Properties

Label 275.4.a.b.1.1
Level $275$
Weight $4$
Character 275.1
Self dual yes
Analytic conductor $16.226$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,4,Mod(1,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.2255252516\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.73205 q^{2} +7.92820 q^{3} -0.535898 q^{4} -21.6603 q^{6} -3.07180 q^{7} +23.3205 q^{8} +35.8564 q^{9} +O(q^{10})\) \(q-2.73205 q^{2} +7.92820 q^{3} -0.535898 q^{4} -21.6603 q^{6} -3.07180 q^{7} +23.3205 q^{8} +35.8564 q^{9} -11.0000 q^{11} -4.24871 q^{12} -5.35898 q^{13} +8.39230 q^{14} -59.4256 q^{16} +41.2154 q^{17} -97.9615 q^{18} +139.923 q^{19} -24.3538 q^{21} +30.0526 q^{22} +111.354 q^{23} +184.890 q^{24} +14.6410 q^{26} +70.2154 q^{27} +1.64617 q^{28} -24.9948 q^{29} +31.4974 q^{31} -24.2102 q^{32} -87.2102 q^{33} -112.603 q^{34} -19.2154 q^{36} -13.1436 q^{37} -382.277 q^{38} -42.4871 q^{39} +261.072 q^{41} +66.5359 q^{42} +57.7128 q^{43} +5.89488 q^{44} -304.224 q^{46} +343.846 q^{47} -471.138 q^{48} -333.564 q^{49} +326.764 q^{51} +2.87187 q^{52} +342.995 q^{53} -191.832 q^{54} -71.6359 q^{56} +1109.34 q^{57} +68.2872 q^{58} +88.3693 q^{59} +738.697 q^{61} -86.0526 q^{62} -110.144 q^{63} +541.549 q^{64} +238.263 q^{66} -342.359 q^{67} -22.0873 q^{68} +882.836 q^{69} -207.364 q^{71} +836.190 q^{72} +1010.60 q^{73} +35.9090 q^{74} -74.9845 q^{76} +33.7898 q^{77} +116.077 q^{78} +1294.23 q^{79} -411.441 q^{81} -713.261 q^{82} -441.846 q^{83} +13.0512 q^{84} -157.674 q^{86} -198.164 q^{87} -256.526 q^{88} -1489.11 q^{89} +16.4617 q^{91} -59.6743 q^{92} +249.718 q^{93} -939.405 q^{94} -191.944 q^{96} -1346.42 q^{97} +911.314 q^{98} -394.420 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{3} - 8 q^{4} - 26 q^{6} - 20 q^{7} + 12 q^{8} + 44 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} + 2 q^{3} - 8 q^{4} - 26 q^{6} - 20 q^{7} + 12 q^{8} + 44 q^{9} - 22 q^{11} + 40 q^{12} - 80 q^{13} - 4 q^{14} - 8 q^{16} + 124 q^{17} - 92 q^{18} + 72 q^{19} + 76 q^{21} + 22 q^{22} + 98 q^{23} + 252 q^{24} - 40 q^{26} + 182 q^{27} + 128 q^{28} + 144 q^{29} - 34 q^{31} + 104 q^{32} - 22 q^{33} - 52 q^{34} - 80 q^{36} - 54 q^{37} - 432 q^{38} + 400 q^{39} + 536 q^{41} + 140 q^{42} + 60 q^{43} + 88 q^{44} - 314 q^{46} + 272 q^{47} - 776 q^{48} - 390 q^{49} - 164 q^{51} + 560 q^{52} + 492 q^{53} - 110 q^{54} + 120 q^{56} + 1512 q^{57} + 192 q^{58} + 634 q^{59} + 840 q^{61} - 134 q^{62} - 248 q^{63} + 224 q^{64} + 286 q^{66} - 754 q^{67} - 640 q^{68} + 962 q^{69} - 678 q^{71} + 744 q^{72} + 400 q^{73} + 6 q^{74} + 432 q^{76} + 220 q^{77} + 440 q^{78} + 316 q^{79} - 1294 q^{81} - 512 q^{82} - 468 q^{83} - 736 q^{84} - 156 q^{86} - 1200 q^{87} - 132 q^{88} - 1842 q^{89} + 1280 q^{91} + 40 q^{92} + 638 q^{93} - 992 q^{94} - 952 q^{96} - 2194 q^{97} + 870 q^{98} - 484 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.73205 −0.965926 −0.482963 0.875641i \(-0.660439\pi\)
−0.482963 + 0.875641i \(0.660439\pi\)
\(3\) 7.92820 1.52578 0.762892 0.646526i \(-0.223779\pi\)
0.762892 + 0.646526i \(0.223779\pi\)
\(4\) −0.535898 −0.0669873
\(5\) 0 0
\(6\) −21.6603 −1.47379
\(7\) −3.07180 −0.165861 −0.0829307 0.996555i \(-0.526428\pi\)
−0.0829307 + 0.996555i \(0.526428\pi\)
\(8\) 23.3205 1.03063
\(9\) 35.8564 1.32802
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) −4.24871 −0.102208
\(13\) −5.35898 −0.114332 −0.0571659 0.998365i \(-0.518206\pi\)
−0.0571659 + 0.998365i \(0.518206\pi\)
\(14\) 8.39230 0.160210
\(15\) 0 0
\(16\) −59.4256 −0.928525
\(17\) 41.2154 0.588012 0.294006 0.955804i \(-0.405011\pi\)
