.427870i
\(69\) −18.1080 −0.0315933
\(70\) 0 0
\(71\) 667.745 1.11615 0.558076 0.829790i \(-0.311540\pi\)
0.558076 + 0.829790i \(0.311540\pi\)
\(72\) 534.729i 0.875256i
\(73\) − 84.5701i − 0.135591i −0.997699 0.0677957i \(-0.978403\pi\)
0.997699 0.0677957i \(-0.0215966\pi\)
\(74\) −529.560 −0.831893
\(75\) 0 0
\(76\) −541.310 −0.817006
\(77\) − 341.594i − 0.505561i
\(78\) 36.8466i 0.0534879i
\(79\) 411.983 0.586730 0.293365 0.956000i \(-0.405225\pi\)
0.293365 + 0.956000i \(0.405225\pi\)
\(80\) 0 0
\(81\) 703.557 0.965098
\(82\) − 566.176i − 0.762484i
\(83\) − 835.619i − 1.10507i −0.833488 0.552537i \(-0.813660\pi\)
0.833488 0.552537i \(-0.186340\pi\)
\(84\) −103.425 −0.134341
\(85\) 0 0
\(86\) 505.761 0.634159
\(87\) − 20.1430i − 0.0248225i
\(88\) − 220.427i − 0.267018i
\(89\) 799.853 0.952632 0.476316 0.879274i \(-0.341972\pi\)
0.476316 + 0.879274i \(0.341972\pi\)
\(90\) 0 0
\(91\) 1416.54 1.63180
\(92\) 191.248i 0.216728i
\(93\) 175.037i 0.195167i
\(94\) −331.066 −0.363265
\(95\) 0 0
\(96\) −105.065 −0.111700
\(97\) − 768.945i − 0.804892i −0.915444 0.402446i \(-0.868160\pi\)
0.915444 0.402446i \(-0.131840\pi\)
\(98\) − 893.778i − 0.921278i
\(99\) −293.531 −0.297990
\(100\) 0 0
\(101\) −1412.31 −1.39139 −0.695696 0.718337i \(-0.744904\pi\)
−0.695696 + 0.718337i \(0.744904\pi\)
\(102\) − 32.6770i − 0.0317206i
\(103\) 24.4185i 0.0233595i 0.999932 + 0.0116797i \(0.00371786\pi\)
−0.999932 + 0.0116797i \(0.996282\pi\)
\(104\) 914.081 0.861856
\(105\) 0 0
\(106\) −585.308 −0.536322
\(107\) − 532.155i − 0.480798i −0.970674 0.240399i \(-0.922722\pi\)
0.970674 0.240399i \(-0.0772783\pi\)
\(108\) 178.797i 0.159303i
\(109\) 1234.62 1.08491 0.542455 0.840085i \(-0.317495\pi\)
0.542455 + 0.840085i \(0.317495\pi\)
\(110\) 0 0
\(111\) −206.734 −0.176778
\(112\) 578.292i 0.487888i
\(113\) − 1304.45i − 1.08595i −0.839748 0.542976i \(-0.817297\pi\)
0.839748 0.542976i \(-0.182703\pi\)
\(114\) 73.7245 0.0605696
\(115\) 0 0
\(116\) −212.742 −0.170281
\(117\) − 1217.23i − 0.961824i
\(118\) 530.392i 0.413784i
\(119\) −1256.25 −0.967729
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) − 464.366i − 0.344605i
\(123\) − 221.028i − 0.162028i
\(124\) 1848.66 1.33883
\(125\) 0 0
\(126\) −1191.99 −0.842785
\(127\) − 1167.88i − 0.816004i −0.912981 0.408002i \(-0.866226\pi\)
0.912981 0.408002i \(-0.133774\pi\)
\(128\) 1323.95i 0.914231i
\(129\) 197.443 0.134759
\(130\) 0 0
\(131\) 1549.95 1.03374 0.516869 0.856065i \(-0.327098\pi\)
0.516869 + 0.856065i \(0.327098\pi\)
\(132\) − 36.6355i − 0.0241569i
\(133\) − 2834.29i − 1.84785i
\(134\) 636.129 0.410098
\(135\) 0 0
\(136\) −810.642 −0.511118
\(137\) 2440.68i 1.52205i 0.648722 + 0.761026i \(0.275304\pi\)
−0.648722 + 0.761026i \(0.724696\pi\)
\(138\) − 26.0473i − 0.0160674i
\(139\) 1861.43 1.13586 0.567930 0.823077i \(-0.307744\pi\)
0.567930 + 0.823077i \(0.307744\pi\)
\(140\) 0 0
\(141\) −129.244 −0.0771939
\(142\) 960.516i 0.567639i
\(143\) 501.771i 0.293428i
\(144\) 496.926 0.287573
\(145\) 0 0
\(146\) 121.650 0.0689575
\(147\) − 348.920i − 0.195772i
\(148\) 2183.43i 1.21268i
\(149\) −814.376 −0.447760 −0.223880 0.974617i \(-0.571872\pi\)
−0.223880 + 0.974617i \(0.571872\pi\)
\(150\) 0 0
\(151\) 3666.43 1.97596 0.987979 0.154591i \(-0.0494060\pi\)
0.987979 + 0.154591i \(0.0494060\pi\)
\(152\) − 1828.94i − 0.975965i
\(153\) 1079.49i 0.570403i
\(154\) 491.365 0.257112
\(155\) 0 0
\(156\) 151.922 0.0779713
\(157\) − 2671.96i − 1.35825i −0.734021 0.679127i \(-0.762359\pi\)
0.734021 0.679127i \(-0.237641\pi\)
\(158\) 592.616i 0.298392i
\(159\) −228.497 −0.113969
\(160\) 0 0
\(161\) −1001.37 −0.490182
\(162\) 1012.03i 0.490818i
\(163\) − 1728.53i − 0.830605i −0.909683 0.415302i \(-0.863676\pi\)
0.909683 0.415302i \(-0.136324\pi\)
\(164\) −2334.40 −1.11150
\(165\) 0 0
\(166\) 1201.99 0.562005
\(167\) 0.0653990i 0 3.03037e-5i 1.00000 1.51519e-5i \(4.82299e-6\pi\)
−1.00000 1.51519e-5i \(0.999995\pi\)
\(168\) − 349.446i − 0.160478i
\(169\) 116.224 0.0529010
\(170\) 0 0
\(171\) −2435.51 −1.08917
\(172\) − 2085.31i − 0.924437i
\(173\) − 1816.75i − 0.798411i −0.916861 0.399205i \(-0.869286\pi\)
0.916861 0.399205i \(-0.130714\pi\)
\(174\) 28.9747 0.0126239
\(175\) 0 0
\(176\) −204.844 −0.0877312
\(177\) 207.059i 0.0879293i
\(178\) 1150.55i 0.484478i
\(179\) −2381.23 −0.994312 −0.497156 0.867661i \(-0.665622\pi\)
