Properties

Label 275.4.a.c.1.2
Level $275$
Weight $4$
Character 275.1
Self dual yes
Analytic conductor $16.226$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,4,Mod(1,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.2255252516\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.56155 q^{2} +3.56155 q^{3} +22.9309 q^{4} +19.8078 q^{6} -6.05398 q^{7} +83.0388 q^{8} -14.3153 q^{9} -11.0000 q^{11} +81.6695 q^{12} +4.38447 q^{13} -33.6695 q^{14} +278.378 q^{16} +110.546 q^{17} -79.6155 q^{18} -94.2699 q^{19} -21.5616 q^{21} -61.1771 q^{22} -15.7538 q^{23} +295.747 q^{24} +24.3845 q^{26} -147.147 q^{27} -138.823 q^{28} -256.870 q^{29} -170.702 q^{31} +883.902 q^{32} -39.1771 q^{33} +614.810 q^{34} -328.263 q^{36} +190.853 q^{37} -524.287 q^{38} +15.6155 q^{39} +249.602 q^{41} -119.916 q^{42} -291.602 q^{43} -252.240 q^{44} -87.6155 q^{46} -182.155 q^{47} +991.457 q^{48} -306.349 q^{49} +393.717 q^{51} +100.540 q^{52} +289.902 q^{53} -818.365 q^{54} -502.715 q^{56} -335.747 q^{57} -1428.60 q^{58} +282.725 q^{59} +167.825 q^{61} -949.366 q^{62} +86.6647 q^{63} +2688.85 q^{64} -217.885 q^{66} +176.233 q^{67} +2534.93 q^{68} -56.1080 q^{69} +919.255 q^{71} -1188.73 q^{72} -154.570 q^{73} +1061.44 q^{74} -2161.69 q^{76} +66.5937 q^{77} +86.8466 q^{78} -882.017 q^{79} -137.557 q^{81} +1388.18 q^{82} -277.619 q^{83} -494.425 q^{84} -1621.76 q^{86} -914.857 q^{87} -913.427 q^{88} -977.147 q^{89} -26.5435 q^{91} -361.248 q^{92} -607.963 q^{93} -1013.07 q^{94} +3148.07 q^{96} +1102.94 q^{97} -1703.78 q^{98} +157.469 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 7 q^{2} + 3 q^{3} + 17 q^{4} + 19 q^{6} + 25 q^{7} + 63 q^{8} - 41 q^{9} - 22 q^{11} + 85 q^{12} + 50 q^{13} + 11 q^{14} + 297 q^{16} + 151 q^{17} - 118 q^{18} - 3 q^{19} - 39 q^{21} - 77 q^{22} - 48 q^{23}+ \cdots + 451 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.56155 1.96631 0.983153 0.182785i \(-0.0585112\pi\)
0.983153 + 0.182785i \(0.0585112\pi\)
\(3\) 3.56155 0.685421 0.342711 0.939441i \(-0.388655\pi\)
0.342711 + 0.939441i \(0.388655\pi\)
\(4\) 22.9309 2.86636
\(5\) 0 0
\(6\) 19.8078 1.34775
\(7\) −6.05398 −0.326884 −0.163442 0.986553i \(-0.552260\pi\)
−0.163442 + 0.986553i \(0.552260\pi\)
\(8\) 83.0388 3.66983
\(9\) −14.3153 −0.530198
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) 81.6695 1.96466
\(13\) 4.38447 0.0935411 0.0467705 0.998906i \(-0.485107\pi\)
0.0467705 + 0.998906i \(0.485107\pi\)
\(14\) −33.6695 −0.642754
\(15\) 0 0
\(16\) 278.378 4.34965
\(17\) 110.546 1.57714 0.788572 0.614943i \(-0.210821\pi\)
0.788572 + 0.614943i \(0.210821\pi\)
\(18\) −79.6155 −1.04253
\(19\) −94.2699 −1.13826 −0.569131 0.822247i \(-0.692720\pi\)
−0.569131 + 0.822247i \(0.692720\pi\)
\(20\) 0 0
\(21\) −21.5616 −0.224053
\(22\) −61.1771 −0.592864
\(23\) −15.7538 −0.142821 −0.0714107 0.997447i \(-0.522750\pi\)
−0.0714107 + 0.997447i \(0.522750\pi\)
\(24\) 295.747 2.51538
\(25\) 0 0
\(26\) 24.3845 0.183930
\(27\) −147.147 −1.04883
\(28\) −138.823 −0.936967
\(29\) −256.870 −1.64481 −0.822407 0.568900i \(-0.807369\pi\)
−0.822407 + 0.568900i \(0.807369\pi\)
\(30\) 0 0
\(31\) −170.702 −0.988998 −0.494499 0.869178i \(-0.664648\pi\)
−0.494499 + 0.869178i \(0.664648\pi\)
\(32\) 883.902 4.88292
\(33\) −39.1771 −0.206662
\(34\) 614.810 3.10115
\(35\) 0 0
\(36\) −328.263 −1.51974
\(37\) 190.853 0.848002 0.424001 0.905662i \(-0.360625\pi\)
0.424001 + 0.905662i \(0.360625\pi\)
\(38\) −524.287 −2.23817
\(39\) 15.6155 0.0641150
\(40\) 0 0
\(41\) 249.602 0.950764 0.475382 0.879780i \(-0.342310\pi\)
0.475382 + 0.879780i \(0.342310\pi\)
\(42\) −119.916 −0.440557
\(43\) −291.602 −1.03416 −0.517081 0.855937i \(-0.672981\pi\)
−0.517081 + 0.855937i \(0.672981\pi\)
\(44\) −252.240 −0.864240
\(45\) 0 0
\(46\) −87.6155 −0.280831
\(47\) −182.155 −0.565321 −0.282660 0.959220i \(-0.591217\pi\)
−0.282660 + 0.959220i \(0.591217\pi\)
\(48\) 991.457 2.98134
\(49\) −306.349 −0.893147
\(50\) 0 0
\(51\) 393.717 1.08101
\(52\) 100.540 0.268122
\(53\) 289.902 0.751343 0.375671 0.926753i \(-0.377412\pi\)
0.375671 + 0.926753i \(0.377412\pi\)
\(54\) −818.365 −2.06232
\(55\) 0 0
\(56\) −502.715 −1.19961
\(57\) −335.747 −0.780189
\(58\) −1428.60 −3.23421
\(59\) 282.725 0.623859 0.311930 0.950105i \(-0.399025\pi\)
0.311930 + 0.950105i \(0.399025\pi\)
\(60\) 0 0
\(61\) 167.825 0.352258 0.176129 0.984367i \(-0.443642\pi\)
0.176129 + 0.984367i \(0.443642\pi\)
\(62\) −949.366 −1.94467
\(63\) 86.6647 0.173313
\(64\) 2688.85 5.25166
\(65\) 0 0
\(66\) −217.885 −0.406361
\(67\) 176.233 0.321347 0.160674 0.987008i \(-0.448633\pi\)
0.160674 + 0.987008i \(0.448633\pi\)
\(68\) 2534.93 4.52066
\(69\) −56.1080 −0.0978928
\(70\) 0 0
\(71\) 919.255 1.53656 0.768278 0.640116i \(-0.221114\pi\)