0.294006 + 0.955804i \(0.405011\pi\)
\(18\) −97.9615 −1.28276
\(19\) 139.923 1.68950 0.844751 0.535159i \(-0.179748\pi\)
0.844751 + 0.535159i \(0.179748\pi\)
\(20\) 0 0
\(21\) −24.3538 −0.253069
\(22\) 30.0526 0.291238
\(23\) 111.354 1.00952 0.504758 0.863261i \(-0.331582\pi\)
0.504758 + 0.863261i \(0.331582\pi\)
\(24\) 184.890 1.57252
\(25\) 0 0
\(26\) 14.6410 0.110436
\(27\) 70.2154 0.500480
\(28\) 1.64617 0.0111106
\(29\) −24.9948 −0.160049 −0.0800246 0.996793i \(-0.525500\pi\)
−0.0800246 + 0.996793i \(0.525500\pi\)
\(30\) 0 0
\(31\) 31.4974 0.182487 0.0912436 0.995829i \(-0.470916\pi\)
0.0912436 + 0.995829i \(0.470916\pi\)
\(32\) −24.2102 −0.133744
\(33\) −87.2102 −0.460041
\(34\) −112.603 −0.567976
\(35\) 0 0
\(36\) −19.2154 −0.0889601
\(37\) −13.1436 −0.0583998 −0.0291999 0.999574i \(-0.509296\pi\)
−0.0291999 + 0.999574i \(0.509296\pi\)
\(38\) −382.277 −1.63193
\(39\) −42.4871 −0.174446
\(40\) 0 0
\(41\) 261.072 0.994453 0.497226 0.867621i \(-0.334352\pi\)
0.497226 + 0.867621i \(0.334352\pi\)
\(42\) 66.5359 0.244446
\(43\) 57.7128 0.204677 0.102339 0.994750i \(-0.467367\pi\)
0.102339 + 0.994750i \(0.467367\pi\)
\(44\) 5.89488 0.0201974
\(45\) 0 0
\(46\) −304.224 −0.975118
\(47\) 343.846 1.06713 0.533565 0.845759i \(-0.320852\pi\)
0.533565 + 0.845759i \(0.320852\pi\)
\(48\) −471.138 −1.41673
\(49\) −333.564 −0.972490
\(50\) 0 0
\(51\) 326.764 0.897179
\(52\) 2.87187 0.00765879
\(53\) 342.995 0.888943 0.444471 0.895793i \(-0.353392\pi\)
0.444471 + 0.895793i \(0.353392\pi\)
\(54\) −191.832 −0.483426
\(55\) 0 0
\(56\) −71.6359 −0.170942
\(57\) 1109.34 2.57782
\(58\) 68.2872 0.154596
\(59\) 88.3693 0.194995 0.0974975 0.995236i \(-0.468916\pi\)
0.0974975 + 0.995236i \(0.468916\pi\)
\(60\) 0 0
\(61\) 738.697 1.55050 0.775250 0.631654i \(-0.217624\pi\)
0.775250 + 0.631654i \(0.217624\pi\)
\(62\) −86.0526 −0.176269
\(63\) −110.144 −0.220266
\(64\) 541.549 1.05771
\(65\) 0 0
\(66\) 238.263 0.444365
\(67\) −342.359 −0.624266 −0.312133 0.950038i \(-0.601043\pi\)
−0.312133 + 0.950038i \(0.601043\pi\)
\(68\) −22.0873 −0.0393893
\(69\) 882.836 1.54030
\(70\) 0 0
\(71\) −207.364 −0.346614 −0.173307 0.984868i \(-0.555445\pi\)
−0.173307 + 0.984868i \(0.555445\pi\)
\(72\) 836.190 1.36869
\(73\) 1010.60 1.62030 0.810149 0.586224i \(-0.199386\pi\)
0.810149 + 0.586224i \(0.199386\pi\)
\(74\) 35.9090 0.0564099
\(75\) 0 0
\(76\) −74.9845 −0.113175
\(77\) 33.7898 0.0500091
\(78\) 116.077 0.168502
\(79\) 1294.23 1.84319 0.921593 0.388157i \(-0.126888\pi\)
0.921593 + 0.388157i \(0.126888\pi\)
\(80\) 0 0
\(81\) −411.441 −0.564391
\(82\) −713.261 −0.960568
\(83\) −441.846 −0.584324 −0.292162 0.956369i \(-0.594375\pi\)
−0.292162 + 0.956369i \(0.594375\pi\)
\(84\) 13.0512 0.0169524
\(85\) 0 0
\(86\) −157.674 −0.197703
\(87\) −198.164 −0.244200
\(88\) −256.526 −0.310747
\(89\) −1489.11 −1.77355 −0.886773 0.462205i \(-0.847058\pi\)
−0.886773 + 0.462205i \(0.847058\pi\)
\(90\) 0 0
\(91\) 16.4617 0.0189633
\(92\) −59.6743 −0.0676248
\(93\) 249.718 0.278436
\(94\) −939.405 −1.03077
\(95\) 0 0
\(96\) −191.944 −0.204064
\(97\) −1346.42 −1.40936 −0.704679 0.709526i \(-0.748909\pi\)
−0.704679 + 0.709526i \(0.748909\pi\)
\(98\) 911.314 0.939353
\(99\) −394.420 −0.400412
\(100\) 0 0
\(101\) −161.461 −0.159069 −0.0795347 0.996832i \(-0.525343\pi\)
−0.0795347 + 0.996832i \(0.525343\pi\)
\(102\) −892.736 −0.866608
\(103\) 34.7592 0.0332517 0.0166259 0.999862i \(-0.494708\pi\)
0.0166259 + 0.999862i \(0.494708\pi\)
\(104\) −124.974 −0.117834
\(105\) 0 0
\(106\) −937.079 −0.858653