−0.497156 + 0.867661i \(0.665622\pi\)
\(180\) 0 0
\(181\) 1275.61 0.523840 0.261920 0.965090i \(-0.415644\pi\)
0.261920 + 0.965090i \(0.415644\pi\)
\(182\) 2037.62i 0.829883i
\(183\) − 181.283i − 0.0732286i
\(184\) −646.176 −0.258895
\(185\) 0 0
\(186\) −251.781 −0.0992554
\(187\) − 444.990i − 0.174015i
\(188\) 1365.02i 0.529545i
\(189\) −936.177 −0.360301
\(190\) 0 0
\(191\) −3699.04 −1.40133 −0.700663 0.713492i \(-0.747112\pi\)
−0.700663 + 0.713492i \(0.747112\pi\)
\(192\) − 67.4720i − 0.0253613i
\(193\) 1231.22i 0.459196i 0.973285 + 0.229598i \(0.0737412\pi\)
−0.973285 + 0.229598i \(0.926259\pi\)
\(194\) 1106.09 0.409342
\(195\) 0 0
\(196\) −3685.14 −1.34298
\(197\) − 728.087i − 0.263320i −0.991295 0.131660i \(-0.957969\pi\)
0.991295 0.131660i \(-0.0420307\pi\)
\(198\) − 422.229i − 0.151548i
\(199\) 1650.81 0.588055 0.294027 0.955797i \(-0.405004\pi\)
0.294027 + 0.955797i \(0.405004\pi\)
\(200\) 0 0
\(201\) 248.337 0.0871460
\(202\) − 2031.54i − 0.707617i
\(203\) − 1113.91i − 0.385130i
\(204\) −134.731 −0.0462403
\(205\) 0 0
\(206\) −35.1247 −0.0118799
\(207\) 860.479i 0.288925i
\(208\) − 849.460i − 0.283171i
\(209\) 1003.97 0.332277
\(210\) 0 0
\(211\) 1587.01 0.517792 0.258896 0.965905i \(-0.416641\pi\)
0.258896 + 0.965905i \(0.416641\pi\)
\(212\) 2413.29i 0.781817i
\(213\) 374.974i 0.120624i
\(214\) 765.477 0.244518
\(215\) 0 0
\(216\) −604.106 −0.190297
\(217\) 9679.58i 3.02808i
\(218\) 1775.94i 0.551751i
\(219\) 47.4906 0.0146535
\(220\) 0 0
\(221\) 1845.31 0.561670
\(222\) − 297.376i − 0.0899034i
\(223\) − 1998.59i − 0.600160i −0.953914 0.300080i \(-0.902987\pi\)
0.953914 0.300080i \(-0.0970135\pi\)
\(224\) −5810.12 −1.73306
\(225\) 0 0
\(226\) 1876.39 0.552280
\(227\) − 4212.00i − 1.23154i −0.787925 0.615771i \(-0.788845\pi\)
0.787925 0.615771i \(-0.211155\pi\)
\(228\) − 303.974i − 0.0882946i
\(229\) −1371.82 −0.395863 −0.197931 0.980216i \(-0.563422\pi\)
−0.197931 + 0.980216i \(0.563422\pi\)
\(230\) 0 0
\(231\) 191.823 0.0546365
\(232\) − 718.797i − 0.203411i
\(233\) − 1718.37i − 0.483152i −0.970382 0.241576i \(-0.922336\pi\)
0.970382 0.241576i \(-0.0776643\pi\)
\(234\) 1750.93 0.489153
\(235\) 0 0
\(236\) 2186.86 0.603189
\(237\) 231.350i 0.0634085i
\(238\) − 1807.04i − 0.492156i
\(239\) 1794.77 0.485749 0.242875 0.970058i \(-0.421910\pi\)
0.242875 + 0.970058i \(0.421910\pi\)
\(240\) 0 0
\(241\) 5185.02 1.38588 0.692939 0.720996i \(-0.256315\pi\)
0.692939 + 0.720996i \(0.256315\pi\)
\(242\) 174.052i 0.0462334i
\(243\) 1209.05i 0.319179i
\(244\) −1914.63 −0.502343
\(245\) 0 0
\(246\) 317.938 0.0824023
\(247\) 4163.32i 1.07249i
\(248\) 6246.13i 1.59931i
\(249\) 469.244 0.119426
\(250\) 0 0
\(251\) −3827.69 −0.962556 −0.481278 0.876568i \(-0.659827\pi\)
−0.481278 + 0.876568i \(0.659827\pi\)
\(252\) 4914.70i 1.22856i
\(253\) − 354.708i − 0.0881436i
\(254\) 1679.93 0.414993
\(255\) 0 0
\(256\) −2865.65 −0.699621
\(257\) 2671.37i 0.648387i 0.945991 + 0.324193i \(0.105093\pi\)
−0.945991 + 0.324193i \(0.894907\pi\)
\(258\) 284.012i 0.0685341i
\(259\) −11432.4 −2.74276
\(260\) 0 0
\(261\) −957.185 −0.227005
\(262\) 2229.52i 0.525726i
\(263\) 6659.10i 1.56128i 0.624979 + 0.780642i \(0.285108\pi\)
−0.624979 + 0.780642i \(0.714892\pi\)
\(264\) 123.781 0.0288569
\(265\) 0 0
\(266\) 4076.98 0.939758
\(267\) 449.160i 0.102952i
\(268\) − 2622.83i − 0.597816i
\(269\) −8473.05 −1.92049 −0.960244 0.279162i \(-0.909943\pi\)
−0.960244 + 0.279162i \(0.909943\pi\)
\(270\) 0 0
\(271\) −2643.21 −0.592486 −0.296243 0.955113i \(-0.595734\pi\)
−0.296243 + 0.955113i \(0.595734\pi\)
\(272\) 753.334i 0.167932i
\(273\) 795.464i 0.176350i
\(274\) −3510.78 −0.774066
\(275\) 0 0
\(276\) −107.396 −0.0234220
\(277\) 386.962i 0.0839361i 0.999119 + 0.0419680i \(0.0133628\pi\)
−0.999119 + 0.0419680i \(0.986637\pi\)
\(278\) 2677.57i 0.577662i
\(279\) 8317.65 1.78482
\(280\) 0 0
\(281\) −1106.42 −0.234887 −0.117444 0.993080i \(-0.537470\pi\)
−0.117444 + 0.993080i \(0.537470\pi\)
\(282\) − 185.911i − 0.0392583i
\(283\) 1165.71i 0.244855i 0.992477 + 0.122428i \(0.0390679\pi\)
−0.992477 + 0.122428i \(0.960932\pi\)
\(284\) 3960.31 0.827469
\(285\) 0 0
\(286\) −721.771 −0.149228
\(287\) − 12222.9i − 2.51392i
\(288\) 4992.63i 1.02151i
\(289\) 3276.51 0.666905
\(290\) 0 0
\(291\) 431.803 0.0869854
\(292\) − 501.574i − 0.100522i