0.768278 + 0.640116i \(0.221114\pi\)
\(72\) −1188.73 −1.94574
\(73\) −154.570 −0.247823 −0.123911 0.992293i \(-0.539544\pi\)
−0.123911 + 0.992293i \(0.539544\pi\)
\(74\) 1061.44 1.66743
\(75\) 0 0
\(76\) −2161.69 −3.26267
\(77\) 66.5937 0.0985592
\(78\) 86.8466 0.126070
\(79\) −882.017 −1.25614 −0.628068 0.778159i \(-0.716154\pi\)
−0.628068 + 0.778159i \(0.716154\pi\)
\(80\) 0 0
\(81\) −137.557 −0.188692
\(82\) 1388.18 1.86949
\(83\) −277.619 −0.367141 −0.183570 0.983007i \(-0.558766\pi\)
−0.183570 + 0.983007i \(0.558766\pi\)
\(84\) −494.425 −0.642217
\(85\) 0 0
\(86\) −1621.76 −2.03348
\(87\) −914.857 −1.12739
\(88\) −913.427 −1.10650
\(89\) −977.147 −1.16379 −0.581895 0.813264i \(-0.697689\pi\)
−0.581895 + 0.813264i \(0.697689\pi\)
\(90\) 0 0
\(91\) −26.5435 −0.0305771
\(92\) −361.248 −0.409377
\(93\) −607.963 −0.677880
\(94\) −1013.07 −1.11159
\(95\) 0 0
\(96\) 3148.07 3.34685
\(97\) 1102.94 1.15451 0.577253 0.816565i \(-0.304125\pi\)
0.577253 + 0.816565i \(0.304125\pi\)
\(98\) −1703.78 −1.75620
\(99\) 157.469 0.159861
\(100\) 0 0
\(101\) 484.314 0.477139 0.238570 0.971125i \(-0.423321\pi\)
0.238570 + 0.971125i \(0.423321\pi\)
\(102\) 2189.68 2.12559
\(103\) 874.419 0.836495 0.418248 0.908333i \(-0.362644\pi\)
0.418248 + 0.908333i \(0.362644\pi\)
\(104\) 364.081 0.343280
\(105\) 0 0
\(106\) 1612.31 1.47737
\(107\) −119.845 −0.108279 −0.0541394 0.998533i \(-0.517242\pi\)
−0.0541394 + 0.998533i \(0.517242\pi\)
\(108\) −3374.20 −3.00632
\(109\) 414.621 0.364344 0.182172 0.983267i \(-0.441687\pi\)
0.182172 + 0.983267i \(0.441687\pi\)
\(110\) 0 0
\(111\) 679.734 0.581239
\(112\) −1685.29 −1.42183
\(113\) −534.453 −0.444930 −0.222465 0.974941i \(-0.571410\pi\)
−0.222465 + 0.974941i \(0.571410\pi\)
\(114\) −1867.28 −1.53409
\(115\) 0 0
\(116\) −5890.26 −4.71463
\(117\) −62.7652 −0.0495953
\(118\) 1572.39 1.22670
\(119\) −669.245 −0.515543
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 933.366 0.692648
\(123\) 888.972 0.651674
\(124\) −3914.34 −2.83482
\(125\) 0 0
\(126\) 481.990 0.340787
\(127\) −640.121 −0.447256 −0.223628 0.974675i \(-0.571790\pi\)
−0.223628 + 0.974675i \(0.571790\pi\)
\(128\) 7882.95 5.44344
\(129\) −1038.56 −0.708836
\(130\) 0 0
\(131\) 1051.05 0.700999 0.350499 0.936563i \(-0.386012\pi\)
0.350499 + 0.936563i \(0.386012\pi\)
\(132\) −898.365 −0.592368
\(133\) 570.708 0.372080
\(134\) 980.129 0.631867
\(135\) 0 0
\(136\) 9179.64 5.78785
\(137\) −1690.68 −1.05434 −0.527169 0.849761i \(-0.676746\pi\)
−0.527169 + 0.849761i \(0.676746\pi\)
\(138\) −312.047 −0.192487
\(139\) 2789.43 1.70213 0.851067 0.525058i \(-0.175956\pi\)
0.851067 + 0.525058i \(0.175956\pi\)
\(140\) 0 0
\(141\) −648.756 −0.387483
\(142\) 5112.48 3.02134
\(143\) −48.2292 −0.0282037
\(144\) −3985.07 −2.30618
\(145\) 0 0
\(146\) −859.650 −0.487295
\(147\) −1091.08 −0.612182
\(148\) 4376.43 2.43068
\(149\) 1090.62 0.599647 0.299823 0.953995i \(-0.403072\pi\)
0.299823 + 0.953995i \(0.403072\pi\)
\(150\) 0 0
\(151\) 623.574 0.336064 0.168032 0.985782i \(-0.446259\pi\)
0.168032 + 0.985782i \(0.446259\pi\)
\(152\) −7828.06 −4.17723
\(153\) −1582.51 −0.836198
\(154\) 370.365 0.193798
\(155\) 0 0
\(156\) 358.078 0.183777
\(157\) 2114.96 1.07511 0.537555 0.843228i \(-0.319348\pi\)
0.537555 + 0.843228i \(0.319348\pi\)
\(158\) −4905.38 −2.46995
\(159\) 1032.50 0.514986
\(160\) 0 0
\(161\) 95.3730 0.0466860
\(162\) −765.029 −0.371027
\(163\) −1153.53 −0.554301 −0.277151 0.960827i \(-0.589390\pi\)
−0.277151 + 0.960827i \(0.589390\pi\)
\(164\) 5723.60 2.72523
\(165\) 0 0
\(166\) −1543.99 −0.721911
\(167\) 1100.93 0.510137 0.255068 0.966923i \(-0.417902\pi\)
0.255068 + 0.966923i \(0.417902\pi\)
\(168\) −1790.45 −0.822238
\(169\) −2177.78 −0.991250
\(170\) 0 0
\(171\) 1349.51 0.603504
\(172\) −6686.69 −2.96428
\(173\) 2369.25 1.04122 0.520609 0.853795i \(-0.325705\pi\)
0.520609 + 0.853795i \(0.325705\pi\)
\(174\) −5088.03 −2.21679
\(175\) 0 0
\(176\) −3062.16 −1.31147
\(177\) 1006.94 0.427606
\(178\) −5434.45 −2.28837
\(179\) 1226.77 0.512250 0.256125 0.966644i \(-0.417554\pi\)
0.256125 + 0.966644i \(0.417554\pi\)
\(180\) 0 0
\(181\) −439.606 −0.180528 −0.0902642 0.995918i \(-0.528771\pi\)
−0.0902642 + 0.995918i \(0.528771\pi\)
\(182\) −147.623 −0.0601239
\(183\) 597.717 0.241445
\(184\) −1308.18 −0.524131
\(185\) 0 0
\(186\) −3381.22 −1.33292
\(187\) −1216.01 −0.475527
\(188\) −4176.98 −1.62041
\(189\) 890.823 0.342846
\(190\) 0 0
\(191\) −4968.96 −1.88241 −0.941207 0.337829i \(-0.890307\pi\)
−0.941207 + 0.337829i \(0.890307\pi\)
\(192\) 9576.47 3.59960
\(193\) 1362.22 0.508054 0.254027 0.967197i \(-0.418245\pi\)
0.254027 + 0.967197i \(0.418245\pi\)
\(194\) 6134.09 2.27011
\(195\) 0 0
\(196\) −7024.86 −2.56008