\(107\) −832.179 −0.751867 −0.375934 0.926647i \(-0.622678\pi\)
−0.375934 + 0.926647i \(0.622678\pi\)
\(108\) −37.6283 −0.0335258
\(109\) 1044.26 0.917629 0.458815 0.888532i \(-0.348274\pi\)
0.458815 + 0.888532i \(0.348274\pi\)
\(110\) 0 0
\(111\) −104.205 −0.0891055
\(112\) 182.543 0.154007
\(113\) −295.082 −0.245654 −0.122827 0.992428i \(-0.539196\pi\)
−0.122827 + 0.992428i \(0.539196\pi\)
\(114\) −3030.77 −2.48998
\(115\) 0 0
\(116\) 13.3947 0.0107213
\(117\) −192.154 −0.151834
\(118\) −241.429 −0.188351
\(119\) −126.605 −0.0975285
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −2018.16 −1.49767
\(123\) 2069.83 1.51732
\(124\) −16.8794 −0.0122243
\(125\) 0 0
\(126\) 300.918 0.212761
\(127\) 1317.60 0.920618 0.460309 0.887759i \(-0.347739\pi\)
0.460309 + 0.887759i \(0.347739\pi\)
\(128\) −1285.86 −0.887928
\(129\) 457.559 0.312293
\(130\) 0 0
\(131\) −1600.71 −1.06759 −0.533797 0.845612i \(-0.679235\pi\)
−0.533797 + 0.845612i \(0.679235\pi\)
\(132\) 46.7358 0.0308169
\(133\) −429.815 −0.280223
\(134\) 935.342 0.602994
\(135\) 0 0
\(136\) 961.164 0.606023
\(137\) −1611.68 −1.00507 −0.502536 0.864556i \(-0.667600\pi\)
−0.502536 + 0.864556i \(0.667600\pi\)
\(138\) −2411.95 −1.48782
\(139\) −31.8619 −0.0194424 −0.00972120 0.999953i \(-0.503094\pi\)
−0.00972120 + 0.999953i \(0.503094\pi\)
\(140\) 0 0
\(141\) 2726.08 1.62821
\(142\) 566.529 0.334803
\(143\) 58.9488 0.0344724
\(144\) −2130.79 −1.23310
\(145\) 0 0
\(146\) −2761.01 −1.56509
\(147\) −2644.56 −1.48381
\(148\) 7.04363 0.00391205
\(149\) −2428.34 −1.33515 −0.667576 0.744542i \(-0.732668\pi\)
−0.667576 + 0.744542i \(0.732668\pi\)
\(150\) 0 0
\(151\) −2576.68 −1.38866 −0.694328 0.719659i \(-0.744298\pi\)
−0.694328 + 0.719659i \(0.744298\pi\)
\(152\) 3263.08 1.74125
\(153\) 1477.84 0.780889
\(154\) −92.3154 −0.0483051
\(155\) 0 0
\(156\) 22.7688 0.0116856
\(157\) −2475.94 −1.25861 −0.629305 0.777158i \(-0.716660\pi\)
−0.629305 + 0.777158i \(0.716660\pi\)
\(158\) −3535.89 −1.78038
\(159\) 2719.33 1.35633
\(160\) 0 0
\(161\) −342.056 −0.167440
\(162\) 1124.08 0.545160
\(163\) 2725.11 1.30949 0.654745 0.755850i \(-0.272776\pi\)
0.654745 + 0.755850i \(0.272776\pi\)
\(164\) −139.908 −0.0666157
\(165\) 0 0
\(166\) 1207.15 0.564414
\(167\) −2737.30 −1.26837 −0.634187 0.773180i \(-0.718665\pi\)
−0.634187 + 0.773180i \(0.718665\pi\)
\(168\) −567.944 −0.260820
\(169\) −2168.28 −0.986928
\(170\) 0 0
\(171\) 5017.14 2.24368
\(172\) −30.9282 −0.0137108
\(173\) −2307.42 −1.01404 −0.507022 0.861933i \(-0.669254\pi\)
−0.507022 + 0.861933i \(0.669254\pi\)
\(174\) 541.395 0.235879
\(175\) 0 0
\(176\) 653.682 0.279961
\(177\) 700.610 0.297520
\(178\) 4068.33 1.71311
\(179\) −1312.15 −0.547905 −0.273953 0.961743i \(-0.588331\pi\)
−0.273953 + 0.961743i \(0.588331\pi\)
\(180\) 0 0
\(181\) −803.174 −0.329831 −0.164916 0.986308i \(-0.552735\pi\)
−0.164916 + 0.986308i \(0.552735\pi\)
\(182\) −44.9742 −0.0183171
\(183\) 5856.54 2.36573
\(184\) 2596.83 1.04044
\(185\) 0 0
\(186\) −682.242 −0.268949
\(187\) −453.369 −0.177292
\(188\) −184.267 −0.0714842
\(189\) −215.687 −0.0830103
\(190\) 0 0
\(191\) 1718.25 0.650932 0.325466 0.945554i \(-0.394479\pi\)
0.325466 + 0.945554i \(0.394479\pi\)
\(192\) 4293.51 1.61384
\(193\) −1340.18 −0.499837 −0.249919 0.968267i \(-0.580404\pi\)
−0.249919 + 0.968267i \(0.580404\pi\)
\(194\) 3678.48 1.36134
\(195\) 0 0
\(196\) 178.756 0.0651445
\(197\) 3518.33 1.27244 0.636220 0.771508i \(-0.280497\pi\)
0.636220 + 0.771508i \(0.280497\pi\)
\(198\) 1077.58 0.386768
\(199\) 823.692 0.293417 0.146709 0.989180i \(-0.453132\pi\)
