Properties

Label 275.4.a.b.1.2
Level $275$
Weight $4$
Character 275.1
Self dual yes
Analytic conductor $16.226$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,4,Mod(1,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.2255252516\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.732051 q^{2} -5.92820 q^{3} -7.46410 q^{4} -4.33975 q^{6} -16.9282 q^{7} -11.3205 q^{8} +8.14359 q^{9} +O(q^{10})\) \(q+0.732051 q^{2} -5.92820 q^{3} -7.46410 q^{4} -4.33975 q^{6} -16.9282 q^{7} -11.3205 q^{8} +8.14359 q^{9} -11.0000 q^{11} +44.2487 q^{12} -74.6410 q^{13} -12.3923 q^{14} +51.4256 q^{16} +82.7846 q^{17} +5.96152 q^{18} -67.9230 q^{19} +100.354 q^{21} -8.05256 q^{22} -13.3538 q^{23} +67.1103 q^{24} -54.6410 q^{26} +111.785 q^{27} +126.354 q^{28} +168.995 q^{29} -65.4974 q^{31} +128.210 q^{32} +65.2102 q^{33} +60.6025 q^{34} -60.7846 q^{36} -40.8564 q^{37} -49.7231 q^{38} +442.487 q^{39} +274.928 q^{41} +73.4641 q^{42} +2.28719 q^{43} +82.1051 q^{44} -9.77568 q^{46} -71.8461 q^{47} -304.862 q^{48} -56.4359 q^{49} -490.764 q^{51} +557.128 q^{52} +149.005 q^{53} +81.8320 q^{54} +191.636 q^{56} +402.662 q^{57} +123.713 q^{58} +545.631 q^{59} +101.303 q^{61} -47.9474 q^{62} -137.856 q^{63} -317.549 q^{64} +47.7372 q^{66} -411.641 q^{67} -617.913 q^{68} +79.1642 q^{69} -470.636 q^{71} -92.1896 q^{72} -610.600 q^{73} -29.9090 q^{74} +506.985 q^{76} +186.210 q^{77} +323.923 q^{78} -978.225 q^{79} -882.559 q^{81} +201.261 q^{82} -26.1539 q^{83} -749.051 q^{84} +1.67434 q^{86} -1001.84 q^{87} +124.526 q^{88} -352.887 q^{89} +1263.54 q^{91} +99.6743 q^{92} +388.282 q^{93} -52.5950 q^{94} -760.056 q^{96} -847.585 q^{97} -41.3140 q^{98} -89.5795 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{3} - 8 q^{4} - 26 q^{6} - 20 q^{7} + 12 q^{8} + 44 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} + 2 q^{3} - 8 q^{4} - 26 q^{6} - 20 q^{7} + 12 q^{8} + 44 q^{9} - 22 q^{11} + 40 q^{12} - 80 q^{13} - 4 q^{14} - 8 q^{16} + 124 q^{17} - 92 q^{18} + 72 q^{19} + 76 q^{21} + 22 q^{22} + 98 q^{23} + 252 q^{24} - 40 q^{26} + 182 q^{27} + 128 q^{28} + 144 q^{29} - 34 q^{31} + 104 q^{32} - 22 q^{33} - 52 q^{34} - 80 q^{36} - 54 q^{37} - 432 q^{38} + 400 q^{39} + 536 q^{41} + 140 q^{42} + 60 q^{43} + 88 q^{44} - 314 q^{46} + 272 q^{47} - 776 q^{48} - 390 q^{49} - 164 q^{51} + 560 q^{52} + 492 q^{53} - 110 q^{54} + 120 q^{56} + 1512 q^{57} + 192 q^{58} + 634 q^{59} + 840 q^{61} - 134 q^{62} - 248 q^{63} + 224 q^{64} + 286 q^{66} - 754 q^{67} - 640 q^{68} + 962 q^{69} - 678 q^{71} + 744 q^{72} + 400 q^{73} + 6 q^{74} + 432 q^{76} + 220 q^{77} + 440 q^{78} + 316 q^{79} - 1294 q^{81} - 512 q^{82} - 468 q^{83} - 736 q^{84} - 156 q^{86} - 1200 q^{87} - 132 q^{88} - 1842 q^{89} + 1280 q^{91} + 40 q^{92} + 638 q^{93} - 992 q^{94} - 952 q^{96} - 2194 q^{97} + 870 q^{98} - 484 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.732051 0.258819 0.129410 0.991591i \(-0.458692\pi\)
0.129410 + 0.991591i \(0.458692\pi\)
\(3\) −5.92820 −1.14088 −0.570442 0.821338i \(-0.693228\pi\)
−0.570442 + 0.821338i \(0.693228\pi\)
\(4\) −7.46410 −0.933013
\(5\) 0 0
\(6\) −4.33975 −0.295282
\(7\) −16.9282 −0.914037 −0.457019 0.889457i \(-0.651083\pi\)
−0.457019 + 0.889457i \(0.651083\pi\)
\(8\) −11.3205 −0.500301
\(9\) 8.14359 0.301615
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) 44.2487 1.06446
\(13\) −74.6410 −1.59244 −0.796219 0.605009i \(-0.793170\pi\)
−0.796219 + 0.605009i \(0.793170\pi\)
\(14\) −12.3923 −0.236570
\(15\) 0 0
\(16\) 51.4256 0.803525
\(17\) 82.7846 1.18107 0.590536 0.807011i \(-0.298916\pi\)
0.590536 + 0.807011i \(0.298916\pi\)
\(18\) 5.96152 0.0780636
\(19\) −67.9230 −0.820138 −0.410069 0.912055i \(-0.634495\pi\)
−0.410069 + 0.912055i \(0.634495\pi\)
\(20\) 0 0
\(21\) 100.354 1.04281
\(22\) −8.05256 −0.0780369
\(23\) −13.3538 −0.121064 −0.0605319 0.998166i \(-0.519280\pi\)
−0.0605319 + 0.998166i \(0.519280\pi\)
\(24\) 67.1103 0.570784
\(25\) 0 0
\(26\) −54.6410 −0.412153
\(27\) 111.785 0.796776
\(28\) 126.354 0.852808
\(29\) 168.995 1.08212 0.541061 0.840983i \(-0.318023\pi\)
0.541061 + 0.840983i \(0.318023\pi\)
\(30\) 0 0
\(31\) −65.4974 −0.379474 −0.189737 0.981835i \(-0.560763\pi\)
−0.189737 + 0.981835i \(0.560763\pi\)
\(32\) 128.210 0.708268
\(33\) 65.2102 0.343989
\(34\) 60.6025 0.305684
\(35\) 0 0
\(36\) −60.7846 −0.281410
\(37\) −40.8564 −0.181534 −0.0907669 0.995872i \(-0.528932\pi\)
−0.0907669 + 0.995872i \(0.528932\pi\)
\(38\) −49.7231 −0.212267
\(39\) 442.487 1.81679
\(40\) 0 0
\(41\) 274.928 1.04723 0.523617 0.851954i \(-0.324582\pi\)
0.523617 + 0.851954i \(0.324582\pi\)
\(42\) 73.4641 0.269899
\(43\) 2.28719 0.00811146 0.00405573 0.999992i \(-0.498709\pi\)
0.00405573 + 0.999992i \(0.498709\pi\)
\(44\) 82.1051 0.281314
\(45\) 0 0
\(46\) −9.77568 −0.0313336
\(47\) −71.8461 −0.222975 −0.111488 0.993766i \(-0.535562\pi\)
−0.111488 + 0.993766i \(0.535562\pi\)
\(48\) −304.862 −0.916729
\(49\) −56.4359 −0.164536
\(50\) 0 0
\(51\) −490.764 −1.34746
\(52\) 557.128 1.48576