\(293\) − 3646.82i − 0.727131i −0.931569 0.363566i \(-0.881559\pi\)
0.931569 0.363566i \(-0.118441\pi\)
\(294\) 501.904 0.0995633
\(295\) 0 0
\(296\) −7377.23 −1.44862
\(297\) − 331.614i − 0.0647886i
\(298\) − 1171.44i − 0.227716i
\(299\) 1470.93 0.284502
\(300\) 0 0
\(301\) 10918.6 2.09083
\(302\) 5273.96i 1.00491i
\(303\) − 793.089i − 0.150369i
\(304\) −1699.64 −0.320662
\(305\) 0 0
\(306\) −1552.79 −0.290089
\(307\) 816.066i 0.151711i 0.997119 + 0.0758556i \(0.0241688\pi\)
−0.997119 + 0.0758556i \(0.975831\pi\)
\(308\) − 2025.95i − 0.374802i
\(309\) −13.7123 −0.00252448
\(310\) 0 0
\(311\) 3146.99 0.573793 0.286896 0.957962i \(-0.407376\pi\)
0.286896 + 0.957962i \(0.407376\pi\)
\(312\) 513.305i 0.0931416i
\(313\) − 5085.49i − 0.918367i −0.888341 0.459184i \(-0.848142\pi\)
0.888341 0.459184i \(-0.151858\pi\)
\(314\) 3843.48 0.690764
\(315\) 0 0
\(316\) 2443.42 0.434978
\(317\) 4801.89i 0.850791i 0.905007 + 0.425396i \(0.139865\pi\)
−0.905007 + 0.425396i \(0.860135\pi\)
\(318\) − 328.681i − 0.0579608i
\(319\) 394.573 0.0692534
\(320\) 0 0
\(321\) 298.833 0.0519603
\(322\) − 1440.42i − 0.249291i
\(323\) − 3692.20i − 0.636035i
\(324\) 4172.70 0.715484
\(325\) 0 0
\(326\) 2486.39 0.422419
\(327\) 693.305i 0.117247i
\(328\) − 7887.32i − 1.32776i
\(329\) −7147.24 −1.19769
\(330\) 0 0
\(331\) −2597.31 −0.431302 −0.215651 0.976470i \(-0.569187\pi\)
−0.215651 + 0.976470i \(0.569187\pi\)
\(332\) − 4955.95i − 0.819256i
\(333\) 9823.87i 1.61665i
\(334\) −0.0940730 −1.54115e−5 0
\(335\) 0 0
\(336\) −324.742 −0.0527265
\(337\) − 2695.45i − 0.435698i −0.975982 0.217849i \(-0.930096\pi\)
0.975982 0.217849i \(-0.0699041\pi\)
\(338\) 167.182i 0.0269038i
\(339\) 732.519 0.117360
\(340\) 0 0
\(341\) −3428.72 −0.544503
\(342\) − 3503.35i − 0.553916i
\(343\) − 8643.85i − 1.36071i
\(344\) 7045.69 1.10430
\(345\) 0 0
\(346\) 2613.30 0.406046
\(347\) 9239.79i 1.42945i 0.699407 + 0.714723i \(0.253447\pi\)
−0.699407 + 0.714723i \(0.746553\pi\)
\(348\) − 119.466i − 0.0184024i
\(349\) −3857.67 −0.591680 −0.295840 0.955237i \(-0.595600\pi\)
−0.295840 + 0.955237i \(0.595600\pi\)
\(350\) 0 0
\(351\) 1375.16 0.209119
\(352\) − 2058.07i − 0.311635i
\(353\) − 3378.21i − 0.509360i −0.967025 0.254680i \(-0.918030\pi\)
0.967025 0.254680i \(-0.0819701\pi\)
\(354\) −297.843 −0.0447180
\(355\) 0 0
\(356\) 4743.83 0.706242
\(357\) − 705.448i − 0.104583i
\(358\) − 3425.28i − 0.505675i
\(359\) 9892.96 1.45440 0.727201 0.686425i \(-0.240821\pi\)
0.727201 + 0.686425i \(0.240821\pi\)
\(360\) 0 0
\(361\) 1471.19 0.214491
\(362\) 1834.89i 0.266408i
\(363\) 67.9479i 0.00982463i
\(364\) 8401.33 1.20975
\(365\) 0 0
\(366\) 260.766 0.0372417
\(367\) − 5295.58i − 0.753208i −0.926374 0.376604i \(-0.877092\pi\)
0.926374 0.376604i \(-0.122908\pi\)
\(368\) 600.495i 0.0850623i
\(369\) −10503.1 −1.48177
\(370\) 0 0
\(371\) −12635.9 −1.76826
\(372\) 1038.12i 0.144688i
\(373\) 7786.10i 1.08083i 0.841399 + 0.540414i \(0.181732\pi\)
−0.841399 + 0.540414i \(0.818268\pi\)
\(374\) 640.094 0.0884986
\(375\) 0 0
\(376\) −4612.04 −0.632574
\(377\) 1636.24i 0.223530i
\(378\) − 1346.64i − 0.183237i
\(379\) 1940.17 0.262955 0.131477 0.991319i \(-0.458028\pi\)
0.131477 + 0.991319i \(0.458028\pi\)
\(380\) 0 0
\(381\) 655.826 0.0881863
\(382\) − 5320.88i − 0.712669i
\(383\) 10805.6i 1.44161i 0.693136 + 0.720807i \(0.256228\pi\)
−0.693136 + 0.720807i \(0.743772\pi\)
\(384\) −743.466 −0.0988017
\(385\) 0 0
\(386\) −1771.04 −0.233533
\(387\) − 9382.39i − 1.23239i
\(388\) − 4560.51i − 0.596714i
\(389\) 9225.11 1.20239 0.601197 0.799101i \(-0.294691\pi\)
0.601197 + 0.799101i \(0.294691\pi\)
\(390\) 0 0
\(391\) −1304.48 −0.168722
\(392\) − 12451.1i − 1.60428i
\(393\) 870.378i 0.111717i
\(394\) 1047.31 0.133916
\(395\) 0 0
\(396\) −1740.90 −0.220917
\(397\) − 13364.3i − 1.68951i −0.535156 0.844753i \(-0.679747\pi\)
0.535156 0.844753i \(-0.320253\pi\)
\(398\) 2374.61i 0.299066i
\(399\) 1591.60 0.199699
\(400\) 0 0
\(401\) −6030.88 −0.751042 −0.375521 0.926814i \(-0.622536\pi\)
−0.375521 + 0.926814i \(0.622536\pi\)
\(402\) 357.220i 0.0443197i
\(403\) − 14218.4i − 1.75750i
\(404\) −8376.25 −1.03152
\(405\) 0 0
\(406\) 1602.31 0.195865
\(407\) − 4049.61i − 0.493199i
\(408\) − 455.219i − 0.0552370i
\(409\) −931.381 −0.112601 −0.0563005 0.998414i \(-0.517931\pi\)
−0.0563005 + 0.998414i \(0.517931\pi\)
\(410\) 0 0
\(411\) −1370.57 −0.164489