0.146709 + 0.989180i \(0.453132\pi\)
\(200\) 0 0
\(201\) −2714.29 −0.952494
\(202\) 441.121 0.153649
\(203\) 76.7791 0.0265460
\(204\) −175.112 −0.0600996
\(205\) 0 0
\(206\) −94.9639 −0.0321187
\(207\) 3992.75 1.34065
\(208\) 318.461 0.106160
\(209\) −1539.15 −0.509404
\(210\) 0 0
\(211\) −107.343 −0.0350228 −0.0175114 0.999847i \(-0.505574\pi\)
−0.0175114 + 0.999847i \(0.505574\pi\)
\(212\) −183.810 −0.0595479
\(213\) −1644.03 −0.528858
\(214\) 2273.56 0.726248
\(215\) 0 0
\(216\) 1637.46 0.515810
\(217\) −96.7537 −0.0302676
\(218\) −2852.96 −0.886362
\(219\) 8012.24 2.47222
\(220\) 0 0
\(221\) −220.873 −0.0672285
\(222\) 284.694 0.0860693
\(223\) 3933.68 1.18125 0.590625 0.806946i \(-0.298881\pi\)
0.590625 + 0.806946i \(0.298881\pi\)
\(224\) 74.3689 0.0221830
\(225\) 0 0
\(226\) 806.178 0.237284
\(227\) 1771.90 0.518085 0.259042 0.965866i \(-0.416593\pi\)
0.259042 + 0.965866i \(0.416593\pi\)
\(228\) −594.493 −0.172681
\(229\) 1915.37 0.552713 0.276356 0.961055i \(-0.410873\pi\)
0.276356 + 0.961055i \(0.410873\pi\)
\(230\) 0 0
\(231\) 267.892 0.0763031
\(232\) −582.892 −0.164952
\(233\) −4396.32 −1.23610 −0.618052 0.786137i \(-0.712078\pi\)
−0.618052 + 0.786137i \(0.712078\pi\)
\(234\) 524.974 0.146661
\(235\) 0 0
\(236\) −47.3570 −0.0130622
\(237\) 10260.9 2.81230
\(238\) 345.892 0.0942053
\(239\) −4084.49 −1.10546 −0.552728 0.833362i \(-0.686413\pi\)
−0.552728 + 0.833362i \(0.686413\pi\)
\(240\) 0 0
\(241\) 3908.58 1.04471 0.522353 0.852730i \(-0.325054\pi\)
0.522353 + 0.852730i \(0.325054\pi\)
\(242\) −330.578 −0.0878114
\(243\) −5157.80 −1.36162
\(244\) −395.867 −0.103864
\(245\) 0 0
\(246\) −5654.88 −1.46562
\(247\) −749.845 −0.193164
\(248\) 734.536 0.188077
\(249\) −3503.05 −0.891552
\(250\) 0 0
\(251\) 1094.89 0.275335 0.137667 0.990479i \(-0.456040\pi\)
0.137667 + 0.990479i \(0.456040\pi\)
\(252\) 59.0258 0.0147551
\(253\) −1224.89 −0.304381
\(254\) −3599.76 −0.889249
\(255\) 0 0
\(256\) −819.364 −0.200040
\(257\) −783.179 −0.190091 −0.0950454 0.995473i \(-0.530300\pi\)
−0.0950454 + 0.995473i \(0.530300\pi\)
\(258\) −1250.07 −0.301652
\(259\) 40.3744 0.00968628
\(260\) 0 0
\(261\) −896.225 −0.212548
\(262\) 4373.23 1.03122
\(263\) −6180.06 −1.44897 −0.724484 0.689292i \(-0.757922\pi\)
−0.724484 + 0.689292i \(0.757922\pi\)
\(264\) −2033.79 −0.474132
\(265\) 0 0
\(266\) 1174.28 0.270675
\(267\) −11806.0 −2.70605
\(268\) 183.470 0.0418179
\(269\) 986.965 0.223704 0.111852 0.993725i \(-0.464322\pi\)
0.111852 + 0.993725i \(0.464322\pi\)
\(270\) 0 0
\(271\) 4576.99 1.02595 0.512975 0.858404i \(-0.328543\pi\)
0.512975 + 0.858404i \(0.328543\pi\)
\(272\) −2449.25 −0.545984
\(273\) 130.512 0.0289338
\(274\) 4403.18 0.970825
\(275\) 0 0
\(276\) −473.110 −0.103181
\(277\) −567.836 −0.123169 −0.0615847 0.998102i \(-0.519615\pi\)
−0.0615847 + 0.998102i \(0.519615\pi\)
\(278\) 87.0484 0.0187799
\(279\) 1129.38 0.242346
\(280\) 0 0
\(281\) 5311.01 1.12750 0.563752 0.825944i \(-0.309357\pi\)
0.563752 + 0.825944i \(0.309357\pi\)
\(282\) −7447.79 −1.57273
\(283\) 4728.44 0.993204 0.496602 0.867978i \(-0.334581\pi\)
0.496602 + 0.867978i \(0.334581\pi\)
\(284\) 111.126 0.0232187
\(285\) 0 0
\(286\) −161.051 −0.0332977
\(287\) −801.960 −0.164941
\(288\) −868.092 −0.177614
\(289\) −3214.29 −0.654242
\(290\) 0 0
\(291\) −10674.7 −2.15038
\(292\) −541.579 −0.108539
\(293\) −2328.92 −0.464358 −0.232179 0.972673i \(-0.574585\pi\)
−0.232179 + 0.972673i \(0.574585\pi\)
\(294\) 7225.08 1.43325
\(295\) 0 0
\(296\) −306.515 −0.0601886
\(297\) −772.369 −0.150900