\(53\) 149.005 0.386178 0.193089 0.981181i \(-0.438149\pi\)
0.193089 + 0.981181i \(0.438149\pi\)
\(54\) 81.8320 0.206221
\(55\) 0 0
\(56\) 191.636 0.457293
\(57\) 402.662 0.935681
\(58\) 123.713 0.280074
\(59\) 545.631 1.20398 0.601992 0.798502i \(-0.294374\pi\)
0.601992 + 0.798502i \(0.294374\pi\)
\(60\) 0 0
\(61\) 101.303 0.212631 0.106315 0.994332i \(-0.466095\pi\)
0.106315 + 0.994332i \(0.466095\pi\)
\(62\) −47.9474 −0.0982150
\(63\) −137.856 −0.275687
\(64\) −317.549 −0.620212
\(65\) 0 0
\(66\) 47.7372 0.0890310
\(67\) −411.641 −0.750596 −0.375298 0.926904i \(-0.622460\pi\)
−0.375298 + 0.926904i \(0.622460\pi\)
\(68\) −617.913 −1.10195
\(69\) 79.1642 0.138120
\(70\) 0 0
\(71\) −470.636 −0.786679 −0.393339 0.919393i \(-0.628680\pi\)
−0.393339 + 0.919393i \(0.628680\pi\)
\(72\) −92.1896 −0.150898
\(73\) −610.600 −0.978977 −0.489488 0.872010i \(-0.662816\pi\)
−0.489488 + 0.872010i \(0.662816\pi\)
\(74\) −29.9090 −0.0469844
\(75\) 0 0
\(76\) 506.985 0.765199
\(77\) 186.210 0.275593
\(78\) 323.923 0.470219
\(79\) −978.225 −1.39315 −0.696576 0.717483i \(-0.745294\pi\)
−0.696576 + 0.717483i \(0.745294\pi\)
\(80\) 0 0
\(81\) −882.559 −1.21064
\(82\) 201.261 0.271044
\(83\) −26.1539 −0.0345875 −0.0172938 0.999850i \(-0.505505\pi\)
−0.0172938 + 0.999850i \(0.505505\pi\)
\(84\) −749.051 −0.972955
\(85\) 0 0
\(86\) 1.67434 0.00209940
\(87\) −1001.84 −1.23458
\(88\) 124.526 0.150846
\(89\) −352.887 −0.420292 −0.210146 0.977670i \(-0.567394\pi\)
−0.210146 + 0.977670i \(0.567394\pi\)
\(90\) 0 0
\(91\) 1263.54 1.45555
\(92\) 99.6743 0.112954
\(93\) 388.282 0.432935
\(94\) −52.5950 −0.0577102
\(95\) 0 0
\(96\) −760.056 −0.808051
\(97\) −847.585 −0.887208 −0.443604 0.896223i \(-0.646300\pi\)
−0.443604 + 0.896223i \(0.646300\pi\)
\(98\) −41.3140 −0.0425851
\(99\) −89.5795 −0.0909402
\(100\) 0 0
\(101\) 1293.46 1.27430 0.637150 0.770740i \(-0.280113\pi\)
0.637150 + 0.770740i \(0.280113\pi\)
\(102\) −359.264 −0.348750
\(103\) 1725.24 1.65042 0.825209 0.564828i \(-0.191057\pi\)
0.825209 + 0.564828i \(0.191057\pi\)
\(104\) 844.974 0.796697
\(105\) 0 0
\(106\) 109.079 0.0999502
\(107\) 484.179 0.437452 0.218726 0.975786i \(-0.429810\pi\)
0.218726 + 0.975786i \(0.429810\pi\)
\(108\) −834.372 −0.743402
\(109\) −64.2563 −0.0564645 −0.0282323 0.999601i \(-0.508988\pi\)
−0.0282323 + 0.999601i \(0.508988\pi\)
\(110\) 0 0
\(111\) 242.205 0.207109
\(112\) −870.543 −0.734452
\(113\) 2005.08 1.66922 0.834612 0.550839i \(-0.185692\pi\)
0.834612 + 0.550839i \(0.185692\pi\)
\(114\) 294.769 0.242172
\(115\) 0 0
\(116\) −1261.39 −1.00963
\(117\) −607.846 −0.480302
\(118\) 399.429 0.311614
\(119\) −1401.39 −1.07954
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 74.1587 0.0550329
\(123\) −1629.83 −1.19477
\(124\) 488.879 0.354054
\(125\) 0 0
\(126\) −100.918 −0.0713530
\(127\) −109.605 −0.0765816 −0.0382908 0.999267i \(-0.512191\pi\)
−0.0382908 + 0.999267i \(0.512191\pi\)
\(128\) −1258.14 −0.868791
\(129\) −13.5589 −0.00925423
\(130\) 0 0
\(131\) 1156.71 0.771469 0.385734 0.922610i \(-0.373948\pi\)
0.385734 + 0.922610i \(0.373948\pi\)
\(132\) −486.736 −0.320946
\(133\) 1149.82 0.749636
\(134\) −301.342 −0.194269
\(135\) 0 0
\(136\) −937.164 −0.590891
\(137\) −198.323 −0.123678 −0.0618391 0.998086i \(-0.519697\pi\)
−0.0618391 + 0.998086i \(0.519697\pi\)
\(138\) 57.9522 0.0357480
\(139\) −2900.14 −1.76969 −0.884844 0.465888i \(-0.845735\pi\)
−0.884844 + 0.465888i \(0.845735\pi\)
\(140\) 0 0
\(141\) 425.918 0.254389
\(142\) −344.529 −0.203607
\(143\) 821.051 0.480138
\(144\) 418.789 0.242355
\(145\) 0 0
\(146\) −446.990 −0.253378
\(147\) 334.564 0.187717
\(148\) 304.956 0.169373
\(149\) 3488.34 1.91796 0.958980 0.283472i \(-0.0914864\pi\)
0.958980 + 0.283472i \(0.0914864\pi\)
\(150\) 0 0
\(151\) −1163.32 −0.626953 −0.313477 0.949596i \(-0.601494\pi\)
−0.313477 + 0.949596i \(0.601494\pi\)
\(152\) 768.923 0.410315
\(153\) 674.164 0.356228
\(154\) 136.315 0.0713286
\(155\) 0 0
\(156\) −3302.77 −1.69508
\(157\) −342.057 −0.173880 −0.0869398 0.996214i \(-0.527709\pi\)
−0.0869398 + 0.996214i \(0.527709\pi\)
\(158\) −716.111 −0.360574
\(159\) −883.333 −0.440584
\(160\) 0 0
\(161\) 226.056 0.110657
\(162\) −646.078 −0.313338
\(163\) 1394.89 0.670285 0.335142 0.942167i \(-0.391216\pi\)
0.335142 + 0.942167i \(0.391216\pi\)
\(164\) −2052.09 −0.977082
\(165\) 0 0
\(166\) −19.1460 −0.00895191
\(167\) −478.703 −0.221815 −0.110908 0.993831i \(-0.535376\pi\)
−0.110908 + 0.993831i \(0.535376\pi\)
\(168\) −1136.06 −0.521718
\(169\) 3374.28 1.53586
\(170\) 0 0
\(171\) −553.138 −0.247365
\(172\) −17.0718 −0.00756809
\(173\) −1808.58 −0.794822 −0.397411 0.917641i \(-0.630091\pi\)
−0.397411 + 0.917641i \(0.630091\pi\)
\(174\) −733.395 −0.319532
\(175\) 0 0
\(176\) −565.682 −0.242272
\(177\) −3234.61 −1.37361
\(178\) −258.331 −0.108780
\(179\) −4429.85 −1.84973 −0.924867 0.380292i \(-0.875824\pi\)
−0.924867 + 0.380292i \(0.875824\pi\)
\(180\) 0 0
\(181\) 3409.17 1.40001 0.700005 0.714138i \(-0.253181\pi\)
0.700005 + 0.714138i \(0.253181\pi\)