\(197\) −2195.91 −0.794174 −0.397087 0.917781i \(-0.629979\pi\)
−0.397087 + 0.917781i \(0.629979\pi\)
\(198\) 875.771 0.314335
\(199\) −558.189 −0.198839 −0.0994194 0.995046i \(-0.531699\pi\)
−0.0994194 + 0.995046i \(0.531699\pi\)
\(200\) 0 0
\(201\) 627.663 0.220258
\(202\) 2693.54 0.938202
\(203\) 1555.09 0.537663
\(204\) 9028.27 3.09856
\(205\) 0 0
\(206\) 4863.12 1.64481
\(207\) 225.521 0.0757236
\(208\) 1220.54 0.406871
\(209\) 1036.97 0.343199
\(210\) 0 0
\(211\) −3002.01 −0.979463 −0.489732 0.871873i \(-0.662905\pi\)
−0.489732 + 0.871873i \(0.662905\pi\)
\(212\) 6647.71 2.15362
\(213\) 3273.97 1.05319
\(214\) −666.523 −0.212909
\(215\) 0 0
\(216\) −12218.9 −3.84903
\(217\) 1033.42 0.323287
\(218\) 2305.94 0.716412
\(219\) −550.509 −0.169863
\(220\) 0 0
\(221\) 484.688 0.147528
\(222\) 3780.38 1.14289
\(223\) −854.595 −0.256627 −0.128314 0.991734i \(-0.540956\pi\)
−0.128314 + 0.991734i \(0.540956\pi\)
\(224\) −5351.12 −1.59615
\(225\) 0 0
\(226\) −2972.39 −0.874868
\(227\) −394.002 −0.115202 −0.0576010 0.998340i \(-0.518345\pi\)
−0.0576010 + 0.998340i \(0.518345\pi\)
\(228\) −7698.97 −2.23630
\(229\) −491.822 −0.141924 −0.0709618 0.997479i \(-0.522607\pi\)
−0.0709618 + 0.997479i \(0.522607\pi\)
\(230\) 0 0
\(231\) 237.177 0.0675546
\(232\) −21330.2 −6.03619
\(233\) 6884.63 1.93574 0.967869 0.251456i \(-0.0809094\pi\)
0.967869 + 0.251456i \(0.0809094\pi\)
\(234\) −349.072 −0.0975195
\(235\) 0 0
\(236\) 6483.14 1.78820
\(237\) −3141.35 −0.860982
\(238\) −3722.04 −1.01371
\(239\) 3012.77 0.815397 0.407699 0.913117i \(-0.366331\pi\)
0.407699 + 0.913117i \(0.366331\pi\)
\(240\) 0 0
\(241\) 3106.98 0.830448 0.415224 0.909719i \(-0.363703\pi\)
0.415224 + 0.909719i \(0.363703\pi\)
\(242\) 672.948 0.178755
\(243\) 3483.05 0.919496
\(244\) 3848.37 1.00970
\(245\) 0 0
\(246\) 4944.06 1.28139
\(247\) −413.324 −0.106474
\(248\) −14174.9 −3.62946
\(249\) −988.756 −0.251646
\(250\) 0 0
\(251\) −834.313 −0.209806 −0.104903 0.994482i \(-0.533453\pi\)
−0.104903 + 0.994482i \(0.533453\pi\)
\(252\) 1987.30 0.496778
\(253\) 173.292 0.0430623
\(254\) −3560.07 −0.879443
\(255\) 0 0
\(256\) 22330.6 5.45182
\(257\) 7536.63 1.82927 0.914635 0.404281i \(-0.132478\pi\)
0.914635 + 0.404281i \(0.132478\pi\)
\(258\) −5775.99 −1.39379
\(259\) −1155.42 −0.277198
\(260\) 0 0
\(261\) 3677.19 0.872077
\(262\) 5845.48 1.37838
\(263\) 6242.10 1.46351 0.731757 0.681565i \(-0.238700\pi\)
0.731757 + 0.681565i \(0.238700\pi\)
\(264\) −3253.22 −0.758416
\(265\) 0 0
\(266\) 3174.02 0.731623
\(267\) −3480.16 −0.797687
\(268\) 4041.17 0.921097
\(269\) 1636.95 0.371027 0.185514 0.982642i \(-0.440605\pi\)
0.185514 + 0.982642i \(0.440605\pi\)
\(270\) 0 0
\(271\) 787.212 0.176457 0.0882283 0.996100i \(-0.471880\pi\)
0.0882283 + 0.996100i \(0.471880\pi\)
\(272\) 30773.7 6.86003
\(273\) −94.5360 −0.0209582
\(274\) −9402.78 −2.07315
\(275\) 0 0
\(276\) −1286.60 −0.280596
\(277\) −1954.96 −0.424052 −0.212026 0.977264i \(-0.568006\pi\)
−0.212026 + 0.977264i \(0.568006\pi\)
\(278\) 15513.6 3.34691
\(279\) 2443.65 0.524364
\(280\) 0 0
\(281\) −5097.58 −1.08219 −0.541097 0.840960i \(-0.681991\pi\)
−0.541097 + 0.840960i \(0.681991\pi\)
\(282\) −3608.09 −0.761910
\(283\) 7187.71 1.50977 0.754885 0.655857i \(-0.227693\pi\)
0.754885 + 0.655857i \(0.227693\pi\)
\(284\) 21079.3 4.40432
\(285\) 0 0
\(286\) −268.229 −0.0554571
\(287\) −1511.09 −0.310789
\(288\) −12653.4 −2.58891
\(289\) 7307.51 1.48738
\(290\) 0 0
\(291\) 3928.20 0.791323
\(292\) −3544.43 −0.710349
\(293\) −6388.82 −1.27385 −0.636926 0.770925i \(-0.719794\pi\)
−0.636926 + 0.770925i \(0.719794\pi\)
\(294\) −6068.10 −1.20374
\(295\) 0 0
\(296\) 15848.2 3.11203
\(297\) 1618.61 0.316234
\(298\) 6065.56 1.17909
\(299\) −69.0720 −0.0133597
\(300\) 0 0
\(301\) 1765.35 0.338051
\(302\) 3468.04 0.660806
\(303\) 1724.91 0.327041
\(304\) −26242.6 −4.95105
\(305\) 0 0
\(306\) −8801.21 −1.64422
\(307\) −4882.07 −0.907603 −0.453802 0.891103i \(-0.649933\pi\)
−0.453802 + 0.891103i \(0.649933\pi\)
\(308\) 1527.05 0.282506
\(309\) 3114.29 0.573352
\(310\) 0 0
\(311\) 2846.01 0.518914 0.259457 0.965755i \(-0.416456\pi\)
0.259457 + 0.965755i \(0.416456\pi\)
\(312\) 1296.70 0.235291
\(313\) −8009.49 −1.44640 −0.723200 0.690639i \(-0.757330\pi\)
−0.723200 + 0.690639i \(0.757330\pi\)
\(314\) 11762.5 2.11400
\(315\) 0 0
\(316\) −20225.4 −3.60053
\(317\) −4668.89 −0.827227 −0.413613 0.910453i \(-0.635733\pi\)
−0.413613 + 0.910453i \(0.635733\pi\)
\(318\) 5742.32 1.01262
\(319\) 2825.57 0.495930
\(320\) 0 0
\(321\) −426.833 −0.0742165
\(322\) 530.422 0.0917990
\(323\) −10421.2 −1.79520
\(324\) −3154.30 −0.540860
\(325\) 0 0
\(326\) −6415.39 −1.08993
\(327\) 1476.70 0.249729
\(328\) 20726.7 3.48914
\(329\) 1102.76 0.184794
\(330\) 0 0