\(412\) 144.823i 0.0173178i
\(413\) 11450.4i 1.36425i
\(414\) −1237.75 −0.146938
\(415\) 0 0
\(416\) 8534.55 1.00587
\(417\) 1045.29i 0.122753i
\(418\) 1444.16i 0.168986i
\(419\) 13161.8 1.53460 0.767300 0.641289i \(-0.221600\pi\)
0.767300 + 0.641289i \(0.221600\pi\)
\(420\) 0 0
\(421\) −1127.05 −0.130473 −0.0652365 0.997870i \(-0.520780\pi\)
−0.0652365 + 0.997870i \(0.520780\pi\)
\(422\) 2282.83i 0.263332i
\(423\) 6141.62i 0.705947i
\(424\) −8153.84 −0.933929
\(425\) 0 0
\(426\) −539.381 −0.0613453
\(427\) − 10025.0i − 1.13617i
\(428\) − 3156.14i − 0.356444i
\(429\) −281.771 −0.0317110
\(430\) 0 0
\(431\) −4386.13 −0.490191 −0.245096 0.969499i \(-0.578819\pi\)
−0.245096 + 0.969499i \(0.578819\pi\)
\(432\) 561.398i 0.0625238i
\(433\) 10905.5i 1.21035i 0.796091 + 0.605177i \(0.206898\pi\)
−0.796091 + 0.605177i \(0.793102\pi\)
\(434\) −13923.6 −1.53998
\(435\) 0 0
\(436\) 7322.38 0.804308
\(437\) − 2943.11i − 0.322169i
\(438\) 68.3127i 0.00745229i
\(439\) 3900.94 0.424104 0.212052 0.977258i \(-0.431985\pi\)
0.212052 + 0.977258i \(0.431985\pi\)
\(440\) 0 0
\(441\) −16580.5 −1.79036
\(442\) 2654.38i 0.285647i
\(443\) − 15537.5i − 1.66638i −0.552985 0.833192i \(-0.686511\pi\)
0.552985 0.833192i \(-0.313489\pi\)
\(444\) −1226.11 −0.131056
\(445\) 0 0
\(446\) 2874.87 0.305222
\(447\) − 457.315i − 0.0483898i
\(448\) − 3731.22i − 0.393490i
\(449\) 3464.47 0.364139 0.182070 0.983286i \(-0.441720\pi\)
0.182070 + 0.983286i \(0.441720\pi\)
\(450\) 0 0
\(451\) 4329.62 0.452049
\(452\) − 7736.54i − 0.805080i
\(453\) 2058.89i 0.213543i
\(454\) 6058.74 0.626323
\(455\) 0 0
\(456\) 1027.05 0.105473
\(457\) 14410.6i 1.47506i 0.675317 + 0.737528i \(0.264007\pi\)
−0.675317 + 0.737528i \(0.735993\pi\)
\(458\) − 1973.29i − 0.201323i
\(459\) −1219.55 −0.124016
\(460\) 0 0
\(461\) −3219.12 −0.325226 −0.162613 0.986690i \(-0.551992\pi\)
−0.162613 + 0.986690i \(0.551992\pi\)
\(462\) 275.927i 0.0277863i
\(463\) − 1338.77i − 0.134380i −0.997740 0.0671899i \(-0.978597\pi\)
0.997740 0.0671899i \(-0.0214033\pi\)
\(464\) −667.982 −0.0668325
\(465\) 0 0
\(466\) 2471.79 0.245716
\(467\) 12221.6i 1.21102i 0.795836 + 0.605512i \(0.207032\pi\)
−0.795836 + 0.605512i \(0.792968\pi\)
\(468\) − 7219.26i − 0.713057i
\(469\) 13733.1 1.35210
\(470\) 0 0
\(471\) 1500.45 0.146788
\(472\) 7388.82i 0.720547i
\(473\) 3867.62i 0.375969i
\(474\) −332.785 −0.0322475
\(475\) 0 0
\(476\) −7450.63 −0.717435
\(477\) 10858.1i 1.04226i
\(478\) 2581.68i 0.247036i
\(479\) 20290.0 1.93544 0.967718 0.252036i \(-0.0811001\pi\)
0.967718 + 0.252036i \(0.0811001\pi\)
\(480\) 0 0
\(481\) 16793.2 1.59190
\(482\) 7458.38i 0.704813i
\(483\) − 562.324i − 0.0529744i
\(484\) 717.635 0.0673962
\(485\) 0 0
\(486\) −1739.15 −0.162324
\(487\) − 17360.7i − 1.61538i −0.589610 0.807688i \(-0.700718\pi\)
0.589610 0.807688i \(-0.299282\pi\)
\(488\) − 6469.03i − 0.600080i
\(489\) 970.658 0.0897642
\(490\) 0 0
\(491\) 5129.01 0.471424 0.235712 0.971823i \(-0.424258\pi\)
0.235712 + 0.971823i \(0.424258\pi\)
\(492\) − 1310.89i − 0.120121i
\(493\) − 1451.08i − 0.132563i
\(494\) −5988.72 −0.545436
\(495\) 0 0
\(496\) 5804.56 0.525469
\(497\) 20736.1i 1.87152i
\(498\) 674.983i 0.0607364i
\(499\) −13009.6 −1.16712 −0.583558 0.812072i \(-0.698340\pi\)
−0.583558 + 0.812072i \(0.698340\pi\)
\(500\) 0 0
\(501\) −0.0367250 −3.27495e−6 0
\(502\) − 5505.93i − 0.489525i
\(503\) 3972.02i 0.352095i 0.984382 + 0.176047i \(0.0563312\pi\)
−0.984382 + 0.176047i \(0.943669\pi\)
\(504\) −16605.5 −1.46759
\(505\) 0 0
\(506\) 510.229 0.0448270
\(507\) 65.2657i 0.00571706i
\(508\) − 6926.54i − 0.604952i
\(509\) −11174.1 −0.973048 −0.486524 0.873667i \(-0.661735\pi\)
−0.486524 + 0.873667i \(0.661735\pi\)
\(510\) 0 0
\(511\) 2626.24 0.227354
\(512\) 6469.49i 0.558426i
\(513\) − 2751.49i − 0.236806i
\(514\) −3842.62 −0.329749
\(515\) 0 0
\(516\) 1171.01 0.0999047
\(517\) − 2531.71i − 0.215366i
\(518\) − 16444.9i − 1.39488i
\(519\) 1020.20 0.0862850
\(520\) 0 0
\(521\) −18614.6 −1.56530 −0.782648 0.622464i \(-0.786132\pi\)
−0.782648 + 0.622464i \(0.786132\pi\)
\(522\) − 1376.86i − 0.115447i
\(523\) 3792.30i 0.317066i 0.987354 + 0.158533i \(0.0506765\pi\)
−0.987354 + 0.158533i \(0.949324\pi\)
\(524\) 9192.54 0.766370
\(525\) 0 0
\(526\) −9578.76 −0.794019
\(527\) 12609.5i 1.04227i
\(528\) − 115.031i − 0.00948119i
\(529\) 11127.2 0.914538