\(182\) 924.974 0.376723
\(183\) −600.543 −0.242587
\(184\) 151.172 0.0605682
\(185\) 0 0
\(186\) 284.242 0.112052
\(187\) −910.631 −0.356106
\(188\) 536.267 0.208039
\(189\) −1892.31 −0.728283
\(190\) 0 0
\(191\) 2923.75 1.10762 0.553810 0.832643i \(-0.313173\pi\)
0.553810 + 0.832643i \(0.313173\pi\)
\(192\) 1882.49 0.707590
\(193\) 2484.18 0.926505 0.463253 0.886226i \(-0.346682\pi\)
0.463253 + 0.886226i \(0.346682\pi\)
\(194\) −620.475 −0.229626
\(195\) 0 0
\(196\) 421.244 0.153514
\(197\) 5125.67 1.85375 0.926876 0.375369i \(-0.122484\pi\)
0.926876 + 0.375369i \(0.122484\pi\)
\(198\) −65.5768 −0.0235371
\(199\) −7.69219 −0.00274013 −0.00137006 0.999999i \(-0.500436\pi\)
−0.00137006 + 0.999999i \(0.500436\pi\)
\(200\) 0 0
\(201\) 2440.29 0.856343
\(202\) 946.879 0.329813
\(203\) −2860.78 −0.989100
\(204\) 3663.11 1.25720
\(205\) 0 0
\(206\) 1262.96 0.427160
\(207\) −108.748 −0.0365146
\(208\) −3838.46 −1.27956
\(209\) 747.154 0.247281
\(210\) 0 0
\(211\) 3107.34 1.01383 0.506915 0.861996i \(-0.330786\pi\)
0.506915 + 0.861996i \(0.330786\pi\)
\(212\) −1112.19 −0.360309
\(213\) 2790.03 0.897509
\(214\) 354.444 0.113221
\(215\) 0 0
\(216\) −1265.46 −0.398628
\(217\) 1108.75 0.346853
\(218\) −47.0388 −0.0146141
\(219\) 3619.76 1.11690
\(220\) 0 0
\(221\) −6179.13 −1.88078
\(222\) 177.306 0.0536037
\(223\) 12.3185 0.00369913 0.00184957 0.999998i \(-0.499411\pi\)
0.00184957 + 0.999998i \(0.499411\pi\)
\(224\) −2170.37 −0.647383
\(225\) 0 0
\(226\) 1467.82 0.432027
\(227\) −4615.90 −1.34964 −0.674820 0.737983i \(-0.735779\pi\)
−0.674820 + 0.737983i \(0.735779\pi\)
\(228\) −3005.51 −0.873003
\(229\) 5074.63 1.46437 0.732186 0.681105i \(-0.238500\pi\)
0.732186 + 0.681105i \(0.238500\pi\)
\(230\) 0 0
\(231\) −1103.89 −0.314419
\(232\) −1913.11 −0.541386
\(233\) −211.683 −0.0595184 −0.0297592 0.999557i \(-0.509474\pi\)
−0.0297592 + 0.999557i \(0.509474\pi\)
\(234\) −444.974 −0.124311
\(235\) 0 0
\(236\) −4072.64 −1.12333
\(237\) 5799.12 1.58942
\(238\) −1025.89 −0.279406
\(239\) 4312.49 1.16716 0.583581 0.812055i \(-0.301651\pi\)
0.583581 + 0.812055i \(0.301651\pi\)
\(240\) 0 0
\(241\) −996.584 −0.266372 −0.133186 0.991091i \(-0.542521\pi\)
−0.133186 + 0.991091i \(0.542521\pi\)
\(242\) 88.5781 0.0235290
\(243\) 2213.80 0.584426
\(244\) −756.133 −0.198387
\(245\) 0 0
\(246\) −1193.12 −0.309230
\(247\) 5069.85 1.30602
\(248\) 741.464 0.189851
\(249\) 155.046 0.0394603
\(250\) 0 0
\(251\) −276.892 −0.0696306 −0.0348153 0.999394i \(-0.511084\pi\)
−0.0348153 + 0.999394i \(0.511084\pi\)
\(252\) 1028.97 0.257219
\(253\) 146.892 0.0365021
\(254\) −80.2364 −0.0198208
\(255\) 0 0
\(256\) 1619.36 0.395352
\(257\) 3235.18 0.785233 0.392617 0.919702i \(-0.371570\pi\)
0.392617 + 0.919702i \(0.371570\pi\)
\(258\) −9.92581 −0.00239517
\(259\) 691.626 0.165929
\(260\) 0 0
\(261\) 1376.23 0.326384
\(262\) 846.772 0.199671
\(263\) −207.944 −0.0487544 −0.0243772 0.999703i \(-0.507760\pi\)
−0.0243772 + 0.999703i \(0.507760\pi\)
\(264\) −738.213 −0.172098
\(265\) 0 0
\(266\) 841.723 0.194020
\(267\) 2091.99 0.479504
\(268\) 3072.53 0.700316
\(269\) 5033.04 1.14078 0.570390 0.821374i \(-0.306792\pi\)
0.570390 + 0.821374i \(0.306792\pi\)
\(270\) 0 0
\(271\) 1487.01 0.333319 0.166660 0.986015i \(-0.446702\pi\)
0.166660 + 0.986015i \(0.446702\pi\)
\(272\) 4257.25 0.949021
\(273\) −7490.51 −1.66061
\(274\) −145.183 −0.0320102
\(275\) 0 0
\(276\) −590.890 −0.128867
\(277\) 235.836 0.0511552 0.0255776 0.999673i \(-0.491858\pi\)
0.0255776 + 0.999673i \(0.491858\pi\)
\(278\) −2123.05 −0.458029
\(279\) −533.384 −0.114455
\(280\) 0 0
\(281\) −4915.01 −1.04343 −0.521717 0.853118i \(-0.674708\pi\)
−0.521717 + 0.853118i \(0.674708\pi\)
\(282\) 311.794 0.0658406
\(283\) 5199.56 1.09216 0.546081 0.837733i \(-0.316119\pi\)
0.546081 + 0.837733i \(0.316119\pi\)
\(284\) 3512.87 0.733981
\(285\) 0 0
\(286\) 601.051 0.124269
\(287\) −4654.04 −0.957210
\(288\) 1044.09 0.213624
\(289\) 1940.29 0.394930
\(290\) 0 0
\(291\) 5024.65 1.01220
\(292\) 4557.58 0.913398
\(293\) 8880.92 1.77075 0.885373 0.464881i \(-0.153903\pi\)
0.885373 + 0.464881i \(0.153903\pi\)
\(294\) 244.918 0.0485846
\(295\) 0 0
\(296\) 462.515 0.0908215
\(297\) −1229.63 −0.240237
\(298\) 2553.64 0.496405
\(299\) 996.743 0.192786
\(300\) 0 0
\(301\) −38.7180 −0.00741417
\(302\) −851.612 −0.162267
\(303\) −7667.90 −1.45383
\(304\) −3492.99 −0.659001
\(305\) 0 0
\(306\) 493.522 0.0921987
\(307\) 1497.93 0.278474 0.139237 0.990259i \(-0.455535\pi\)
0.139237 + 0.990259i \(0.455535\pi\)
\(308\) −1389.89 −0.257131
\(309\) −10227.6 −1.88293
\(310\) 0 0
\(311\) −7484.71 −1.36469 −0.682345 0.731030i \(-0.739040\pi\)
−0.682345 + 0.731030i \(0.739040\pi\)
\(312\) −5009.18 −0.908939
\(313\) 658.363 0.118891 0.0594455 0.998232i \(-0.481067\pi\)
0.0594455 + 0.998232i \(0.481067\pi\)
\(314\) −250.403 −0.0450034
\(315\) 0 0
\(316\) 7301.57 1.29983
\(317\) −233.708 −0.0414080 −0.0207040 0.999786i \(-0.506591\pi\)
−0.0207040 + 0.999786i \(0.506591\pi\)
\(318\) −646.645 −0.114032