\(298\) 6634.36 1.28966
\(299\) −596.743 −0.115420
\(300\) 0 0
\(301\) −177.282 −0.0339481
\(302\) 7039.61 1.34134
\(303\) −1280.10 −0.242705
\(304\) −8315.01 −1.56875
\(305\) 0 0
\(306\) −4037.52 −0.754280
\(307\) 1678.07 0.311962 0.155981 0.987760i \(-0.450146\pi\)
0.155981 + 0.987760i \(0.450146\pi\)
\(308\) −18.1079 −0.00334997
\(309\) 275.578 0.0507349
\(310\) 0 0
\(311\) 3572.71 0.651413 0.325707 0.945471i \(-0.394398\pi\)
0.325707 + 0.945471i \(0.394398\pi\)
\(312\) −990.821 −0.179789
\(313\) −7184.36 −1.29739 −0.648697 0.761047i \(-0.724686\pi\)
−0.648697 + 0.761047i \(0.724686\pi\)
\(314\) 6764.40 1.21572
\(315\) 0 0
\(316\) −693.573 −0.123470
\(317\) 15.7077 0.00278306 0.00139153 0.999999i \(-0.499557\pi\)
0.00139153 + 0.999999i \(0.499557\pi\)
\(318\) −7429.36 −1.31012
\(319\) 274.943 0.0482566
\(320\) 0 0
\(321\) −6597.69 −1.14719
\(322\) 934.515 0.161734
\(323\) 5766.98 0.993447
\(324\) 220.491 0.0378070
\(325\) 0 0
\(326\) −7445.13 −1.26487
\(327\) 8279.08 1.40010
\(328\) 6088.33 1.02491
\(329\) −1056.23 −0.176996
\(330\) 0 0
\(331\) −1318.95 −0.219022 −0.109511 0.993986i \(-0.534928\pi\)
−0.109511 + 0.993986i \(0.534928\pi\)
\(332\) 236.785 0.0391423
\(333\) −471.282 −0.0775558
\(334\) 7478.43 1.22515
\(335\) 0 0
\(336\) 1447.24 0.234981
\(337\) 239.183 0.0386621 0.0193310 0.999813i \(-0.493846\pi\)
0.0193310 + 0.999813i \(0.493846\pi\)
\(338\) 5923.85 0.953299
\(339\) −2339.47 −0.374816
\(340\) 0 0
\(341\) −346.472 −0.0550220
\(342\) −13707.1 −2.16723
\(343\) 2078.27 0.327160
\(344\) 1345.89 0.210947
\(345\) 0 0
\(346\) 6303.98 0.979491
\(347\) 5862.79 0.907006 0.453503 0.891255i \(-0.350174\pi\)
0.453503 + 0.891255i \(0.350174\pi\)
\(348\) 106.196 0.0163583
\(349\) 3491.73 0.535553 0.267776 0.963481i \(-0.413711\pi\)
0.267776 + 0.963481i \(0.413711\pi\)
\(350\) 0 0
\(351\) −376.283 −0.0572208
\(352\) 266.313 0.0403253
\(353\) 10916.7 1.64600 0.822999 0.568043i \(-0.192299\pi\)
0.822999 + 0.568043i \(0.192299\pi\)
\(354\) −1914.10 −0.287382
\(355\) 0 0
\(356\) 798.013 0.118805
\(357\) −1003.75 −0.148807
\(358\) 3584.87 0.529236
\(359\) −11500.7 −1.69077 −0.845384 0.534160i \(-0.820628\pi\)
−0.845384 + 0.534160i \(0.820628\pi\)
\(360\) 0 0
\(361\) 12719.5 1.85442
\(362\) 2194.31 0.318592
\(363\) 959.313 0.138708
\(364\) −8.82180 −0.00127030
\(365\) 0 0
\(366\) −16000.4 −2.28512
\(367\) −6767.01 −0.962493 −0.481246 0.876585i \(-0.659816\pi\)
−0.481246 + 0.876585i \(0.659816\pi\)
\(368\) −6617.27 −0.937362
\(369\) 9361.10 1.32065
\(370\) 0 0
\(371\) −1053.61 −0.147441
\(372\) −133.823 −0.0186517
\(373\) 5310.22 0.737139 0.368569 0.929600i \(-0.379848\pi\)
0.368569 + 0.929600i \(0.379848\pi\)
\(374\) 1238.63 0.171251
\(375\) 0 0
\(376\) 8018.67 1.09982
\(377\) 133.947 0.0182987
\(378\) 589.269 0.0801818
\(379\) −838.267 −0.113612 −0.0568059 0.998385i \(-0.518092\pi\)
−0.0568059 + 0.998385i \(0.518092\pi\)
\(380\) 0 0
\(381\) 10446.2 1.40466
\(382\) −4694.34 −0.628752
\(383\) 2832.16 0.377851 0.188925 0.981991i \(-0.439500\pi\)
0.188925 + 0.981991i \(0.439500\pi\)
\(384\) −10194.5 −1.35479
\(385\) 0 0
\(386\) 3661.45 0.482806
\(387\) 2069.37 0.271814
\(388\) 721.542 0.0944091
\(389\) 3111.25 0.405519 0.202759 0.979229i \(-0.435009\pi\)
0.202759 + 0.979229i \(0.435009\pi\)
\(390\) 0 0
\(391\) 4589.49 0.593608
\(392\) −7778.88 −1.00228
\(393\) −12690.8 −1.62892
\(394\) −9612.25 −1.22908
\(395\) 0 0
\(396\) 211.369 0.0268225
\(397\) −14208.7 −1.79626 −0.898131 0.439728i \(-0.855075\pi\)
−0.898131 + 0.439728i \(0.855075\pi\)
\(398\) −2250.37 −0.283419