\(530\) 0 0
\(531\) 9839.31 0.804124
\(532\) − 16809.8i − 1.36992i
\(533\) 17954.4i 1.45908i
\(534\) −646.093 −0.0523580
\(535\) 0 0
\(536\) 8861.83 0.714128
\(537\) − 1337.19i − 0.107456i
\(538\) − 12188.0i − 0.976698i
\(539\) 6834.84 0.546192
\(540\) 0 0
\(541\) 5187.61 0.412260 0.206130 0.978525i \(-0.433913\pi\)
0.206130 + 0.978525i \(0.433913\pi\)
\(542\) − 3802.12i − 0.301319i
\(543\) 716.320i 0.0566119i
\(544\) −7568.77 −0.596523
\(545\) 0 0
\(546\) −1144.23 −0.0896862
\(547\) 15642.1i 1.22268i 0.791366 + 0.611342i \(0.209370\pi\)
−0.791366 + 0.611342i \(0.790630\pi\)
\(548\) 14475.3i 1.12839i
\(549\) −8614.47 −0.669684
\(550\) 0 0
\(551\) 3273.87 0.253125
\(552\) − 362.862i − 0.0279790i
\(553\) 12793.7i 0.983804i
\(554\) −556.624 −0.0426872
\(555\) 0 0
\(556\) 11039.9 0.842080
\(557\) − 15798.8i − 1.20182i −0.799315 0.600912i \(-0.794804\pi\)
0.799315 0.600912i \(-0.205196\pi\)
\(558\) 11964.5i 0.907702i
\(559\) −16038.5 −1.21352
\(560\) 0 0
\(561\) 249.885 0.0188060
\(562\) − 1591.52i − 0.119456i
\(563\) 5028.68i 0.376436i 0.982127 + 0.188218i \(0.0602712\pi\)
−0.982127 + 0.188218i \(0.939729\pi\)
\(564\) −766.531 −0.0572284
\(565\) 0 0
\(566\) −1676.81 −0.124526
\(567\) 21848.2i 1.61824i
\(568\) 13380.8i 0.988463i
\(569\) −24194.1 −1.78255 −0.891273 0.453467i \(-0.850187\pi\)
−0.891273 + 0.453467i \(0.850187\pi\)
\(570\) 0 0
\(571\) −8184.61 −0.599852 −0.299926 0.953963i \(-0.596962\pi\)
−0.299926 + 0.953963i \(0.596962\pi\)
\(572\) 2975.94i 0.217535i
\(573\) − 2077.21i − 0.151443i
\(574\) 17582.0 1.27850
\(575\) 0 0
\(576\) −3206.23 −0.231932
\(577\) − 550.908i − 0.0397480i −0.999802 0.0198740i \(-0.993673\pi\)
0.999802 0.0198740i \(-0.00632651\pi\)
\(578\) 4713.08i 0.339167i
\(579\) −691.393 −0.0496258
\(580\) 0 0
\(581\) 25949.3 1.85294
\(582\) 621.126i 0.0442380i
\(583\) − 4475.93i − 0.317966i
\(584\) 1694.68 0.120080
\(585\) 0 0
\(586\) 5245.76 0.369796
\(587\) − 3080.03i − 0.216570i −0.994120 0.108285i \(-0.965464\pi\)
0.994120 0.108285i \(-0.0345359\pi\)
\(588\) − 2069.40i − 0.145137i
\(589\) −28449.0 −1.99019
\(590\) 0 0
\(591\) 408.859 0.0284572
\(592\) 6855.69i 0.475958i
\(593\) 5257.89i 0.364108i 0.983289 + 0.182054i \(0.0582745\pi\)
−0.983289 + 0.182054i \(0.941726\pi\)
\(594\) 477.010 0.0329494
\(595\) 0 0
\(596\) −4829.96 −0.331951
\(597\) 927.018i 0.0635516i
\(598\) 2115.85i 0.144688i
\(599\) 1181.80 0.0806125 0.0403062 0.999187i \(-0.487167\pi\)
0.0403062 + 0.999187i \(0.487167\pi\)
\(600\) 0 0
\(601\) −27879.8 −1.89225 −0.946123 0.323807i \(-0.895037\pi\)
−0.946123 + 0.323807i \(0.895037\pi\)
\(602\) 15705.9i 1.06333i
\(603\) − 11800.8i − 0.796960i
\(604\) 21745.1 1.46489
\(605\) 0 0
\(606\) 1140.82 0.0764728
\(607\) 4500.25i 0.300922i 0.988616 + 0.150461i \(0.0480757\pi\)
−0.988616 + 0.150461i \(0.951924\pi\)
\(608\) − 17076.4i − 1.13904i
\(609\) 625.521 0.0416214
\(610\) 0 0
\(611\) 10498.7 0.695139
\(612\) 6402.32i 0.422873i
\(613\) 8963.16i 0.590569i 0.955409 + 0.295284i \(0.0954144\pi\)
−0.955409 + 0.295284i \(0.904586\pi\)
\(614\) −1173.87 −0.0771555
\(615\) 0 0
\(616\) 6845.14 0.447725
\(617\) 9394.42i 0.612974i 0.951875 + 0.306487i \(0.0991537\pi\)
−0.951875 + 0.306487i \(0.900846\pi\)
\(618\) − 19.7244i − 0.00128387i
\(619\) −4816.38 −0.312741 −0.156371 0.987698i \(-0.549979\pi\)
−0.156371 + 0.987698i \(0.549979\pi\)
\(620\) 0 0
\(621\) −972.119 −0.0628177
\(622\) 4526.78i 0.291813i
\(623\) 24838.6i 1.59733i
\(624\) 477.017 0.0306025
\(625\) 0 0
\(626\) 7315.21 0.467052
\(627\) 563.781i 0.0359095i
\(628\) − 15847.1i − 1.00695i
\(629\) −14892.9 −0.944066
\(630\) 0 0
\(631\) −24847.7 −1.56763 −0.783814 0.620996i \(-0.786728\pi\)
−0.783814 + 0.620996i \(0.786728\pi\)
\(632\) 8255.65i 0.519608i
\(633\) 891.189i 0.0559583i
\(634\) −6907.26 −0.432685
\(635\) 0 0
\(636\) −1355.19 −0.0844916
\(637\) 28343.2i 1.76295i
\(638\) 567.572i 0.0352201i
\(639\) 17818.6 1.10312
\(640\) 0 0
\(641\) −30497.0 −1.87919 −0.939594 0.342290i \(-0.888798\pi\)
−0.939594 + 0.342290i \(0.888798\pi\)
\(642\) 429.856i 0.0264253i
\(643\) 5407.75i 0.331665i 0.986154 + 0.165833i \(0.0530311\pi\)
−0.986154 + 0.165833i \(0.946969\pi\)
\(644\) −5939.01 −0.363400
\(645\) 0 0
\(646\) 5311.03 0.323467
\(647\) − 22118.8i − 1.34402i −0.740542 0.672011i \(-0.765431\pi\)
0.740542 0.672011i \(-0.234569\pi\)
\(648\) 14098.4i 0.854690i