\(319\) −1858.94 −0.326272
\(320\) 0 0
\(321\) −2870.31 −0.499082
\(322\) 165.485 0.0286401
\(323\) −5622.98 −0.968641
\(324\) 6587.51 1.12955
\(325\) 0 0
\(326\) 1021.13 0.173482
\(327\) 380.924 0.0644194
\(328\) −3112.33 −0.523931
\(329\) 1216.23 0.203808
\(330\) 0 0
\(331\) 8532.95 1.41696 0.708480 0.705731i \(-0.249381\pi\)
0.708480 + 0.705731i \(0.249381\pi\)
\(332\) 195.215 0.0322706
\(333\) −332.718 −0.0547533
\(334\) −350.435 −0.0574100
\(335\) 0 0
\(336\) 5160.76 0.837924
\(337\) −11691.2 −1.88979 −0.944895 0.327373i \(-0.893837\pi\)
−0.944895 + 0.327373i \(0.893837\pi\)
\(338\) 2470.15 0.397509
\(339\) −11886.5 −1.90439
\(340\) 0 0
\(341\) 720.472 0.114416
\(342\) −404.925 −0.0640229
\(343\) 6761.73 1.06443
\(344\) −25.8921 −0.00405817
\(345\) 0 0
\(346\) −1323.98 −0.205715
\(347\) −4598.79 −0.711459 −0.355729 0.934589i \(-0.615768\pi\)
−0.355729 + 0.934589i \(0.615768\pi\)
\(348\) 7477.80 1.15187
\(349\) 6720.27 1.03074 0.515369 0.856968i \(-0.327655\pi\)
0.515369 + 0.856968i \(0.327655\pi\)
\(350\) 0 0
\(351\) −8343.72 −1.26882
\(352\) −1410.31 −0.213551
\(353\) −5738.70 −0.865270 −0.432635 0.901569i \(-0.642416\pi\)
−0.432635 + 0.901569i \(0.642416\pi\)
\(354\) −2367.90 −0.355515
\(355\) 0 0
\(356\) 2633.99 0.392138
\(357\) 8307.75 1.23163
\(358\) −3242.87 −0.478746
\(359\) −4115.27 −0.605001 −0.302501 0.953149i \(-0.597821\pi\)
−0.302501 + 0.953149i \(0.597821\pi\)
\(360\) 0 0
\(361\) −2245.46 −0.327374
\(362\) 2495.69 0.362349
\(363\) −717.313 −0.103717
\(364\) −9431.18 −1.35804
\(365\) 0 0
\(366\) −439.628 −0.0627861
\(367\) −9662.99 −1.37440 −0.687199 0.726469i \(-0.741160\pi\)
−0.687199 + 0.726469i \(0.741160\pi\)
\(368\) −686.729 −0.0972778
\(369\) 2238.90 0.315861
\(370\) 0 0
\(371\) −2522.39 −0.352981
\(372\) −2898.18 −0.403934
\(373\) 141.780 0.0196812 0.00984062 0.999952i \(-0.496868\pi\)
0.00984062 + 0.999952i \(0.496868\pi\)
\(374\) −666.628 −0.0921671
\(375\) 0 0
\(376\) 813.334 0.111555
\(377\) −12613.9 −1.72321
\(378\) −1385.27 −0.188494
\(379\) −2819.73 −0.382163 −0.191082 0.981574i \(-0.561200\pi\)
−0.191082 + 0.981574i \(0.561200\pi\)
\(380\) 0 0
\(381\) 649.760 0.0873707
\(382\) 2140.34 0.286673
\(383\) 6337.84 0.845557 0.422778 0.906233i \(-0.361055\pi\)
0.422778 + 0.906233i \(0.361055\pi\)
\(384\) 7458.53 0.991189
\(385\) 0 0
\(386\) 1818.55 0.239797
\(387\) 18.6259 0.00244653
\(388\) 6326.46 0.827776
\(389\) −8805.25 −1.14767 −0.573836 0.818970i \(-0.694545\pi\)
−0.573836 + 0.818970i \(0.694545\pi\)
\(390\) 0 0
\(391\) −1105.49 −0.142985
\(392\) 638.883 0.0823176
\(393\) −6857.23 −0.880156
\(394\) 3752.25 0.479786
\(395\) 0 0
\(396\) 668.631 0.0848484
\(397\) −4315.26 −0.545534 −0.272767 0.962080i \(-0.587939\pi\)
−0.272767 + 0.962080i \(0.587939\pi\)
\(398\) −5.63108 −0.000709197 0
\(399\) −6816.34 −0.855247
\(400\) 0 0
\(401\) 361.681 0.0450411 0.0225206 0.999746i \(-0.492831\pi\)
0.0225206 + 0.999746i \(0.492831\pi\)
\(402\) 1786.42 0.221638
\(403\) 4888.79 0.604288
\(404\) −9654.53 −1.18894
\(405\) 0 0
\(406\) −2094.24 −0.255998
\(407\) 449.420 0.0547345
\(408\) 5555.70 0.674137
\(409\) 9220.50 1.11473 0.557365 0.830268i \(-0.311812\pi\)
0.557365 + 0.830268i \(0.311812\pi\)
\(410\) 0 0
\(411\) 1175.70 0.141102
\(412\) −12877.4 −1.53986
\(413\) −9236.55 −1.10049
\(414\) −79.6092 −0.00945067
\(415\) 0 0
\(416\) −9569.74 −1.12787
\(417\) 17192.6 2.01901
\(418\) 546.954 0.0640010
\(419\) −14912.9 −1.73876 −0.869380 0.494144i \(-0.835481\pi\)
−0.869380 + 0.494144i \(0.835481\pi\)
\(420\) 0 0
\(421\) −13486.0 −1.56121 −0.780603 0.625027i \(-0.785088\pi\)
−0.780603 + 0.625027i \(0.785088\pi\)
\(422\) 2274.73 0.262399
\(423\) −585.085 −0.0672525
\(424\) −1686.81 −0.193205
\(425\) 0 0
\(426\) 2042.44 0.232292
\(427\) −1714.87 −0.194352
\(428\) −3613.96 −0.408148
\(429\) −4867.36 −0.547782
\(430\) 0 0
\(431\) 406.334 0.0454116 0.0227058 0.999742i \(-0.492772\pi\)
0.0227058 + 0.999742i \(0.492772\pi\)
\(432\) 5748.59 0.640230
\(433\) 1766.69 0.196078 0.0980391 0.995183i \(-0.468743\pi\)
0.0980391 + 0.995183i \(0.468743\pi\)
\(434\) 811.664 0.0897722
\(435\) 0 0
\(436\) 479.615 0.0526821
\(437\) 907.033 0.0992889
\(438\) 2649.85 0.289075
\(439\) 7824.19 0.850634 0.425317 0.905044i \(-0.360163\pi\)
0.425317 + 0.905044i \(0.360163\pi\)
\(440\) 0 0
\(441\) −459.591 −0.0496265
\(442\) −4523.44 −0.486783
\(443\) −11667.9 −1.25137 −0.625686 0.780075i \(-0.715181\pi\)
−0.625686 + 0.780075i \(0.715181\pi\)
\(444\) −1807.84 −0.193235
\(445\) 0 0
\(446\) 9.01776 0.000957406 0
\(447\) −20679.6 −2.18817
\(448\) 5375.53 0.566897
\(449\) 16975.3 1.78421 0.892107 0.451825i \(-0.149227\pi\)
0.892107 + 0.451825i \(0.149227\pi\)
\(450\) 0 0
\(451\) −3024.21 −0.315753
\(452\) −14966.1 −1.55741
\(453\) 6896.42 0.715280
\(454\) −3379.07 −0.349312
\(455\) 0 0
\(456\) −4558.33 −0.468122
\(457\) 16192.9 1.65748 0.828741 0.559632i \(-0.189057\pi\)
0.828741 + 0.559632i \(0.189057\pi\)
\(458\) 3714.89 0.379007
\(459\) 9254.05 0.941050
\(460\) 0 0