\(331\) 2581.31 0.428645 0.214323 0.976763i \(-0.431246\pi\)
0.214323 + 0.976763i \(0.431246\pi\)
\(332\) −6366.05 −1.05236
\(333\) −2732.13 −0.449609
\(334\) 6122.91 1.00309
\(335\) 0 0
\(336\) −6002.26 −0.974554
\(337\) 8152.45 1.31778 0.658890 0.752239i \(-0.271026\pi\)
0.658890 + 0.752239i \(0.271026\pi\)
\(338\) −12111.8 −1.94910
\(339\) −1903.48 −0.304964
\(340\) 0 0
\(341\) 1877.72 0.298194
\(342\) 7505.35 1.18667
\(343\) 3931.15 0.618839
\(344\) −24214.3 −3.79520
\(345\) 0 0
\(346\) 13176.7 2.04735
\(347\) 3426.21 0.530054 0.265027 0.964241i \(-0.414619\pi\)
0.265027 + 0.964241i \(0.414619\pi\)
\(348\) −20978.5 −3.23151
\(349\) 1334.33 0.204656 0.102328 0.994751i \(-0.467371\pi\)
0.102328 + 0.994751i \(0.467371\pi\)
\(350\) 0 0
\(351\) −645.161 −0.0981087
\(352\) −9722.93 −1.47225
\(353\) −4406.21 −0.664360 −0.332180 0.943216i \(-0.607784\pi\)
−0.332180 + 0.943216i \(0.607784\pi\)
\(354\) 5600.16 0.840805
\(355\) 0 0
\(356\) −22406.8 −3.33584
\(357\) −2383.55 −0.353364
\(358\) 6822.72 1.00724
\(359\) −8623.04 −1.26771 −0.633853 0.773453i \(-0.718528\pi\)
−0.633853 + 0.773453i \(0.718528\pi\)
\(360\) 0 0
\(361\) 2027.81 0.295642
\(362\) −2444.89 −0.354974
\(363\) 430.948 0.0623110
\(364\) −608.665 −0.0876448
\(365\) 0 0
\(366\) 3324.23 0.474755
\(367\) 3585.58 0.509989 0.254995 0.966942i \(-0.417926\pi\)
0.254995 + 0.966942i \(0.417926\pi\)
\(368\) −4385.51 −0.621224
\(369\) −3573.14 −0.504093
\(370\) 0 0
\(371\) −1755.06 −0.245602
\(372\) −13941.1 −1.94305
\(373\) −9855.90 −1.36815 −0.684074 0.729413i \(-0.739793\pi\)
−0.684074 + 0.729413i \(0.739793\pi\)
\(374\) −6762.91 −0.935031
\(375\) 0 0
\(376\) −15126.0 −2.07463
\(377\) −1126.24 −0.153858
\(378\) 4954.36 0.674139
\(379\) −10837.8 −1.46887 −0.734435 0.678679i \(-0.762553\pi\)
−0.734435 + 0.678679i \(0.762553\pi\)
\(380\) 0 0
\(381\) −2279.83 −0.306559
\(382\) −27635.1 −3.70140
\(383\) 2025.55 0.270237 0.135119 0.990829i \(-0.456858\pi\)
0.135119 + 0.990829i \(0.456858\pi\)
\(384\) 28075.5 3.73105
\(385\) 0 0
\(386\) 7576.04 0.998990
\(387\) 4174.39 0.548310
\(388\) 25291.5 3.30923
\(389\) −978.894 −0.127588 −0.0637942 0.997963i \(-0.520320\pi\)
−0.0637942 + 0.997963i \(0.520320\pi\)
\(390\) 0 0
\(391\) −1741.52 −0.225250
\(392\) −25438.9 −3.27770
\(393\) 3743.38 0.480479
\(394\) −12212.7 −1.56159
\(395\) 0 0
\(396\) 3610.90 0.458218
\(397\) 5008.28 0.633144 0.316572 0.948568i \(-0.397468\pi\)
0.316572 + 0.948568i \(0.397468\pi\)
\(398\) −3104.39 −0.390978
\(399\) 2032.60 0.255031
\(400\) 0 0
\(401\) −15584.1 −1.94073 −0.970366 0.241639i \(-0.922315\pi\)
−0.970366 + 0.241639i \(0.922315\pi\)
\(402\) 3490.78 0.433095
\(403\) −748.437 −0.0925119
\(404\) 11105.7 1.36765
\(405\) 0 0
\(406\) 8648.69 1.05721
\(407\) −2099.39 −0.255682
\(408\) 32693.8 3.96712
\(409\) 15106.6 1.82634 0.913171 0.407576i \(-0.133626\pi\)
0.913171 + 0.407576i \(0.133626\pi\)
\(410\) 0 0
\(411\) −6021.43 −0.722665
\(412\) 20051.2 2.39770
\(413\) −1711.61 −0.203930
\(414\) 1254.25 0.148896
\(415\) 0 0
\(416\) 3875.45 0.456753
\(417\) 9934.71 1.16668
\(418\) 5767.16 0.674834
\(419\) −1518.17 −0.177011 −0.0885056 0.996076i \(-0.528209\pi\)
−0.0885056 + 0.996076i \(0.528209\pi\)
\(420\) 0 0
\(421\) 4637.05 0.536808 0.268404 0.963306i \(-0.413504\pi\)
0.268404 + 0.963306i \(0.413504\pi\)
\(422\) −16695.8 −1.92592
\(423\) 2607.62 0.299732
\(424\) 24073.2 2.75730
\(425\) 0 0
\(426\) 18208.4 2.07089
\(427\) −1016.01 −0.115148
\(428\) −2748.14 −0.310366
\(429\) −171.771 −0.0193314
\(430\) 0 0
\(431\) −11477.9 −1.28276 −0.641380 0.767223i \(-0.721638\pi\)
−0.641380 + 0.767223i \(0.721638\pi\)
\(432\) −40962.4 −4.56205
\(433\) −10204.5 −1.13256 −0.566280 0.824213i \(-0.691618\pi\)
−0.566280 + 0.824213i \(0.691618\pi\)
\(434\) 5747.44 0.635682
\(435\) 0 0
\(436\) 9507.62 1.04434
\(437\) 1485.11 0.162568
\(438\) −3061.69 −0.334002
\(439\) −6919.06 −0.752229 −0.376115 0.926573i \(-0.622740\pi\)
−0.376115 + 0.926573i \(0.622740\pi\)
\(440\) 0 0
\(441\) 4385.50 0.473545
\(442\) 2695.62 0.290085
\(443\) 2912.53 0.312366 0.156183 0.987728i \(-0.450081\pi\)
0.156183 + 0.987728i \(0.450081\pi\)
\(444\) 15586.9 1.66604
\(445\) 0 0
\(446\) −4752.87 −0.504608
\(447\) 3884.32 0.411011
\(448\) −16278.2 −1.71668
\(449\) −1155.53 −0.121454 −0.0607270 0.998154i \(-0.519342\pi\)
−0.0607270 + 0.998154i \(0.519342\pi\)
\(450\) 0 0
\(451\) −2745.62 −0.286666
\(452\) −12255.5 −1.27533
\(453\) 2220.89 0.230346
\(454\) −2191.26 −0.226522
\(455\) 0 0
\(456\) −27880.0 −2.86316
\(457\) −2745.62 −0.281039 −0.140519 0.990078i \(-0.544877\pi\)
−0.140519 + 0.990078i \(0.544877\pi\)
\(458\) −2735.29 −0.279065
\(459\) −16266.5 −1.65416
\(460\) 0 0
\(461\) 11224.1 1.13397 0.566984 0.823729i \(-0.308110\pi\)