\(649\) −4055.98 −0.245318
\(650\) 0 0
\(651\) −5435.59 −0.327247
\(652\) − 10251.7i − 0.615776i
\(653\) − 12862.4i − 0.770817i −0.922746 0.385409i \(-0.874060\pi\)
0.922746 0.385409i \(-0.125940\pi\)
\(654\) −997.283 −0.0596282
\(655\) 0 0
\(656\) −7329.73 −0.436247
\(657\) − 2256.72i − 0.134008i
\(658\) − 10280.9i − 0.609106i
\(659\) −13216.0 −0.781218 −0.390609 0.920557i \(-0.627736\pi\)
−0.390609 + 0.920557i \(0.627736\pi\)
\(660\) 0 0
\(661\) 32098.3 1.88878 0.944388 0.328833i \(-0.106655\pi\)
0.944388 + 0.328833i \(0.106655\pi\)
\(662\) − 3736.09i − 0.219347i
\(663\) 1036.24i 0.0607002i
\(664\) 16744.8 0.978652
\(665\) 0 0
\(666\) −14131.1 −0.822177
\(667\) − 1156.68i − 0.0671466i
\(668\) 0.387873i 0 2.24659e-5i
\(669\) 1122.32 0.0648599
\(670\) 0 0
\(671\) 3551.07 0.204303
\(672\) − 3262.69i − 0.187293i
\(673\) − 19956.4i − 1.14304i −0.820590 0.571518i \(-0.806355\pi\)
0.820590 0.571518i \(-0.193645\pi\)
\(674\) 3877.26 0.221582
\(675\) 0 0
\(676\) 689.307 0.0392186
\(677\) 1483.58i 0.0842223i 0.999113 + 0.0421111i \(0.0134084\pi\)
−0.999113 + 0.0421111i \(0.986592\pi\)
\(678\) 1053.69i 0.0596854i
\(679\) 23878.8 1.34961
\(680\) 0 0
\(681\) 2365.26 0.133094
\(682\) − 4932.03i − 0.276917i
\(683\) 23228.2i 1.30132i 0.759370 + 0.650659i \(0.225507\pi\)
−0.759370 + 0.650659i \(0.774493\pi\)
\(684\) −14444.7 −0.807464
\(685\) 0 0
\(686\) 12433.7 0.692015
\(687\) − 770.350i − 0.0427812i
\(688\) − 6547.60i − 0.362827i
\(689\) 18561.1 1.02630
\(690\) 0 0
\(691\) −7333.20 −0.403717 −0.201858 0.979415i \(-0.564698\pi\)
−0.201858 + 0.979415i \(0.564698\pi\)
\(692\) − 10774.9i − 0.591909i
\(693\) − 9115.31i − 0.499657i
\(694\) −13290.9 −0.726971
\(695\) 0 0
\(696\) 403.643 0.0219828
\(697\) − 15922.6i − 0.865298i
\(698\) − 5549.06i − 0.300909i
\(699\) 964.958 0.0522147
\(700\) 0 0
\(701\) −19481.6 −1.04966 −0.524829 0.851208i \(-0.675871\pi\)
−0.524829 + 0.851208i \(0.675871\pi\)
\(702\) 1978.10i 0.106351i
\(703\) − 33600.7i − 1.80267i
\(704\) 1321.68 0.0707566
\(705\) 0 0
\(706\) 4859.38 0.259044
\(707\) − 43858.0i − 2.33303i
\(708\) 1228.04i 0.0651872i
\(709\) −14807.5 −0.784353 −0.392177 0.919890i \(-0.628278\pi\)
−0.392177 + 0.919890i \(0.628278\pi\)
\(710\) 0 0
\(711\) 10993.6 0.579878
\(712\) 16028.1i 0.843650i
\(713\) 10051.2i 0.527939i
\(714\) 1014.75 0.0531877
\(715\) 0 0
\(716\) −14122.8 −0.737142
\(717\) 1007.86i 0.0524953i
\(718\) 14230.5i 0.739662i
\(719\) −22891.1 −1.18734 −0.593669 0.804709i \(-0.702321\pi\)
−0.593669 + 0.804709i \(0.702321\pi\)
\(720\) 0 0
\(721\) −758.292 −0.0391682
\(722\) 2116.23i 0.109083i
\(723\) 2911.66i 0.149773i
\(724\) 7565.45 0.388353
\(725\) 0 0
\(726\) −97.7395 −0.00499649
\(727\) − 24318.7i − 1.24062i −0.784357 0.620309i \(-0.787007\pi\)
0.784357 0.620309i \(-0.212993\pi\)
\(728\) 28385.9i 1.44512i
\(729\) 18317.1 0.930605
\(730\) 0 0
\(731\) 14223.6 0.719669
\(732\) − 1075.17i − 0.0542887i
\(733\) − 34939.0i − 1.76057i −0.474441 0.880287i \(-0.657350\pi\)
0.474441 0.880287i \(-0.342650\pi\)
\(734\) 7617.42 0.383057
\(735\) 0 0
\(736\) −6033.19 −0.302155
\(737\) 4864.56i 0.243132i
\(738\) − 15108.2i − 0.753579i
\(739\) 12663.1 0.630337 0.315168 0.949036i \(-0.397939\pi\)
0.315168 + 0.949036i \(0.397939\pi\)
\(740\) 0 0
\(741\) −2337.93 −0.115905
\(742\) − 18176.1i − 0.899281i
\(743\) − 1711.32i − 0.0844985i −0.999107 0.0422492i \(-0.986548\pi\)
0.999107 0.0422492i \(-0.0134524\pi\)
\(744\) −3507.53 −0.172839
\(745\) 0 0
\(746\) −11199.9 −0.549675
\(747\) − 22298.2i − 1.09217i
\(748\) − 2639.18i − 0.129008i
\(749\) 16525.5 0.806182
\(750\) 0 0
\(751\) −5165.32 −0.250979 −0.125489 0.992095i \(-0.540050\pi\)
−0.125489 + 0.992095i \(0.540050\pi\)
\(752\) 4285.99i 0.207838i
\(753\) − 2149.45i − 0.104024i
\(754\) −2353.65 −0.113680
\(755\) 0 0
\(756\) −5552.34 −0.267112
\(757\) 40684.0i 1.95335i 0.214722 + 0.976675i \(0.431115\pi\)
−0.214722 + 0.976675i \(0.568885\pi\)
\(758\) 2790.83i 0.133730i
\(759\) 199.187 0.00952575
\(760\) 0 0
\(761\) 26564.1 1.26537 0.632687 0.774408i \(-0.281952\pi\)
0.632687 + 0.774408i \(0.281952\pi\)
\(762\) 943.370i 0.0448487i
\(763\) 38339.9i 1.81913i
\(764\) −21938.5 −1.03889
\(765\) 0 0
\(766\) −15543.2 −0.733158
\(767\) − 16819.6i − 0.791813i
\(768\) − 1609.21i − 0.0756087i
\(769\) −24381.9 −1.14335 −0.571674 0.820481i \(-0.693706\pi\)