\(461\) 8586.04 0.867444 0.433722 0.901047i \(-0.357200\pi\)
0.433722 + 0.901047i \(0.357200\pi\)
\(462\) −808.105 −0.0813776
\(463\) 7917.20 0.794694 0.397347 0.917668i \(-0.369931\pi\)
0.397347 + 0.917668i \(0.369931\pi\)
\(464\) 8690.67 0.869513
\(465\) 0 0
\(466\) −154.962 −0.0154045
\(467\) 15155.0 1.50169 0.750844 0.660480i \(-0.229647\pi\)
0.750844 + 0.660480i \(0.229647\pi\)
\(468\) 4537.03 0.448128
\(469\) 6968.34 0.686073
\(470\) 0 0
\(471\) 2027.78 0.198376
\(472\) −6176.82 −0.602354
\(473\) −25.1591 −0.00244570
\(474\) 4245.25 0.411373
\(475\) 0 0
\(476\) 10460.2 1.00723
\(477\) 1213.44 0.116477
\(478\) 3156.96 0.302084
\(479\) 10001.1 0.953993 0.476996 0.878905i \(-0.341725\pi\)
0.476996 + 0.878905i \(0.341725\pi\)
\(480\) 0 0
\(481\) 3049.56 0.289081
\(482\) −729.550 −0.0689421
\(483\) −1340.11 −0.126246
\(484\) −903.156 −0.0848193
\(485\) 0 0
\(486\) 1620.62 0.151261
\(487\) −7044.54 −0.655480 −0.327740 0.944768i \(-0.606287\pi\)
−0.327740 + 0.944768i \(0.606287\pi\)
\(488\) −1146.80 −0.106379
\(489\) −8269.21 −0.764717
\(490\) 0 0
\(491\) −13326.4 −1.22487 −0.612437 0.790520i \(-0.709811\pi\)
−0.612437 + 0.790520i \(0.709811\pi\)
\(492\) 12165.2 1.11474
\(493\) 13990.2 1.27806
\(494\) 3711.38 0.338022
\(495\) 0 0
\(496\) −3368.25 −0.304917
\(497\) 7967.02 0.719054
\(498\) 113.501 0.0102131
\(499\) −20069.1 −1.80044 −0.900218 0.435440i \(-0.856593\pi\)
−0.900218 + 0.435440i \(0.856593\pi\)
\(500\) 0 0
\(501\) 2837.85 0.253065
\(502\) −202.699 −0.0180217
\(503\) −7782.35 −0.689856 −0.344928 0.938629i \(-0.612097\pi\)
−0.344928 + 0.938629i \(0.612097\pi\)
\(504\) 1560.60 0.137926
\(505\) 0 0
\(506\) 107.532 0.00944744
\(507\) −20003.4 −1.75224
\(508\) 818.102 0.0714516
\(509\) −1475.93 −0.128526 −0.0642628 0.997933i \(-0.520470\pi\)
−0.0642628 + 0.997933i \(0.520470\pi\)
\(510\) 0 0
\(511\) 10336.4 0.894821
\(512\) 11250.6 0.971116
\(513\) −7592.75 −0.653466
\(514\) 2368.32 0.203233
\(515\) 0 0
\(516\) 101.205 0.00863431
\(517\) 790.307 0.0672295
\(518\) 506.305 0.0429455
\(519\) 10721.7 0.906799
\(520\) 0 0
\(521\) 7609.43 0.639875 0.319938 0.947439i \(-0.396338\pi\)
0.319938 + 0.947439i \(0.396338\pi\)
\(522\) 1007.47 0.0844744
\(523\) −12452.9 −1.04116 −0.520581 0.853812i \(-0.674285\pi\)
−0.520581 + 0.853812i \(0.674285\pi\)
\(524\) −8633.82 −0.719790
\(525\) 0 0
\(526\) −152.226 −0.0126186
\(527\) −5422.18 −0.448186
\(528\) 3353.48 0.276404
\(529\) −11988.7 −0.985344
\(530\) 0 0
\(531\) 4443.39 0.363139
\(532\) −8582.34 −0.699420
\(533\) −20520.9 −1.66765
\(534\) 1531.44 0.124105
\(535\) 0 0
\(536\) 4659.99 0.375524
\(537\) 26261.0 2.11033
\(538\) 3684.44 0.295255
\(539\) 620.795 0.0496095
\(540\) 0 0
\(541\) 9312.17 0.740039 0.370020 0.929024i \(-0.379351\pi\)
0.370020 + 0.929024i \(0.379351\pi\)
\(542\) 1088.57 0.0862693
\(543\) −20210.3 −1.59725
\(544\) 10613.8 0.836515
\(545\) 0 0
\(546\) −5483.44 −0.429797
\(547\) 11018.6 0.861278 0.430639 0.902524i \(-0.358288\pi\)
0.430639 + 0.902524i \(0.358288\pi\)
\(548\) 1480.31 0.115393
\(549\) 824.968 0.0641325
\(550\) 0 0
\(551\) −11478.6 −0.887490
\(552\) −896.179 −0.0691013
\(553\) 16559.6 1.27339
\(554\) 172.644 0.0132399
\(555\) 0 0
\(556\) 21646.9 1.65114
\(557\) 12018.4 0.914250 0.457125 0.889403i \(-0.348879\pi\)
0.457125 + 0.889403i \(0.348879\pi\)
\(558\) −390.464 −0.0296231
\(559\) −170.718 −0.0129170
\(560\) 0 0
\(561\) 5398.40 0.406276
\(562\) −3598.04 −0.270061
\(563\) 8763.89 0.656046 0.328023 0.944670i \(-0.393618\pi\)
0.328023 + 0.944670i \(0.393618\pi\)
\(564\) −3179.10 −0.237348
\(565\) 0 0
\(566\) 3806.34 0.282672
\(567\) 14940.1 1.10657
\(568\) 5327.84 0.393576
\(569\) −10273.2 −0.756895 −0.378447 0.925623i \(-0.623542\pi\)
−0.378447 + 0.925623i \(0.623542\pi\)
\(570\) 0 0
\(571\) 2602.62 0.190747 0.0953734 0.995442i \(-0.469596\pi\)
0.0953734 + 0.995442i \(0.469596\pi\)
\(572\) −6128.41 −0.447975
\(573\) −17332.6 −1.26366
\(574\) −3406.99 −0.247744
\(575\) 0 0
\(576\) −2585.99 −0.187065
\(577\) 19727.0 1.42331 0.711653 0.702532i \(-0.247947\pi\)
0.711653 + 0.702532i \(0.247947\pi\)
\(578\) 1420.39 0.102215
\(579\) −14726.7 −1.05703
\(580\) 0 0
\(581\) 442.739 0.0316143
\(582\) 3678.30 0.261977
\(583\) −1639.06 −0.116437
\(584\) 6912.30 0.489783
\(585\) 0 0
\(586\) 6501.28 0.458303
\(587\) 10116.2 0.711309 0.355654 0.934618i \(-0.384258\pi\)
0.355654 + 0.934618i \(0.384258\pi\)
\(588\) −2497.22 −0.175142
\(589\) 4448.78 0.311221
\(590\) 0 0
\(591\) −30386.0 −2.11491
\(592\) −2101.07 −0.145867
\(593\) −3130.32 −0.216774 −0.108387 0.994109i \(-0.534569\pi\)
−0.108387 + 0.994109i \(0.534569\pi\)
\(594\) −900.152 −0.0621779
\(595\) 0 0
\(596\) −26037.3 −1.78948
\(597\) 45.6009 0.00312616
\(598\) 729.667 0.0498968
\(599\) 10080.1 0.687581 0.343790 0.939046i \(-0.388289\pi\)
0.343790 + 0.939046i \(0.388289\pi\)
\(600\) 0 0
\(601\) 4777.02 0.324224 0.162112 0.986772i \(-0.448169\pi\)
0.162112 + 0.986772i \(0.448169\pi\)
\(602\) −28.3435 −0.00191893
\(603\) −3352.24 −0.226391
\(604\) 8683.16 0.584955
\(605\) 0 0