0.566984 + 0.823729i \(0.308110\pi\)
\(462\) 1319.07 0.132833
\(463\) −15994.8 −1.60549 −0.802743 0.596325i \(-0.796627\pi\)
−0.802743 + 0.596325i \(0.796627\pi\)
\(464\) −71507.0 −7.15437
\(465\) 0 0
\(466\) 38289.2 3.80625
\(467\) −6674.60 −0.661378 −0.330689 0.943740i \(-0.607281\pi\)
−0.330689 + 0.943740i \(0.607281\pi\)
\(468\) −1439.26 −0.142158
\(469\) −1066.91 −0.105043
\(470\) 0 0
\(471\) 7532.55 0.736904
\(472\) 23477.2 2.28946
\(473\) 3207.62 0.311811
\(474\) −17470.8 −1.69295
\(475\) 0 0
\(476\) −15346.4 −1.47773
\(477\) −4150.05 −0.398360
\(478\) 16755.7 1.60332
\(479\) −11582.0 −1.10479 −0.552396 0.833582i \(-0.686286\pi\)
−0.552396 + 0.833582i \(0.686286\pi\)
\(480\) 0 0
\(481\) 836.791 0.0793230
\(482\) 17279.6 1.63292
\(483\) 339.676 0.0319996
\(484\) 2774.64 0.260578
\(485\) 0 0
\(486\) 19371.2 1.80801
\(487\) 10618.7 0.988047 0.494024 0.869448i \(-0.335526\pi\)
0.494024 + 0.869448i \(0.335526\pi\)
\(488\) 13936.0 1.29273
\(489\) −4108.34 −0.379930
\(490\) 0 0
\(491\) −17948.0 −1.64966 −0.824829 0.565382i \(-0.808729\pi\)
−0.824829 + 0.565382i \(0.808729\pi\)
\(492\) 20384.9 1.86793
\(493\) −28396.1 −2.59411
\(494\) −2298.72 −0.209361
\(495\) 0 0
\(496\) −47519.6 −4.30180
\(497\) −5565.15 −0.502275
\(498\) −5499.02 −0.494813
\(499\) −10409.6 −0.933865 −0.466932 0.884293i \(-0.654641\pi\)
−0.466932 + 0.884293i \(0.654641\pi\)
\(500\) 0 0
\(501\) 3921.04 0.349659
\(502\) −4640.07 −0.412543
\(503\) −7319.98 −0.648870 −0.324435 0.945908i \(-0.605174\pi\)
−0.324435 + 0.945908i \(0.605174\pi\)
\(504\) 7196.54 0.636030
\(505\) 0 0
\(506\) 963.771 0.0846736
\(507\) −7756.27 −0.679424
\(508\) −14678.5 −1.28200
\(509\) 7619.94 0.663552 0.331776 0.943358i \(-0.392352\pi\)
0.331776 + 0.943358i \(0.392352\pi\)
\(510\) 0 0
\(511\) 935.763 0.0810093
\(512\) 61129.5 5.27650
\(513\) 13871.5 1.19384
\(514\) 41915.4 3.59690
\(515\) 0 0
\(516\) −23815.0 −2.03178
\(517\) 2003.71 0.170451
\(518\) −6425.93 −0.545057
\(519\) 8438.20 0.713672
\(520\) 0 0
\(521\) −12413.4 −1.04384 −0.521921 0.852994i \(-0.674785\pi\)
−0.521921 + 0.852994i \(0.674785\pi\)
\(522\) 20450.9 1.71477
\(523\) 2524.30 0.211051 0.105526 0.994417i \(-0.466347\pi\)
0.105526 + 0.994417i \(0.466347\pi\)
\(524\) 24101.5 2.00931
\(525\) 0 0
\(526\) 34715.8 2.87772
\(527\) −18870.5 −1.55979
\(528\) −10906.0 −0.898909
\(529\) −11918.8 −0.979602
\(530\) 0 0
\(531\) −4047.31 −0.330769
\(532\) 13086.8 1.06651
\(533\) 1094.37 0.0889355
\(534\) −19355.1 −1.56850
\(535\) 0 0
\(536\) 14634.2 1.17929
\(537\) 4369.19 0.351107
\(538\) 9103.96 0.729553
\(539\) 3369.84 0.269294
\(540\) 0 0
\(541\) 10271.4 0.816269 0.408135 0.912922i \(-0.366179\pi\)
0.408135 + 0.912922i \(0.366179\pi\)
\(542\) 4378.12 0.346968
\(543\) −1565.68 −0.123738
\(544\) 97712.2 7.70106
\(545\) 0 0
\(546\) −525.767 −0.0412102
\(547\) −7810.11 −0.610487 −0.305243 0.952274i \(-0.598738\pi\)
−0.305243 + 0.952274i \(0.598738\pi\)
\(548\) −38768.7 −3.02211
\(549\) −2402.47 −0.186767
\(550\) 0 0
\(551\) 24215.1 1.87223
\(552\) −4659.14 −0.359250
\(553\) 5339.71 0.410610
\(554\) −10872.6 −0.833815
\(555\) 0 0
\(556\) 63964.1 4.87892
\(557\) 18348.8 1.39580 0.697902 0.716193i \(-0.254117\pi\)
0.697902 + 0.716193i \(0.254117\pi\)
\(558\) 13590.5 1.03106
\(559\) −1278.52 −0.0967365
\(560\) 0 0
\(561\) −4330.89 −0.325936
\(562\) −28350.5 −2.12792
\(563\) 174.680 0.0130761 0.00653807 0.999979i \(-0.497919\pi\)
0.00653807 + 0.999979i \(0.497919\pi\)
\(564\) −14876.5 −1.11066
\(565\) 0 0
\(566\) 39974.8 2.96867
\(567\) 832.765 0.0616805
\(568\) 76333.8 5.63890
\(569\) −3208.08 −0.236362 −0.118181 0.992992i \(-0.537706\pi\)
−0.118181 + 0.992992i \(0.537706\pi\)
\(570\) 0 0
\(571\) −11660.4 −0.854592 −0.427296 0.904112i \(-0.640534\pi\)
−0.427296 + 0.904112i \(0.640534\pi\)
\(572\) −1105.94 −0.0808419
\(573\) −17697.2 −1.29025
\(574\) −8403.98 −0.611107
\(575\) 0 0
\(576\) −38491.8 −2.78442
\(577\) 12906.9 0.931233 0.465617 0.884987i \(-0.345833\pi\)
0.465617 + 0.884987i \(0.345833\pi\)
\(578\) 40641.1 2.92465
\(579\) 4851.61 0.348231
\(580\) 0 0
\(581\) 1680.70 0.120012
\(582\) 21846.9 1.55598
\(583\) −3188.93 −0.226538
\(584\) −12835.3 −0.909468
\(585\) 0 0
\(586\) −35531.8 −2.50478
\(587\) −27427.0 −1.92850 −0.964252 0.264986i \(-0.914633\pi\)
−0.964252 + 0.264986i \(0.914633\pi\)
\(588\) −25019.4 −1.75473
\(589\) 16092.0 1.12574
\(590\) 0 0
\(591\) −7820.86 −0.544344
\(592\) 53129.3 3.68852
\(593\) −5332.11 −0.369247 −0.184623 0.982809i \(-0.559107\pi\)
−0.184623 + 0.982809i \(0.559107\pi\)
\(594\) 9002.01 0.621813
\(595\) 0 0
\(596\) 25009.0 1.71880
\(597\) −1988.02 −0.136288
\(598\) −384.148 −0.0262692
\(599\) −22329.2 −1.52312 −0.761558 0.648097i \(-0.775565\pi\)
−0.761558 + 0.648097i \(0.775565\pi\)