\(399\) −3407.66 −0.427560
\(400\) 0 0
\(401\) −6261.68 −0.779784 −0.389892 0.920861i \(-0.627488\pi\)
−0.389892 + 0.920861i \(0.627488\pi\)
\(402\) 7415.58 0.920039
\(403\) −168.794 −0.0208641
\(404\) 86.5269 0.0106556
\(405\) 0 0
\(406\) −209.764 −0.0256415
\(407\) 144.580 0.0176082
\(408\) 7620.30 0.924660
\(409\) −4192.50 −0.506860 −0.253430 0.967354i \(-0.581559\pi\)
−0.253430 + 0.967354i \(0.581559\pi\)
\(410\) 0 0
\(411\) −12777.7 −1.53352
\(412\) −18.6274 −0.00222744
\(413\) −271.453 −0.0323421
\(414\) −10908.4 −1.29497
\(415\) 0 0
\(416\) 129.742 0.0152912
\(417\) −252.608 −0.0296649
\(418\) 4205.05 0.492047
\(419\) −9287.15 −1.08283 −0.541416 0.840755i \(-0.682112\pi\)
−0.541416 + 0.840755i \(0.682112\pi\)
\(420\) 0 0
\(421\) 13146.0 1.52185 0.760923 0.648842i \(-0.224746\pi\)
0.760923 + 0.648842i \(0.224746\pi\)
\(422\) 293.267 0.0338294
\(423\) 12329.1 1.41716
\(424\) 7998.81 0.916172
\(425\) 0 0
\(426\) 4491.56 0.510838
\(427\) −2269.13 −0.257168
\(428\) 445.964 0.0503656
\(429\) 467.358 0.0525974
\(430\) 0 0
\(431\) 4909.67 0.548701 0.274351 0.961630i \(-0.411537\pi\)
0.274351 + 0.961630i \(0.411537\pi\)
\(432\) −4172.59 −0.464708
\(433\) 11743.3 1.30334 0.651671 0.758502i \(-0.274068\pi\)
0.651671 + 0.758502i \(0.274068\pi\)
\(434\) 264.336 0.0292363
\(435\) 0 0
\(436\) −559.615 −0.0614695
\(437\) 15581.0 1.70558
\(438\) −21889.8 −2.38798
\(439\) −11824.2 −1.28551 −0.642754 0.766073i \(-0.722208\pi\)
−0.642754 + 0.766073i \(0.722208\pi\)
\(440\) 0 0
\(441\) −11960.4 −1.29148
\(442\) 603.435 0.0649377
\(443\) −10102.1 −1.08344 −0.541722 0.840558i \(-0.682228\pi\)
−0.541722 + 0.840558i \(0.682228\pi\)
\(444\) 55.8433 0.00596894
\(445\) 0 0
\(446\) −10747.0 −1.14100
\(447\) −19252.4 −2.03715
\(448\) −1663.53 −0.175434
\(449\) −345.254 −0.0362885 −0.0181443 0.999835i \(-0.505776\pi\)
−0.0181443 + 0.999835i \(0.505776\pi\)
\(450\) 0 0
\(451\) −2871.79 −0.299839
\(452\) 158.134 0.0164557
\(453\) −20428.4 −2.11879
\(454\) −4840.93 −0.500431
\(455\) 0 0
\(456\) 25870.3 2.65678
\(457\) 10567.1 1.08164 0.540821 0.841138i \(-0.318114\pi\)
0.540821 + 0.841138i \(0.318114\pi\)
\(458\) −5232.89 −0.533879
\(459\) 2893.95 0.294288
\(460\) 0 0
\(461\) 4733.96 0.478270 0.239135 0.970986i \(-0.423136\pi\)
0.239135 + 0.970986i \(0.423136\pi\)
\(462\) −731.895 −0.0737031
\(463\) −3431.20 −0.344409 −0.172204 0.985061i \(-0.555089\pi\)
−0.172204 + 0.985061i \(0.555089\pi\)
\(464\) 1485.33 0.148610
\(465\) 0 0
\(466\) 12011.0 1.19399
\(467\) −5116.96 −0.507034 −0.253517 0.967331i \(-0.581587\pi\)
−0.253517 + 0.967331i \(0.581587\pi\)
\(468\) 102.975 0.0101710
\(469\) 1051.66 0.103542
\(470\) 0 0
\(471\) −19629.8 −1.92037
\(472\) 2060.82 0.200968
\(473\) −634.841 −0.0617125
\(474\) −28033.2 −2.71648
\(475\) 0 0
\(476\) 67.8476 0.00653317
\(477\) 12298.6 1.18053
\(478\) 11159.0 1.06779
\(479\) 11566.9 1.10335 0.551675 0.834059i \(-0.313989\pi\)
0.551675 + 0.834059i \(0.313989\pi\)
\(480\) 0 0
\(481\) 70.4363 0.00667696
\(482\) −10678.4 −1.00911
\(483\) −2711.89 −0.255477
\(484\) −64.8437 −0.00608975
\(485\) 0 0
\(486\) 14091.4 1.31522
\(487\) 18326.5 1.70525 0.852623 0.522527i \(-0.175010\pi\)
0.852623 + 0.522527i \(0.175010\pi\)
\(488\) 17226.8 1.59799
\(489\) 21605.2 1.99800
\(490\) 0 0
\(491\) −7617.58 −0.700156 −0.350078 0.936721i \(-0.613845\pi\)
−0.350078 + 0.936721i \(0.613845\pi\)
\(492\) −1109.22 −0.101641
\(493\) −1030.17 −0.0941108
\(494\) 2048.62 0.186582
\(495\) 0 0
\(496\) −1871.75 −0.169444
\(497\) 636.980 0.0574899
\(498\) 9570.50 0.861173