\(606\) −5613.29 −0.376278
\(607\) 2571.35 0.171941 0.0859703 0.996298i \(-0.472601\pi\)
0.0859703 + 0.996298i \(0.472601\pi\)
\(608\) −8708.43 −0.580877
\(609\) 16959.3 1.12845
\(610\) 0 0
\(611\) 5362.67 0.355074
\(612\) −5032.03 −0.332366
\(613\) −12711.9 −0.837564 −0.418782 0.908087i \(-0.637543\pi\)
−0.418782 + 0.908087i \(0.637543\pi\)
\(614\) 1096.56 0.0720744
\(615\) 0 0
\(616\) −2107.99 −0.137879
\(617\) −16236.1 −1.05939 −0.529693 0.848189i \(-0.677693\pi\)
−0.529693 + 0.848189i \(0.677693\pi\)
\(618\) −7487.11 −0.487339
\(619\) 12657.3 0.821874 0.410937 0.911664i \(-0.365202\pi\)
0.410937 + 0.911664i \(0.365202\pi\)
\(620\) 0 0
\(621\) −1492.75 −0.0964607
\(622\) −5479.19 −0.353208
\(623\) 5973.75 0.384162
\(624\) 22755.2 1.45983
\(625\) 0 0
\(626\) 481.955 0.0307713
\(627\) −4429.28 −0.282119
\(628\) 2553.15 0.162232
\(629\) −3382.28 −0.214404
\(630\) 0 0
\(631\) −3949.97 −0.249201 −0.124600 0.992207i \(-0.539765\pi\)
−0.124600 + 0.992207i \(0.539765\pi\)
\(632\) 11074.0 0.696994
\(633\) −18421.0 −1.15666
\(634\) −171.086 −0.0107172
\(635\) 0 0
\(636\) 6593.29 0.411070
\(637\) 4212.44 0.262014
\(638\) −1360.84 −0.0844455
\(639\) −3832.67 −0.237274
\(640\) 0 0
\(641\) −7398.27 −0.455872 −0.227936 0.973676i \(-0.573198\pi\)
−0.227936 + 0.973676i \(0.573198\pi\)
\(642\) −2101.22 −0.129172
\(643\) 12491.7 0.766134 0.383067 0.923721i \(-0.374868\pi\)
0.383067 + 0.923721i \(0.374868\pi\)
\(644\) −1687.31 −0.103244
\(645\) 0 0
\(646\) −4116.31 −0.250703
\(647\) 10472.0 0.636315 0.318158 0.948038i \(-0.396936\pi\)
0.318158 + 0.948038i \(0.396936\pi\)
\(648\) 9991.02 0.605685
\(649\) −6001.94 −0.363015
\(650\) 0 0
\(651\) −6572.92 −0.395719
\(652\) −10411.6 −0.625384
\(653\) −6337.94 −0.379820 −0.189910 0.981801i \(-0.560820\pi\)
−0.189910 + 0.981801i \(0.560820\pi\)
\(654\) 278.856 0.0166730
\(655\) 0 0
\(656\) 14138.4 0.841479
\(657\) −4972.48 −0.295274
\(658\) 890.339 0.0527493
\(659\) 15196.7 0.898302 0.449151 0.893456i \(-0.351726\pi\)
0.449151 + 0.893456i \(0.351726\pi\)
\(660\) 0 0
\(661\) 2298.17 0.135232 0.0676161 0.997711i \(-0.478461\pi\)
0.0676161 + 0.997711i \(0.478461\pi\)
\(662\) 6246.55 0.366736
\(663\) 36631.1 2.14575
\(664\) 296.075 0.0173042
\(665\) 0 0
\(666\) −243.566 −0.0141712
\(667\) −2256.73 −0.131006
\(668\) 3573.09 0.206956
\(669\) −73.0265 −0.00422028
\(670\) 0 0
\(671\) −1114.33 −0.0641106
\(672\) 12866.4 0.738589
\(673\) −23199.6 −1.32880 −0.664398 0.747379i \(-0.731312\pi\)
−0.664398 + 0.747379i \(0.731312\pi\)
\(674\) −8558.54 −0.489114
\(675\) 0 0
\(676\) −25186.0 −1.43298
\(677\) 2145.38 0.121793 0.0608963 0.998144i \(-0.480604\pi\)
0.0608963 + 0.998144i \(0.480604\pi\)
\(678\) −8701.55 −0.492892
\(679\) 14348.1 0.810941
\(680\) 0 0
\(681\) 27364.0 1.53978
\(682\) 527.422 0.0296129
\(683\) 29544.6 1.65519 0.827593 0.561329i \(-0.189710\pi\)
0.827593 + 0.561329i \(0.189710\pi\)
\(684\) 4128.68 0.230795
\(685\) 0 0
\(686\) 4949.93 0.275495
\(687\) −30083.4 −1.67068
\(688\) 117.620 0.00651776
\(689\) −11121.9 −0.614964
\(690\) 0 0
\(691\) 27803.1 1.53065 0.765325 0.643644i \(-0.222578\pi\)
0.765325 + 0.643644i \(0.222578\pi\)
\(692\) 13499.5 0.741579
\(693\) 1516.42 0.0831227
\(694\) −3366.55 −0.184139
\(695\) 0 0
\(696\) 11341.3 0.617659
\(697\) 22759.8 1.23686
\(698\) 4919.58 0.266775
\(699\) 1254.90 0.0679036
\(700\) 0 0
\(701\) −19697.8 −1.06130 −0.530652 0.847590i \(-0.678053\pi\)
−0.530652 + 0.847590i \(0.678053\pi\)
\(702\) −6108.02 −0.328394
\(703\) 2775.09 0.148883
\(704\) 3493.03 0.187001
\(705\) 0 0
\(706\) −4201.02 −0.223948
\(707\) −21896.0 −1.16476
\(708\) 24143.5 1.28159
\(709\) 19122.5 1.01292 0.506460 0.862263i \(-0.330954\pi\)
0.506460 + 0.862263i \(0.330954\pi\)
\(710\) 0 0
\(711\) −7966.27 −0.420195
\(712\) 3994.86 0.210272
\(713\) 874.641 0.0459405
\(714\) 6081.70 0.318770
\(715\) 0 0
\(716\) 33064.8 1.72582
\(717\) −25565.3 −1.33160
\(718\) −3012.59 −0.156586
\(719\) 1837.44 0.0953060 0.0476530 0.998864i \(-0.484826\pi\)
0.0476530 + 0.998864i \(0.484826\pi\)
\(720\) 0 0
\(721\) −29205.2 −1.50854
\(722\) −1643.79 −0.0847307
\(723\) 5907.95 0.303899
\(724\) −25446.4 −1.30623
\(725\) 0 0
\(726\) −525.109 −0.0268438
\(727\) 7555.46 0.385442 0.192721 0.981254i \(-0.438269\pi\)
0.192721 + 0.981254i \(0.438269\pi\)
\(728\) −14303.9 −0.728211
\(729\) 10705.2 0.543881
\(730\) 0 0
\(731\) 189.344 0.00958021
\(732\) 4482.51 0.226337
\(733\) −11984.6 −0.603905 −0.301952 0.953323i \(-0.597638\pi\)
−0.301952 + 0.953323i \(0.597638\pi\)
\(734\) −7073.80 −0.355720
\(735\) 0 0
\(736\) −1712.10 −0.0857456
\(737\) 4528.05 0.226313
\(738\) 1638.99 0.0817508
\(739\) −27142.5 −1.35109 −0.675543 0.737321i \(-0.736091\pi\)
−0.675543 + 0.737321i \(0.736091\pi\)
\(740\) 0 0
\(741\) −30055.1 −1.49001
\(742\) −1846.52 −0.0913582
\(743\) 29222.6 1.44290 0.721450 0.692467i \(-0.243476\pi\)
0.721450 + 0.692467i \(0.243476\pi\)
\(744\) −4395.55 −0.216598
\(745\) 0 0
\(746\) 103.790 0.00509388
\(747\) −212.987 −0.0104321
\(748\) 6797.04 0.332252