−0.571674 + 0.820481i \(0.693706\pi\)
\(770\) 0 0
\(771\) −1500.11 −0.0700717
\(772\) 7302.19i 0.340429i
\(773\) − 18945.0i − 0.881508i −0.897628 0.440754i \(-0.854711\pi\)
0.897628 0.440754i \(-0.145289\pi\)
\(774\) 13496.1 0.626752
\(775\) 0 0
\(776\) 15408.8 0.712812
\(777\) − 6419.91i − 0.296413i
\(778\) 13269.8i 0.611499i
\(779\) 35924.0 1.65226
\(780\) 0 0
\(781\) −7345.20 −0.336532
\(782\) − 1876.42i − 0.0858064i
\(783\) − 1081.37i − 0.0493552i
\(784\) −11570.9 −0.527099
\(785\) 0 0
\(786\) −1251.99 −0.0568156
\(787\) 7610.70i 0.344717i 0.985034 + 0.172359i \(0.0551388\pi\)
−0.985034 + 0.172359i \(0.944861\pi\)
\(788\) − 4318.19i − 0.195215i
\(789\) −3739.44 −0.168729
\(790\) 0 0
\(791\) 40508.4 1.82088
\(792\) − 5882.02i − 0.263900i
\(793\) 14725.8i 0.659432i
\(794\) 19223.8 0.859229
\(795\) 0 0
\(796\) 9790.75 0.435960
\(797\) − 3732.50i − 0.165887i −0.996554 0.0829435i \(-0.973568\pi\)
0.996554 0.0829435i \(-0.0264321\pi\)
\(798\) 2289.44i 0.101561i
\(799\) −9310.61 −0.412247
\(800\) 0 0
\(801\) 21343.8 0.941506
\(802\) − 8675.11i − 0.381956i
\(803\) 930.271i 0.0408824i
\(804\) 1472.86 0.0646065
\(805\) 0 0
\(806\) 20452.5 0.893806
\(807\) − 4758.07i − 0.207549i
\(808\) − 28301.1i − 1.23221i
\(809\) 27621.8 1.20041 0.600204 0.799847i \(-0.295086\pi\)
0.600204 + 0.799847i \(0.295086\pi\)
\(810\) 0 0
\(811\) −29996.0 −1.29877 −0.649384 0.760461i \(-0.724973\pi\)
−0.649384 + 0.760461i \(0.724973\pi\)
\(812\) − 6606.48i − 0.285520i
\(813\) − 1484.30i − 0.0640305i
\(814\) 5825.16 0.250825
\(815\) 0 0
\(816\) −423.037 −0.0181486
\(817\) 32090.7i 1.37419i
\(818\) − 1339.74i − 0.0572653i
\(819\) 37800.0 1.61275
\(820\) 0 0
\(821\) 18075.1 0.768362 0.384181 0.923258i \(-0.374484\pi\)
0.384181 + 0.923258i \(0.374484\pi\)
\(822\) − 1971.49i − 0.0836540i
\(823\) − 26723.7i − 1.13187i −0.824450 0.565935i \(-0.808515\pi\)
0.824450 0.565935i \(-0.191485\pi\)
\(824\) −489.318 −0.0206871
\(825\) 0 0
\(826\) −16470.8 −0.693816
\(827\) − 36788.1i − 1.54685i −0.633885 0.773427i \(-0.718541\pi\)
0.633885 0.773427i \(-0.281459\pi\)
\(828\) 5103.39i 0.214197i
\(829\) 1260.15 0.0527948 0.0263974 0.999652i \(-0.491596\pi\)
0.0263974 + 0.999652i \(0.491596\pi\)
\(830\) 0 0
\(831\) −217.300 −0.00907105
\(832\) 5480.82i 0.228381i
\(833\) − 25135.8i − 1.04550i
\(834\) −1503.60 −0.0624284
\(835\) 0 0
\(836\) 5954.41 0.246337
\(837\) 9396.80i 0.388054i
\(838\) 18932.6i 0.780448i
\(839\) 4023.16 0.165548 0.0827742 0.996568i \(-0.473622\pi\)
0.0827742 + 0.996568i \(0.473622\pi\)
\(840\) 0 0
\(841\) −23102.3 −0.947244
\(842\) − 1621.20i − 0.0663543i
\(843\) − 621.312i − 0.0253845i
\(844\) 9412.34 0.383870
\(845\) 0 0
\(846\) −8834.39 −0.359022
\(847\) 3757.53i 0.152432i
\(848\) 7577.41i 0.306851i
\(849\) −654.605 −0.0264617
\(850\) 0 0
\(851\) −11871.3 −0.478195
\(852\) 2223.92i 0.0894253i
\(853\) 40707.7i 1.63400i 0.576636 + 0.817001i \(0.304365\pi\)
−0.576636 + 0.817001i \(0.695635\pi\)
\(854\) 14420.4 0.577818
\(855\) 0 0
\(856\) 10663.8 0.425794
\(857\) − 24321.4i − 0.969431i −0.874672 0.484715i \(-0.838923\pi\)
0.874672 0.484715i \(-0.161077\pi\)
\(858\) − 405.312i − 0.0161272i
\(859\) −16912.7 −0.671776 −0.335888 0.941902i \(-0.609036\pi\)
−0.335888 + 0.941902i \(0.609036\pi\)
\(860\) 0 0
\(861\) 6863.81 0.271682
\(862\) − 6309.22i − 0.249295i
\(863\) − 25793.8i − 1.01742i −0.860939 0.508708i \(-0.830123\pi\)
0.860939 0.508708i \(-0.169877\pi\)
\(864\) −5640.39 −0.222095
\(865\) 0 0
\(866\) −15686.9 −0.615547
\(867\) 1839.93i 0.0720731i
\(868\) 57408.3i 2.24489i
\(869\) −4531.81 −0.176906
\(870\) 0 0
\(871\) −20172.7 −0.784759
\(872\) 24740.4i 0.960796i
\(873\) − 20519.0i − 0.795492i
\(874\) 4233.51 0.163845
\(875\) 0 0
\(876\) 281.660 0.0108635
\(877\) − 20143.8i − 0.775607i −0.921742 0.387803i \(-0.873234\pi\)
0.921742 0.387803i \(-0.126766\pi\)
\(878\) 5611.30i 0.215686i
\(879\) 2047.88 0.0785817
\(880\) 0 0
\(881\) −18231.3 −0.697196 −0.348598 0.937272i \(-0.613342\pi\)
−0.348598 + 0.937272i \(0.613342\pi\)
\(882\) − 23850.2i − 0.910518i
\(883\) − 34487.5i − 1.31438i −0.753725 0.657189i \(-0.771745\pi\)
0.753725 0.657189i \(-0.228255\pi\)
\(884\) 10944.3 0.416399
\(885\) 0 0
\(886\) 22349.8 0.847469
\(887\) 16039.9i 0.607180i 0.952803 + 0.303590i \(0.0981852\pi\)
−0.952803 + 0.303590i \(0.901815\pi\)
\(888\) − 4142.70i − 0.156554i
\(889\) 36267.3 1.36824