\(600\) 0 0
\(601\) 15511.8 1.05281 0.526405 0.850234i \(-0.323540\pi\)
0.526405 + 0.850234i \(0.323540\pi\)
\(602\) 9818.10 0.664711
\(603\) −2522.83 −0.170378
\(604\) 14299.1 0.963281
\(605\) 0 0
\(606\) 9593.18 0.643063
\(607\) −7205.25 −0.481799 −0.240900 0.970550i \(-0.577442\pi\)
−0.240900 + 0.970550i \(0.577442\pi\)
\(608\) −83325.4 −5.55804
\(609\) 5538.52 0.368526
\(610\) 0 0
\(611\) −798.655 −0.0528807
\(612\) −36288.3 −2.39684
\(613\) 2837.16 0.186936 0.0934682 0.995622i \(-0.470205\pi\)
0.0934682 + 0.995622i \(0.470205\pi\)
\(614\) −27151.9 −1.78463
\(615\) 0 0
\(616\) 5529.86 0.361696
\(617\) 7423.58 0.484379 0.242190 0.970229i \(-0.422134\pi\)
0.242190 + 0.970229i \(0.422134\pi\)
\(618\) 17320.3 1.12738
\(619\) 9747.62 0.632940 0.316470 0.948603i \(-0.397502\pi\)
0.316470 + 0.948603i \(0.397502\pi\)
\(620\) 0 0
\(621\) 2318.12 0.149795
\(622\) 15828.2 1.02034
\(623\) 5915.62 0.380424
\(624\) 4347.02 0.278878
\(625\) 0 0
\(626\) −44545.2 −2.84407
\(627\) 3693.22 0.235236
\(628\) 48497.9 3.08165
\(629\) 21098.1 1.33742
\(630\) 0 0
\(631\) 5914.75 0.373157 0.186579 0.982440i \(-0.440260\pi\)
0.186579 + 0.982440i \(0.440260\pi\)
\(632\) −73241.7 −4.60980
\(633\) −10691.8 −0.671345
\(634\) −25966.3 −1.62658
\(635\) 0 0
\(636\) 23676.2 1.47614
\(637\) −1343.18 −0.0835459
\(638\) 15714.6 0.975150
\(639\) −13159.4 −0.814679
\(640\) 0 0
\(641\) −25438.0 −1.56746 −0.783728 0.621104i \(-0.786684\pi\)
−0.783728 + 0.621104i \(0.786684\pi\)
\(642\) −2373.86 −0.145932
\(643\) −769.253 −0.0471794 −0.0235897 0.999722i \(-0.507510\pi\)
−0.0235897 + 0.999722i \(0.507510\pi\)
\(644\) 2186.99 0.133819
\(645\) 0 0
\(646\) −57958.0 −3.52992
\(647\) −25813.2 −1.56850 −0.784250 0.620445i \(-0.786952\pi\)
−0.784250 + 0.620445i \(0.786952\pi\)
\(648\) −11422.6 −0.692469
\(649\) −3109.98 −0.188101
\(650\) 0 0
\(651\) 3680.59 0.221588
\(652\) −26451.3 −1.58883
\(653\) 13138.6 0.787372 0.393686 0.919245i \(-0.371200\pi\)
0.393686 + 0.919245i \(0.371200\pi\)
\(654\) 8212.72 0.491044
\(655\) 0 0
\(656\) 69483.7 4.13549
\(657\) 2212.72 0.131395
\(658\) 6133.08 0.363362
\(659\) −19105.0 −1.12933 −0.564663 0.825322i \(-0.690994\pi\)
−0.564663 + 0.825322i \(0.690994\pi\)
\(660\) 0 0
\(661\) −31694.3 −1.86500 −0.932502 0.361166i \(-0.882379\pi\)
−0.932502 + 0.361166i \(0.882379\pi\)
\(662\) 14356.1 0.842848
\(663\) 1726.24 0.101119
\(664\) −23053.2 −1.34734
\(665\) 0 0
\(666\) −15194.9 −0.884069
\(667\) 4046.68 0.234915
\(668\) 25245.4 1.46224
\(669\) −3043.68 −0.175898
\(670\) 0 0
\(671\) −1846.07 −0.106210
\(672\) −19058.3 −1.09403
\(673\) 23110.6 1.32370 0.661848 0.749638i \(-0.269772\pi\)
0.661848 + 0.749638i \(0.269772\pi\)
\(674\) 45340.3 2.59116
\(675\) 0 0
\(676\) −49938.3 −2.84128
\(677\) 17052.4 0.968062 0.484031 0.875051i \(-0.339172\pi\)
0.484031 + 0.875051i \(0.339172\pi\)
\(678\) −10586.3 −0.599653
\(679\) −6677.20 −0.377390
\(680\) 0 0
\(681\) −1403.26 −0.0789618
\(682\) 10443.0 0.586341
\(683\) −28542.8 −1.59907 −0.799533 0.600623i \(-0.794919\pi\)
−0.799533 + 0.600623i \(0.794919\pi\)
\(684\) 30945.3 1.72986
\(685\) 0 0
\(686\) 21863.3 1.21683
\(687\) −1751.65 −0.0972774
\(688\) −81175.6 −4.49824
\(689\) 1271.07 0.0702814
\(690\) 0 0
\(691\) 6479.20 0.356701 0.178351 0.983967i \(-0.442924\pi\)
0.178351 + 0.983967i \(0.442924\pi\)
\(692\) 54328.9 2.98450
\(693\) −953.312 −0.0522559
\(694\) 19055.1 1.04225
\(695\) 0 0
\(696\) −75968.6 −4.13733
\(697\) 27592.6 1.49949
\(698\) 7420.94 0.402417
\(699\) 24520.0 1.32680
\(700\) 0 0
\(701\) 21118.6 1.13786 0.568929 0.822386i \(-0.307358\pi\)
0.568929 + 0.822386i \(0.307358\pi\)
\(702\) −3588.10 −0.192912
\(703\) −17991.7 −0.965249
\(704\) −29577.3 −1.58343
\(705\) 0 0
\(706\) −24505.4 −1.30633
\(707\) −2932.03 −0.155969
\(708\) 23090.0 1.22567
\(709\) 7072.53 0.374632 0.187316 0.982300i \(-0.440021\pi\)
0.187316 + 0.982300i \(0.440021\pi\)
\(710\) 0 0
\(711\) 12626.4 0.666000
\(712\) −81141.1 −4.27092
\(713\) 2689.20 0.141250
\(714\) −13256.3 −0.694822
\(715\) 0 0
\(716\) 28130.8 1.46829
\(717\) 10730.1 0.558890
\(718\) −47957.5 −2.49270
\(719\) 22177.9 1.15034 0.575170 0.818034i \(-0.304936\pi\)
0.575170 + 0.818034i \(0.304936\pi\)
\(720\) 0 0
\(721\) −5293.71 −0.273437
\(722\) 11277.8 0.581323
\(723\) 11065.7 0.569207
\(724\) −10080.5 −0.517459
\(725\) 0 0
\(726\) 2396.74 0.122523
\(727\) 17390.7 0.887186 0.443593 0.896228i \(-0.353704\pi\)
0.443593 + 0.896228i \(0.353704\pi\)
\(728\) −2204.14 −0.112213
\(729\) 16119.1 0.818935
\(730\) 0 0
\(731\) −32235.6 −1.63102
\(732\) 13706.2 0.692069
\(733\) 21877.0 1.10238 0.551191 0.834379i \(-0.314174\pi\)
0.551191 + 0.834379i \(0.314174\pi\)
\(734\) 19941.4 1.00279
\(735\) 0 0
\(736\) −13924.8 −0.697385