\(749\) −8196.29 −0.399847
\(750\) 0 0
\(751\) −8859.39 −0.430471 −0.215236 0.976562i \(-0.569052\pi\)
−0.215236 + 0.976562i \(0.569052\pi\)
\(752\) −3694.73 −0.179166
\(753\) 1641.47 0.0794404
\(754\) −9234.05 −0.446000
\(755\) 0 0
\(756\) 14124.4 0.679497
\(757\) −35734.4 −1.71571 −0.857853 0.513896i \(-0.828202\pi\)
−0.857853 + 0.513896i \(0.828202\pi\)
\(758\) −2064.19 −0.0989112
\(759\) −870.806 −0.0416446
\(760\) 0 0
\(761\) 34394.7 1.63838 0.819189 0.573524i \(-0.194424\pi\)
0.819189 + 0.573524i \(0.194424\pi\)
\(762\) 475.658 0.0226132
\(763\) 1087.74 0.0516107
\(764\) −21823.2 −1.03342
\(765\) 0 0
\(766\) 4639.62 0.218846
\(767\) −40726.4 −1.91727
\(768\) −9599.92 −0.451051
\(769\) −11602.7 −0.544091 −0.272045 0.962284i \(-0.587700\pi\)
−0.272045 + 0.962284i \(0.587700\pi\)
\(770\) 0 0
\(771\) −19178.8 −0.895859
\(772\) −18542.2 −0.864441
\(773\) 12680.6 0.590026 0.295013 0.955493i \(-0.404676\pi\)
0.295013 + 0.955493i \(0.404676\pi\)
\(774\) 13.6351 0.000633210 0
\(775\) 0 0
\(776\) 9595.09 0.443871
\(777\) −4100.10 −0.189305
\(778\) −6445.89 −0.297039
\(779\) −18674.0 −0.858876
\(780\) 0 0
\(781\) 5176.99 0.237193
\(782\) −809.276 −0.0370072
\(783\) 18891.0 0.862210
\(784\) −2902.25 −0.132209
\(785\) 0 0
\(786\) −5019.84 −0.227801
\(787\) 4417.61 0.200090 0.100045 0.994983i \(-0.468101\pi\)
0.100045 + 0.994983i \(0.468101\pi\)
\(788\) −38258.5 −1.72957
\(789\) 1232.74 0.0556231
\(790\) 0 0
\(791\) −33942.4 −1.52573
\(792\) 1014.09 0.0454974
\(793\) −7561.33 −0.338601
\(794\) −3158.99 −0.141194
\(795\) 0 0
\(796\) 57.4153 0.00255657
\(797\) 27030.1 1.20132 0.600661 0.799504i \(-0.294904\pi\)
0.600661 + 0.799504i \(0.294904\pi\)
\(798\) −4989.91 −0.221354
\(799\) −5947.75 −0.263350
\(800\) 0 0
\(801\) −2873.77 −0.126766
\(802\) 264.769 0.0116575
\(803\) 6716.60 0.295173
\(804\) −18214.6 −0.798979
\(805\) 0 0
\(806\) 3578.85 0.156401
\(807\) −29836.9 −1.30150
\(808\) −14642.6 −0.637533
\(809\) 23647.0 1.02767 0.513835 0.857889i \(-0.328224\pi\)
0.513835 + 0.857889i \(0.328224\pi\)
\(810\) 0 0
\(811\) 33486.1 1.44988 0.724941 0.688811i \(-0.241867\pi\)
0.724941 + 0.688811i \(0.241867\pi\)
\(812\) 21353.1 0.922843
\(813\) −8815.30 −0.380278
\(814\) 328.999 0.0141663
\(815\) 0 0
\(816\) −25237.8 −1.08272
\(817\) −155.353 −0.00665251
\(818\) 6749.88 0.288513
\(819\) 10289.7 0.439014
\(820\) 0 0
\(821\) 2605.69 0.110766 0.0553832 0.998465i \(-0.482362\pi\)
0.0553832 + 0.998465i \(0.482362\pi\)
\(822\) 860.673 0.0365200
\(823\) −31976.2 −1.35434 −0.677169 0.735828i \(-0.736793\pi\)
−0.677169 + 0.735828i \(0.736793\pi\)
\(824\) −19530.6 −0.825705
\(825\) 0 0
\(826\) −6761.62 −0.284827
\(827\) 37759.0 1.58768 0.793839 0.608128i \(-0.208079\pi\)
0.793839 + 0.608128i \(0.208079\pi\)
\(828\) 811.707 0.0340686
\(829\) −1137.55 −0.0476584 −0.0238292 0.999716i \(-0.507586\pi\)
−0.0238292 + 0.999716i \(0.507586\pi\)
\(830\) 0 0
\(831\) −1398.08 −0.0583621
\(832\) 23702.2 0.987649
\(833\) −4672.03 −0.194329
\(834\) 12585.9 0.522557
\(835\) 0 0
\(836\) −5576.83 −0.230716
\(837\) −7321.60 −0.302356
\(838\) −10917.0 −0.450024
\(839\) −37372.2 −1.53782 −0.768911 0.639356i \(-0.779201\pi\)
−0.768911 + 0.639356i \(0.779201\pi\)
\(840\) 0 0
\(841\) 4170.26 0.170989
\(842\) −9872.44 −0.404070
\(843\) 29137.2 1.19044
\(844\) −23193.5 −0.945917
\(845\) 0 0
\(846\) −428.312 −0.0174062
\(847\) −2048.31 −0.0830943
\(848\) 7662.68 0.310304
\(849\) −30824.0 −1.24603
\(850\) 0 0
\(851\) 545.589 0.0219772
\(852\) −20825.0 −0.837387
\(853\) 22490.8 0.902780 0.451390 0.892327i \(-0.350928\pi\)
0.451390 + 0.892327i \(0.350928\pi\)
\(854\) −1255.37 −0.0503021
\(855\) 0 0
\(856\) −5481.16 −0.218858
\(857\) −43409.5 −1.73027 −0.865135 0.501539i \(-0.832767\pi\)
−0.865135 + 0.501539i \(0.832767\pi\)
\(858\) −3563.15 −0.141776
\(859\) 29533.2 1.17306 0.586532 0.809926i \(-0.300493\pi\)
0.586532 + 0.809926i \(0.300493\pi\)
\(860\) 0 0
\(861\) 27590.1 1.09207
\(862\) 297.457 0.0117534
\(863\) −14351.6 −0.566090 −0.283045 0.959107i \(-0.591345\pi\)
−0.283045 + 0.959107i \(0.591345\pi\)
\(864\) 14331.9 0.564331
\(865\) 0 0
\(866\) 1293.31 0.0507488
\(867\) −11502.4 −0.450569
\(868\) −8275.85 −0.323618
\(869\) 10760.5 0.420051
\(870\) 0 0
\(871\) 30725.3 1.19528
\(872\) 727.413 0.0282492
\(873\) −6902.39 −0.267595
\(874\) 663.994 0.0256979
\(875\) 0 0
\(876\) −27018.3 −1.04208
\(877\) 43248.7 1.66523 0.832614 0.553854i \(-0.186844\pi\)
0.832614 + 0.553854i \(0.186844\pi\)
\(878\) 5727.71 0.220160
\(879\) −52647.9 −2.02021
\(880\) 0 0
\(881\) 3816.13 0.145935 0.0729675 0.997334i \(-0.476753\pi\)
0.0729675 + 0.997334i \(0.476753\pi\)
\(882\) −336.444 −0.0128443
\(883\) −48787.6 −1.85938 −0.929690 0.368343i \(-0.879925\pi\)
−0.929690 + 0.368343i \(0.879925\pi\)
\(884\) 46121.6 1.75479
\(885\) 0 0
\(886\) −8541.49 −0.323879
\(887\) −41495.1 −1.57077 −0.785384 0.619009i \(-0.787534\pi\)
−0.785384 + 0.619009i \(0.787534\pi\)
\(888\) −2741.88 −0.103617
\(889\) 1855.41 0.0699984
\(890\) 0 0
\(891\) 9708.15 0.365023