\(890\) 0 0
\(891\) −7739.12 −0.290988
\(892\) − 11853.4i − 0.444934i
\(893\) − 21006.2i − 0.787175i
\(894\) 657.824 0.0246095
\(895\) 0 0
\(896\) −41113.8 −1.53294
\(897\) 826.004i 0.0307463i
\(898\) 4983.46i 0.185189i
\(899\) −11180.8 −0.414795
\(900\) 0 0
\(901\) −16460.7 −0.608640
\(902\) 6227.94i 0.229898i
\(903\) 6131.40i 0.225958i
\(904\) 26139.7 0.961718
\(905\) 0 0
\(906\) −2961.61 −0.108601
\(907\) 23029.2i 0.843077i 0.906810 + 0.421539i \(0.138510\pi\)
−0.906810 + 0.421539i \(0.861490\pi\)
\(908\) − 24980.8i − 0.913015i
\(909\) −37687.1 −1.37514
\(910\) 0 0
\(911\) −9206.00 −0.334806 −0.167403 0.985889i \(-0.553538\pi\)
−0.167403 + 0.985889i \(0.553538\pi\)
\(912\) − 954.440i − 0.0346542i
\(913\) 9191.81i 0.333192i
\(914\) −20728.9 −0.750166
\(915\) 0 0
\(916\) −8136.10 −0.293476
\(917\) 48132.0i 1.73333i
\(918\) − 1754.25i − 0.0630707i
\(919\) −13329.5 −0.478456 −0.239228 0.970963i \(-0.576894\pi\)
−0.239228 + 0.970963i \(0.576894\pi\)
\(920\) 0 0
\(921\) −458.264 −0.0163956
\(922\) − 4630.53i − 0.165400i
\(923\) − 30459.6i − 1.08623i
\(924\) 1137.68 0.0405052
\(925\) 0 0
\(926\) 1925.75 0.0683412
\(927\) 651.600i 0.0230867i
\(928\) − 6711.24i − 0.237400i
\(929\) −1819.10 −0.0642442 −0.0321221 0.999484i \(-0.510227\pi\)
−0.0321221 + 0.999484i \(0.510227\pi\)
\(930\) 0 0
\(931\) 56710.5 1.99636
\(932\) − 10191.5i − 0.358189i
\(933\) 1767.20i 0.0620103i
\(934\) −17580.1 −0.615888
\(935\) 0 0
\(936\) 24391.9 0.851790
\(937\) − 4012.08i − 0.139882i −0.997551 0.0699408i \(-0.977719\pi\)
0.997551 0.0699408i \(-0.0222810\pi\)
\(938\) 19754.3i 0.687635i
\(939\) 2855.77 0.0992488
\(940\) 0 0
\(941\) 8444.53 0.292544 0.146272 0.989244i \(-0.453273\pi\)
0.146272 + 0.989244i \(0.453273\pi\)
\(942\) 2158.32i 0.0746515i
\(943\) − 12692.2i − 0.438297i
\(944\) 6866.47 0.236742
\(945\) 0 0
\(946\) −5563.37 −0.191206
\(947\) − 45316.0i − 1.55499i −0.628892 0.777493i \(-0.716491\pi\)
0.628892 0.777493i \(-0.283509\pi\)
\(948\) 1372.11i 0.0470084i
\(949\) −3857.71 −0.131956
\(950\) 0 0
\(951\) −2696.51 −0.0919458
\(952\) − 25173.7i − 0.857020i
\(953\) 96.7143i 0.00328739i 0.999999 + 0.00164370i \(0.000523205\pi\)
−0.999999 + 0.00164370i \(0.999477\pi\)
\(954\) −15618.7 −0.530058
\(955\) 0 0
\(956\) 10644.6 0.360114
\(957\) 221.573i 0.00748428i
\(958\) 29186.1i 0.984300i
\(959\) −75792.7 −2.55211
\(960\) 0 0
\(961\) 67366.9 2.26132
\(962\) 24156.1i 0.809590i
\(963\) − 14200.4i − 0.475183i
\(964\) 30751.7 1.02743
\(965\) 0 0
\(966\) 808.873 0.0269411
\(967\) − 7666.63i − 0.254956i −0.991841 0.127478i \(-0.959312\pi\)
0.991841 0.127478i \(-0.0406882\pi\)
\(968\) 2424.70i 0.0805090i
\(969\) 2073.36 0.0687368
\(970\) 0 0
\(971\) −5221.18 −0.172560 −0.0862799 0.996271i \(-0.527498\pi\)
−0.0862799 + 0.996271i \(0.527498\pi\)
\(972\) 7170.70i 0.236626i
\(973\) 57804.9i 1.90456i
\(974\) 24972.4 0.821529
\(975\) 0 0
\(976\) −6011.70 −0.197162
\(977\) 45769.9i 1.49878i 0.662129 + 0.749390i \(0.269653\pi\)
−0.662129 + 0.749390i \(0.730347\pi\)
\(978\) 1396.24i 0.0456512i
\(979\) −8798.39 −0.287229
\(980\) 0 0
\(981\) 32945.4 1.07224
\(982\) 7377.81i 0.239751i
\(983\) − 14777.8i − 0.479488i −0.970836 0.239744i \(-0.922936\pi\)
0.970836 0.239744i \(-0.0770636\pi\)
\(984\) 4429.15 0.143492
\(985\) 0 0
\(986\) 2087.30 0.0674171
\(987\) − 4013.55i − 0.129435i
\(988\) 24692.1i 0.795103i
\(989\) 11337.8 0.364532
\(990\) 0 0
\(991\) −16783.9 −0.538001 −0.269001 0.963140i \(-0.586693\pi\)
−0.269001 + 0.963140i \(0.586693\pi\)
\(992\) 58318.6i 1.86655i
\(993\) − 1458.53i − 0.0466112i
\(994\) −29827.9 −0.951793
\(995\) 0 0
\(996\) 2783.03 0.0885377
\(997\) 8720.36i 0.277008i 0.990362 + 0.138504i \(0.0442293\pi\)
−0.990362 + 0.138504i \(0.955771\pi\)
\(998\) − 18713.7i − 0.593557i
\(999\) −11098.4 −0.351490
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.4.b.b.199.3 4
5.2 odd 4 55.4.a.b.1.2 2
5.3 odd 4 275.4.a.c.1.1 2
5.4 even 2 inner 275.4.b.b.199.2 4
15.2 even 4 495.4.a.e.1.1 2
15.8 even 4 2475.4.a.l.1.2 2
20.7 even 4 880.4.a.r.1.1 2
55.32 even 4 605.4.a.g.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.4.a.b.1.2 2 5.2 odd 4
275.4.a.c.1.1 2 5.3 odd 4
275.4.b.b.199.2 4 5.4 even 2 inner
275.4.b.b.199.3 4 1.1 even 1 trivial
495.4.a.e.1.1 2 15.2 even 4
605.4.a.g.1.1 2 55.32 even 4
880.4.a.r.1.1 2 20.7 even 4
2475.4.a.l.1.2 2 15.8 even 4