\(499\) 12909.1 1.15810 0.579050 0.815292i \(-0.303424\pi\)
0.579050 + 0.815292i \(0.303424\pi\)
\(500\) 0 0
\(501\) −21701.8 −1.93526
\(502\) −2991.30 −0.265953
\(503\) −10165.7 −0.901121 −0.450561 0.892746i \(-0.648776\pi\)
−0.450561 + 0.892746i \(0.648776\pi\)
\(504\) −2568.60 −0.227013
\(505\) 0 0
\(506\) 3346.47 0.294009
\(507\) −17190.6 −1.50584
\(508\) −706.102 −0.0616697
\(509\) 6449.93 0.561666 0.280833 0.959757i \(-0.409389\pi\)
0.280833 + 0.959757i \(0.409389\pi\)
\(510\) 0 0
\(511\) −3104.36 −0.268745
\(512\) 12525.4 1.08115
\(513\) 9824.75 0.845562
\(514\) 2139.68 0.183614
\(515\) 0 0
\(516\) −245.205 −0.0209197
\(517\) −3782.31 −0.321752
\(518\) −110.305 −0.00935623
\(519\) −18293.7 −1.54721
\(520\) 0 0
\(521\) −19327.4 −1.62524 −0.812620 0.582794i \(-0.801959\pi\)
−0.812620 + 0.582794i \(0.801959\pi\)
\(522\) 2448.53 0.205305
\(523\) −6259.09 −0.523310 −0.261655 0.965161i \(-0.584268\pi\)
−0.261655 + 0.965161i \(0.584268\pi\)
\(524\) 857.819 0.0715153
\(525\) 0 0
\(526\) 16884.2 1.39960
\(527\) 1298.18 0.107305
\(528\) 5182.52 0.427160
\(529\) 232.675 0.0191235
\(530\) 0 0
\(531\) 3168.61 0.258956
\(532\) 230.337 0.0187714
\(533\) −1399.08 −0.113698
\(534\) 32254.6 2.61384
\(535\) 0 0
\(536\) −7983.99 −0.643387
\(537\) −10403.0 −0.835985
\(538\) −2696.44 −0.216081
\(539\) 3669.20 0.293217
\(540\) 0 0
\(541\) −14008.2 −1.11323 −0.556616 0.830770i \(-0.687900\pi\)
−0.556616 + 0.830770i \(0.687900\pi\)
\(542\) −12504.6 −0.990991
\(543\) −6367.72 −0.503251
\(544\) −997.834 −0.0786430
\(545\) 0 0
\(546\) −356.565 −0.0279479
\(547\) 4949.45 0.386879 0.193440 0.981112i \(-0.438036\pi\)
0.193440 + 0.981112i \(0.438036\pi\)
\(548\) 863.695 0.0673270
\(549\) 26487.0 2.05909
\(550\) 0 0
\(551\) −3497.35 −0.270404
\(552\) 20588.2 1.58748
\(553\) −3975.60 −0.305714
\(554\) 1551.36 0.118973
\(555\) 0 0
\(556\) 17.0748 0.00130239
\(557\) 3801.58 0.289188 0.144594 0.989491i \(-0.453812\pi\)
0.144594 + 0.989491i \(0.453812\pi\)
\(558\) −3085.54 −0.234088
\(559\) −309.282 −0.0234011
\(560\) 0 0
\(561\) −3594.40 −0.270510
\(562\) −14510.0 −1.08908
\(563\) 9900.11 0.741101 0.370551 0.928812i \(-0.379169\pi\)
0.370551 + 0.928812i \(0.379169\pi\)
\(564\) −1460.90 −0.109069
\(565\) 0 0
\(566\) −12918.3 −0.959361
\(567\) 1263.86 0.0936107
\(568\) −4835.84 −0.357231
\(569\) 5329.16 0.392636 0.196318 0.980540i \(-0.437102\pi\)
0.196318 + 0.980540i \(0.437102\pi\)
\(570\) 0 0
\(571\) −16962.6 −1.24319 −0.621597 0.783337i \(-0.713516\pi\)
−0.621597 + 0.783337i \(0.713516\pi\)
\(572\) −31.5906 −0.00230921
\(573\) 13622.6 0.993181
\(574\) 2190.99 0.159321
\(575\) 0 0
\(576\) 19418.0 1.40466
\(577\) 15487.0 1.11738 0.558692 0.829375i \(-0.311303\pi\)
0.558692 + 0.829375i \(0.311303\pi\)
\(578\) 8781.61 0.631949
\(579\) −10625.3 −0.762643
\(580\) 0 0
\(581\) 1357.26 0.0969169
\(582\) 29163.7 2.07710
\(583\) −3772.94 −0.268026
\(584\) 23567.7 1.66993
\(585\) 0 0
\(586\) 6362.72 0.448535
\(587\) −11084.2 −0.779373 −0.389686 0.920948i \(-0.627417\pi\)
−0.389686 + 0.920948i \(0.627417\pi\)
\(588\) 1417.22 0.0993964
\(589\) 4407.22 0.308313
\(590\) 0 0
\(591\) 27894.0 1.94147
\(592\) 781.066 0.0542257
\(593\) −4349.68 −0.301214 −0.150607 0.988594i \(-0.548123\pi\)
−0.150607 + 0.988594i \(0.548123\pi\)
\(594\) 2110.15 0.145759
\(595\) 0 0
\(596\) 1301.34 0.0894382
\(597\) 6530.40 0.447691
\(598\) 1630.33 0.111487
\(599\) 13183.9 0.899299 0.449650 0.893205i \(-0.351549\pi\)
0.449650 + 0.893205i \(0.351549\pi\)
\(600\) 0 0
\(601\) −18765.0 −1.27361 −0.636806 0.771024i \(-0.719745\pi\)