\(892\) −91.9464 −0.00345134
\(893\) 4880.01 0.182870
\(894\) −15138.5 −0.566340
\(895\) 0 0
\(896\) 21298.1 0.794107
\(897\) −5908.90 −0.219947
\(898\) 12426.7 0.461788
\(899\) −11068.7 −0.410637
\(900\) 0 0
\(901\) 12335.3 0.456104
\(902\) −2213.88 −0.0817228
\(903\) 229.528 0.00845871
\(904\) −22698.5 −0.835113
\(905\) 0 0
\(906\) 5048.53 0.185128
\(907\) −21615.3 −0.791316 −0.395658 0.918398i \(-0.629483\pi\)
−0.395658 + 0.918398i \(0.629483\pi\)
\(908\) 34453.6 1.25923
\(909\) 10533.4 0.384347
\(910\) 0 0
\(911\) 3646.35 0.132611 0.0663057 0.997799i \(-0.478879\pi\)
0.0663057 + 0.997799i \(0.478879\pi\)
\(912\) 20707.1 0.751844
\(913\) 287.693 0.0104285
\(914\) 11854.0 0.428988
\(915\) 0 0
\(916\) −37877.6 −1.36628
\(917\) −19581.1 −0.705151
\(918\) 6774.43 0.243562
\(919\) 31280.0 1.12278 0.561388 0.827553i \(-0.310267\pi\)
0.561388 + 0.827553i \(0.310267\pi\)
\(920\) 0 0
\(921\) −8880.05 −0.317707
\(922\) 6285.42 0.224511
\(923\) 35128.7 1.25274
\(924\) 8239.56 0.293357
\(925\) 0 0
\(926\) 5795.79 0.205682
\(927\) 14049.7 0.497790
\(928\) 21666.9 0.766433
\(929\) 6557.92 0.231602 0.115801 0.993272i \(-0.463056\pi\)
0.115801 + 0.993272i \(0.463056\pi\)
\(930\) 0 0
\(931\) 3833.30 0.134942
\(932\) 1580.02 0.0555314
\(933\) 44370.9 1.55695
\(934\) 11094.2 0.388665
\(935\) 0 0
\(936\) 6881.13 0.240296
\(937\) 24473.3 0.853265 0.426632 0.904425i \(-0.359700\pi\)
0.426632 + 0.904425i \(0.359700\pi\)
\(938\) 5101.18 0.177569
\(939\) −3902.91 −0.135641
\(940\) 0 0
\(941\) 15420.8 0.534224 0.267112 0.963665i \(-0.413931\pi\)
0.267112 + 0.963665i \(0.413931\pi\)
\(942\) 1484.44 0.0513436
\(943\) −3671.34 −0.126782
\(944\) 28059.4 0.967432
\(945\) 0 0
\(946\) −18.4177 −0.000632993 0
\(947\) 33141.2 1.13722 0.568608 0.822609i \(-0.307482\pi\)
0.568608 + 0.822609i \(0.307482\pi\)
\(948\) −43285.2 −1.48295
\(949\) 45575.8 1.55896
\(950\) 0 0
\(951\) 1385.47 0.0472417
\(952\) 15864.5 0.540096
\(953\) 20735.4 0.704813 0.352406 0.935847i \(-0.385363\pi\)
0.352406 + 0.935847i \(0.385363\pi\)
\(954\) 888.298 0.0301464
\(955\) 0 0
\(956\) −32188.9 −1.08898
\(957\) 11020.2 0.372239
\(958\) 7321.32 0.246911
\(959\) 3357.26 0.113046
\(960\) 0 0
\(961\) −25501.1 −0.856000
\(962\) 2232.44 0.0748198
\(963\) 3942.96 0.131942
\(964\) 7438.60 0.248528
\(965\) 0 0
\(966\) −981.027 −0.0326750
\(967\) 8178.87 0.271990 0.135995 0.990710i \(-0.456577\pi\)
0.135995 + 0.990710i \(0.456577\pi\)
\(968\) −1369.78 −0.0454819
\(969\) 33334.2 1.10511
\(970\) 0 0
\(971\) −20576.1 −0.680039 −0.340020 0.940418i \(-0.610434\pi\)
−0.340020 + 0.940418i \(0.610434\pi\)
\(972\) −16524.1 −0.545277
\(973\) 49094.1 1.61756
\(974\) −5156.96 −0.169651
\(975\) 0 0
\(976\) 5209.55 0.170854
\(977\) −14541.9 −0.476188 −0.238094 0.971242i \(-0.576523\pi\)
−0.238094 + 0.971242i \(0.576523\pi\)
\(978\) −6053.48 −0.197923
\(979\) 3881.76 0.126723
\(980\) 0 0
\(981\) −523.277 −0.0170305
\(982\) −9755.62 −0.317021
\(983\) 29285.7 0.950223 0.475111 0.879926i \(-0.342408\pi\)
0.475111 + 0.879926i \(0.342408\pi\)
\(984\) 18450.5 0.597745
\(985\) 0 0
\(986\) 10241.5 0.330787
\(987\) −7210.03 −0.232521
\(988\) −37841.8 −1.21853
\(989\) −30.5427 −0.000982004 0
\(990\) 0 0
\(991\) −38085.9 −1.22083 −0.610413 0.792083i \(-0.708997\pi\)
−0.610413 + 0.792083i \(0.708997\pi\)
\(992\) −8397.44 −0.268769
\(993\) −50585.1 −1.61658
\(994\) 5832.26 0.186105
\(995\) 0 0
\(996\) −1157.28 −0.0368170
\(997\) 26803.6 0.851434 0.425717 0.904856i \(-0.360022\pi\)
0.425717 + 0.904856i \(0.360022\pi\)
\(998\) −14691.6 −0.465987
\(999\) −4567.12 −0.144642
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.4.a.b.1.2 2
3.2 odd 2 2475.4.a.q.1.1 2
5.2 odd 4 275.4.b.c.199.3 4
5.3 odd 4 275.4.b.c.199.2 4
5.4 even 2 11.4.a.a.1.1 2
15.14 odd 2 99.4.a.c.1.2 2
20.19 odd 2 176.4.a.i.1.1 2
35.34 odd 2 539.4.a.e.1.1 2
40.19 odd 2 704.4.a.n.1.2 2
40.29 even 2 704.4.a.p.1.1 2
55.4 even 10 121.4.c.c.27.1 8
55.9 even 10 121.4.c.c.81.2 8
55.14 even 10 121.4.c.c.9.1 8
55.19 odd 10 121.4.c.f.9.2 8
55.24 odd 10 121.4.c.f.81.1 8
55.29 odd 10 121.4.c.f.27.2 8
55.39 odd 10 121.4.c.f.3.1 8
55.49 even 10 121.4.c.c.3.2 8
55.54 odd 2 121.4.a.c.1.2 2
60.59 even 2 1584.4.a.bc.1.2 2
65.64 even 2 1859.4.a.a.1.2 2
165.164 even 2 1089.4.a.v.1.1 2
220.219 even 2 1936.4.a.w.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.4.a.a.1.1 2 5.4 even 2
99.4.a.c.1.2 2 15.14 odd 2
121.4.a.c.1.2 2 55.54 odd 2
121.4.c.c.3.2 8 55.49 even 10
121.4.c.c.9.1 8 55.14 even 10
121.4.c.c.27.1 8 55.4 even 10
121.4.c.c.81.2 8 55.9 even 10
121.4.c.f.3.1 8 55.39 odd 10
121.4.c.f.9.2 8 55.19 odd 10
121.4.c.f.27.2 8 55.29 odd 10
121.4.c.f.81.1 8 55.24 odd 10
176.4.a.i.1.1 2 20.19 odd 2
275.4.a.b.1.2 2 1.1 even 1 trivial
275.4.b.c.199.2 4 5.3 odd 4
275.4.b.c.199.3 4 5.2 odd 4
539.4.a.e.1.1 2 35.34 odd 2
704.4.a.n.1.2 2 40.19 odd 2
704.4.a.p.1.1 2 40.29 even 2
1089.4.a.v.1.1 2 165.164 even 2
1584.4.a.bc.1.2 2 60.59 even 2
1859.4.a.a.1.2 2 65.64 even 2
1936.4.a.w.1.1 2 220.219 even 2
2475.4.a.q.1.1 2 3.2 odd 2