\(737\) −1938.56 −0.0968899
\(738\) −19872.2 −0.991201
\(739\) 14203.1 0.706994 0.353497 0.935436i \(-0.384992\pi\)
0.353497 + 0.935436i \(0.384992\pi\)
\(740\) 0 0
\(741\) −1472.07 −0.0729797
\(742\) −9760.87 −0.482928
\(743\) 3933.68 0.194230 0.0971148 0.995273i \(-0.469039\pi\)
0.0971148 + 0.995273i \(0.469039\pi\)
\(744\) −50484.5 −2.48771
\(745\) 0 0
\(746\) −54814.1 −2.69020
\(747\) 3974.21 0.194657
\(748\) −27884.2 −1.36303
\(749\) 725.537 0.0353946
\(750\) 0 0
\(751\) 22554.3 1.09590 0.547949 0.836512i \(-0.315409\pi\)
0.547949 + 0.836512i \(0.315409\pi\)
\(752\) −50708.0 −2.45895
\(753\) −2971.45 −0.143806
\(754\) −6263.65 −0.302531
\(755\) 0 0
\(756\) 20427.3 0.982719
\(757\) −11432.0 −0.548883 −0.274441 0.961604i \(-0.588493\pi\)
−0.274441 + 0.961604i \(0.588493\pi\)
\(758\) −60275.2 −2.88825
\(759\) 617.187 0.0295158
\(760\) 0 0
\(761\) −32660.1 −1.55575 −0.777877 0.628416i \(-0.783704\pi\)
−0.777877 + 0.628416i \(0.783704\pi\)
\(762\) −12679.4 −0.602789
\(763\) −2510.11 −0.119098
\(764\) −113943. −5.39568
\(765\) 0 0
\(766\) 11265.2 0.531369
\(767\) 1239.60 0.0583565
\(768\) 79531.8 3.73679
\(769\) −8569.93 −0.401872 −0.200936 0.979604i \(-0.564398\pi\)
−0.200936 + 0.979604i \(0.564398\pi\)
\(770\) 0 0
\(771\) 26842.1 1.25382
\(772\) 31236.8 1.45627
\(773\) 29158.0 1.35671 0.678357 0.734733i \(-0.262693\pi\)
0.678357 + 0.734733i \(0.262693\pi\)
\(774\) 23216.1 1.07815
\(775\) 0 0
\(776\) 91587.2 4.23684
\(777\) −4115.09 −0.189998
\(778\) −5444.17 −0.250878
\(779\) −23530.0 −1.08222
\(780\) 0 0
\(781\) −10111.8 −0.463289
\(782\) −9685.58 −0.442910
\(783\) 37797.6 1.72513
\(784\) −85280.9 −3.88488
\(785\) 0 0
\(786\) 20819.0 0.944770
\(787\) 8501.30 0.385055 0.192528 0.981292i \(-0.438332\pi\)
0.192528 + 0.981292i \(0.438332\pi\)
\(788\) −50354.2 −2.27639
\(789\) 22231.6 1.00312
\(790\) 0 0
\(791\) 3235.56 0.145440
\(792\) 13076.0 0.586662
\(793\) 735.823 0.0329506
\(794\) 27853.8 1.24496
\(795\) 0 0
\(796\) −12799.7 −0.569944
\(797\) −37459.5 −1.66485 −0.832424 0.554139i \(-0.813047\pi\)
−0.832424 + 0.554139i \(0.813047\pi\)
\(798\) 11304.4 0.501470
\(799\) −20136.6 −0.891592
\(800\) 0 0
\(801\) 13988.2 0.617039
\(802\) −86671.9 −3.81607
\(803\) 1700.27 0.0747214
\(804\) 14392.9 0.631339
\(805\) 0 0
\(806\) −4162.47 −0.181907
\(807\) 5830.07 0.254310
\(808\) 40216.9 1.75102
\(809\) 18045.8 0.784246 0.392123 0.919913i \(-0.371741\pi\)
0.392123 + 0.919913i \(0.371741\pi\)
\(810\) 0 0
\(811\) 914.961 0.0396161 0.0198080 0.999804i \(-0.493694\pi\)
0.0198080 + 0.999804i \(0.493694\pi\)
\(812\) 35659.5 1.54114
\(813\) 2803.70 0.120947
\(814\) −11675.8 −0.502750
\(815\) 0 0
\(816\) 109602. 4.70201
\(817\) 27489.3 1.17715
\(818\) 84016.3 3.59115
\(819\) 379.979 0.0162119
\(820\) 0 0
\(821\) 15188.9 0.645672 0.322836 0.946455i \(-0.395364\pi\)
0.322836 + 0.946455i \(0.395364\pi\)
\(822\) −33488.5 −1.42098
\(823\) 37930.3 1.60652 0.803261 0.595628i \(-0.203097\pi\)
0.803261 + 0.595628i \(0.203097\pi\)
\(824\) 72610.7 3.06980
\(825\) 0 0
\(826\) −9519.22 −0.400988
\(827\) −29679.9 −1.24797 −0.623985 0.781437i \(-0.714487\pi\)
−0.623985 + 0.781437i \(0.714487\pi\)
\(828\) 5171.39 0.217051
\(829\) 29094.2 1.21892 0.609458 0.792818i \(-0.291387\pi\)
0.609458 + 0.792818i \(0.291387\pi\)
\(830\) 0 0
\(831\) −6962.70 −0.290654
\(832\) 11789.2 0.491245
\(833\) −33865.8 −1.40862
\(834\) 55252.4 2.29405
\(835\) 0 0
\(836\) 23778.6 0.983732
\(837\) 25118.2 1.03729
\(838\) −8443.41 −0.348058
\(839\) 38791.2 1.59621 0.798105 0.602519i \(-0.205836\pi\)
0.798105 + 0.602519i \(0.205836\pi\)
\(840\) 0 0
\(841\) 41593.3 1.70541
\(842\) 25789.2 1.05553
\(843\) −18155.3 −0.741758
\(844\) −68838.7 −2.80749
\(845\) 0 0
\(846\) 14502.4 0.589365
\(847\) −732.531 −0.0297167
\(848\) 80702.4 3.26808
\(849\) 25599.4 1.03483
\(850\) 0 0
\(851\) −3006.66 −0.121113
\(852\) 75075.1 3.01881
\(853\) 42933.7 1.72335 0.861677 0.507458i \(-0.169415\pi\)
0.861677 + 0.507458i \(0.169415\pi\)
\(854\) −5650.58 −0.226415
\(855\) 0 0
\(856\) −9951.76 −0.397365
\(857\) 2664.36 0.106199 0.0530997 0.998589i \(-0.483090\pi\)
0.0530997 + 0.998589i \(0.483090\pi\)
\(858\) −955.312 −0.0380115
\(859\) −25002.7 −0.993111 −0.496556 0.868005i \(-0.665402\pi\)
−0.496556 + 0.868005i \(0.665402\pi\)
\(860\) 0 0
\(861\) −5381.81 −0.213022
\(862\) −63834.8 −2.52230
\(863\) −27509.8 −1.08510 −0.542551 0.840023i \(-0.682541\pi\)
−0.542551 + 0.840023i \(0.682541\pi\)
\(864\) −130063. −5.12135
\(865\) 0 0
\(866\) −56753.1 −2.22696
\(867\) 26026.1 1.01948
\(868\) 23697.3 0.926658
\(869\) 9702.19 0.378739
\(870\) 0 0
\(871\) 772.688 0.0300592
\(872\) 34429.6 1.33708
\(873\) −15789.0 −0.612117
\(874\) 8259.51 0.319659
\(875\) 0 0
\(876\) −12623.7 −0.486888
\(877\) 25993.8 1.00085 0.500426 0.865779i \(-0.333177\pi\)
0.500426 + 0.865779i \(0.333177\pi\)
\(878\) −38480.7 −1.47911
\(879\) −22754.1 −0.873126
\(880\) 0 0
\(881\) −29528.7 −1.12922 −0.564612 0.825357i \(-0.690974\pi\)
−0.564612 + 0.825357i \(0.690974\pi\)
\(882\) 24390.2 0.931133
\(883\) 50497.5 1.92455 0.962274 0.272081i \(-0.0877119\pi\)
0.962274 + 0.272081i \(0.0877119\pi\)
\(884\) 11114.3 0.422867
\(885\) 0 0
\(886\) 16198.2 0.614208
\(887\) −36471.9 −1.38062 −0.690309 0.723515i \(-0.742525\pi\)
−0.690309 + 0.723515i \(0.742525\pi\)
\(888\) 56444.3 2.13305
\(889\) 3875.28 0.146201
\(890\) 0 0
\(891\) 1513.12 0.0568929
\(892\) −19596.6 −0.735586
\(893\) 17171.8 0.643484
\(894\) 21602.8 0.808173
\(895\) 0 0
\(896\) −47723.2 −1.77937
\(897\) −246.004 −0.00915700
\(898\) −6426.54 −0.238816
\(899\) 43848.2 1.62672
\(900\) 0 0
\(901\) 32047.7 1.18498
\(902\) −15269.9 −0.563673
\(903\) 6287.40 0.231707
\(904\) −44380.3 −1.63282
\(905\) 0 0
\(906\) 12351.6 0.452930
\(907\) −15130.2 −0.553902 −0.276951 0.960884i \(-0.589324\pi\)
−0.276951 + 0.960884i \(0.589324\pi\)
\(908\) −9034.81 −0.330210
\(909\) −6933.12 −0.252978
\(910\) 0 0
\(911\) 13937.0 0.506864 0.253432 0.967353i \(-0.418441\pi\)
0.253432 + 0.967353i \(0.418441\pi\)
\(912\) −93464.6 −3.39355
\(913\) 3053.81 0.110697
\(914\) −15269.9 −0.552608
\(915\) 0 0
\(916\) −11277.9 −0.406804
\(917\) −6363.04 −0.229145
\(918\) −90467.3 −3.25258
\(919\) −40897.5 −1.46799 −0.733996 0.679153i \(-0.762347\pi\)
−0.733996 + 0.679153i \(0.762347\pi\)
\(920\) 0 0
\(921\) −17387.7 −0.622091
\(922\) 62423.5 2.22973
\(923\) 4030.45 0.143731
\(924\) 5438.68 0.193636
\(925\) 0 0
\(926\) −88955.7 −3.15688
\(927\) −12517.6 −0.443508
\(928\) −227048. −8.03149
\(929\) −12154.1 −0.429239 −0.214620 0.976698i \(-0.568851\pi\)
−0.214620 + 0.976698i \(0.568851\pi\)
\(930\) 0 0
\(931\) 28879.5 1.01664
\(932\) 157870. 5.54852
\(933\) 10136.2 0.355675
\(934\) −37121.1 −1.30047
\(935\) 0 0
\(936\) −5211.95 −0.182006
\(937\) 15754.1 0.549267 0.274634 0.961549i \(-0.411443\pi\)
0.274634 + 0.961549i \(0.411443\pi\)
\(938\) −5933.67 −0.206547
\(939\) −28526.2 −0.991393
\(940\) 0 0
\(941\) −4217.53 −0.146108 −0.0730539 0.997328i \(-0.523275\pi\)
−0.0730539 + 0.997328i \(0.523275\pi\)
\(942\) 41892.7 1.44898
\(943\) −3932.18 −0.135789
\(944\) 78704.5 2.71357
\(945\) 0 0
\(946\) 17839.4 0.613116
\(947\) −49839.0 −1.71019 −0.855095 0.518471i \(-0.826502\pi\)
−0.855095 + 0.518471i \(0.826502\pi\)
\(948\) −72033.9 −2.46788
\(949\) −677.708 −0.0231816
\(950\) 0 0
\(951\) −16628.5 −0.566999
\(952\) −55573.3 −1.89196
\(953\) 12845.7 0.436635 0.218318 0.975878i \(-0.429943\pi\)
0.218318 + 0.975878i \(0.429943\pi\)
\(954\) −23080.7 −0.783298
\(955\) 0 0
\(956\) 69085.4 2.33722
\(957\) 10063.4 0.339921
\(958\) −64413.9 −2.17236
\(959\) 10235.3 0.344646
\(960\) 0 0
\(961\) −651.937 −0.0218837
\(962\) 4653.86 0.155973
\(963\) 1715.62 0.0574092
\(964\) 71245.7 2.38036
\(965\) 0 0
\(966\) 1889.13 0.0629210
\(967\) 38829.6 1.29129 0.645645 0.763638i \(-0.276589\pi\)
0.645645 + 0.763638i \(0.276589\pi\)
\(968\) 10047.7 0.333621
\(969\) −37115.6 −1.23047
\(970\) 0 0
\(971\) −11438.8 −0.378053 −0.189026 0.981972i \(-0.560533\pi\)
−0.189026 + 0.981972i \(0.560533\pi\)
\(972\) 79869.3 2.63561
\(973\) −16887.1 −0.556400
\(974\) 59056.4 1.94280
\(975\) 0 0
\(976\) 46718.7 1.53220
\(977\) 12084.1 0.395706 0.197853 0.980232i \(-0.436603\pi\)
0.197853 + 0.980232i \(0.436603\pi\)
\(978\) −22848.8 −0.747058
\(979\) 10748.6 0.350896
\(980\) 0 0
\(981\) −5935.44 −0.193174
\(982\) −99818.8 −3.24373
\(983\) 23502.2 0.762569 0.381284 0.924458i \(-0.375482\pi\)
0.381284 + 0.924458i \(0.375482\pi\)
\(984\) 73819.1 2.39153
\(985\) 0 0
\(986\) −157926. −5.10081
\(987\) 3927.55 0.126662
\(988\) −9477.87 −0.305194
\(989\) 4593.84 0.147700
\(990\) 0 0
\(991\) −18664.1 −0.598268 −0.299134 0.954211i \(-0.596698\pi\)
−0.299134 + 0.954211i \(0.596698\pi\)
\(992\) −150884. −4.82919
\(993\) 9193.47 0.293803
\(994\) −30950.9 −0.987627
\(995\) 0 0
\(996\) −22673.0 −0.721308
\(997\) −24528.4 −0.779158 −0.389579 0.920993i \(-0.627380\pi\)
−0.389579 + 0.920993i \(0.627380\pi\)
\(998\) −57893.7 −1.83626
\(999\) −28083.4 −0.889410
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.4.a.c.1.2 2
3.2 odd 2 2475.4.a.l.1.1 2
5.2 odd 4 275.4.b.b.199.4 4
5.3 odd 4 275.4.b.b.199.1 4
5.4 even 2 55.4.a.b.1.1 2
15.14 odd 2 495.4.a.e.1.2 2
20.19 odd 2 880.4.a.r.1.2 2
55.54 odd 2 605.4.a.g.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.4.a.b.1.1 2 5.4 even 2
275.4.a.c.1.2 2 1.1 even 1 trivial
275.4.b.b.199.1 4 5.3 odd 4
275.4.b.b.199.4 4 5.2 odd 4
495.4.a.e.1.2 2 15.14 odd 2
605.4.a.g.1.2 2 55.54 odd 2
880.4.a.r.1.2 2 20.19 odd 2
2475.4.a.l.1.1 2 3.2 odd 2