−0.636806 + 0.771024i \(0.719745\pi\)
\(602\) 484.344 0.0327913
\(603\) −12275.8 −0.829034
\(604\) 1380.84 0.0930223
\(605\) 0 0
\(606\) 3497.29 0.234435
\(607\) −21871.4 −1.46249 −0.731244 0.682116i \(-0.761060\pi\)
−0.731244 + 0.682116i \(0.761060\pi\)
\(608\) −3387.57 −0.225961
\(609\) 608.720 0.0405034
\(610\) 0 0
\(611\) −1842.67 −0.122007
\(612\) −791.970 −0.0523096
\(613\) 3527.85 0.232445 0.116222 0.993223i \(-0.462921\pi\)
0.116222 + 0.993223i \(0.462921\pi\)
\(614\) −4584.56 −0.301332
\(615\) 0 0
\(616\) 787.994 0.0515409
\(617\) 22728.1 1.48298 0.741490 0.670963i \(-0.234119\pi\)
0.741490 + 0.670963i \(0.234119\pi\)
\(618\) −752.893 −0.0490062
\(619\) −21443.3 −1.39237 −0.696187 0.717861i \(-0.745121\pi\)
−0.696187 + 0.717861i \(0.745121\pi\)
\(620\) 0 0
\(621\) 7818.75 0.505243
\(622\) −9760.81 −0.629217
\(623\) 4574.25 0.294163
\(624\) 2524.82 0.161977
\(625\) 0 0
\(626\) 19628.0 1.25319
\(627\) −12202.7 −0.777240
\(628\) 1326.85 0.0843109
\(629\) −541.718 −0.0343398
\(630\) 0 0
\(631\) 21532.0 1.35844 0.679219 0.733936i \(-0.262319\pi\)
0.679219 + 0.733936i \(0.262319\pi\)
\(632\) 30182.0 1.89964
\(633\) −851.038 −0.0534372
\(634\) −42.9141 −0.00268823
\(635\) 0 0
\(636\) −1457.29 −0.0908572
\(637\) 1787.56 0.111187
\(638\) −751.159 −0.0466123
\(639\) −7435.33 −0.460309
\(640\) 0 0
\(641\) 20148.3 1.24151 0.620756 0.784004i \(-0.286826\pi\)
0.620756 + 0.784004i \(0.286826\pi\)
\(642\) 18025.2 1.10810
\(643\) −28869.7 −1.77062 −0.885310 0.465000i \(-0.846054\pi\)
−0.885310 + 0.465000i \(0.846054\pi\)
\(644\) 183.307 0.0112163
\(645\) 0 0
\(646\) −15755.7 −0.959597
\(647\) 1590.02 0.0966155 0.0483077 0.998833i \(-0.484617\pi\)
0.0483077 + 0.998833i \(0.484617\pi\)
\(648\) −9595.02 −0.581679
\(649\) −972.062 −0.0587932
\(650\) 0 0
\(651\) −767.083 −0.0461818
\(652\) −1460.38 −0.0877192
\(653\) −20028.1 −1.20024 −0.600122 0.799909i \(-0.704881\pi\)
−0.600122 + 0.799909i \(0.704881\pi\)
\(654\) −22618.9 −1.35240
\(655\) 0 0
\(656\) −15514.4 −0.923375
\(657\) 36236.5 2.15178
\(658\) 2885.66 0.170965
\(659\) −10520.7 −0.621897 −0.310948 0.950427i \(-0.600647\pi\)
−0.310948 + 0.950427i \(0.600647\pi\)
\(660\) 0 0
\(661\) 3295.83 0.193938 0.0969690 0.995287i \(-0.469085\pi\)
0.0969690 + 0.995287i \(0.469085\pi\)
\(662\) 3603.45 0.211559
\(663\) −1751.12 −0.102576
\(664\) −10304.1 −0.602222
\(665\) 0 0
\(666\) 1287.57 0.0749132
\(667\) −2783.27 −0.161572
\(668\) 1466.91 0.0849649
\(669\) 31187.0 1.80233
\(670\) 0 0
\(671\) −8125.67 −0.467493
\(672\) 589.612 0.0338464
\(673\) 1187.64 0.0680239 0.0340119 0.999421i \(-0.489172\pi\)
0.0340119 + 0.999421i \(0.489172\pi\)
\(674\) −653.460 −0.0373447
\(675\) 0 0
\(676\) 1161.98 0.0661117
\(677\) −13221.4 −0.750574 −0.375287 0.926909i \(-0.622456\pi\)
−0.375287 + 0.926909i \(0.622456\pi\)
\(678\) 6391.55 0.362044
\(679\) 4135.91 0.233758
\(680\) 0 0
\(681\) 14048.0 0.790485
\(682\) 946.578 0.0531471
\(683\) 13831.4 0.774882 0.387441 0.921894i \(-0.373359\pi\)
0.387441 + 0.921894i \(0.373359\pi\)
\(684\) −2688.68 −0.150298
\(685\) 0 0
\(686\) −5677.93 −0.316012
\(687\) 15185.4 0.843320
\(688\) −3429.62 −0.190048
\(689\) −1838.10 −0.101635
\(690\) 0 0
\(691\) −9817.07 −0.540462 −0.270231 0.962796i \(-0.587100\pi\)
−0.270231 + 0.962796i \(0.587100\pi\)
\(692\) 1236.54 0.0679280
\(693\) 1211.58 0.0664128
\(694\) −16017.4 −0.876101
\(695\) 0 0
\(696\) −4621.29 −0.251680
\(697\) 10760.2 0.584750
\(698\) −9539.58 −0.517304
\(699\) −34854.9 −1.88603
\(700\) 0 0
\(701\) 29949.8 1.61368 0.806838 0.590773i \(-0.201177\pi\)
0.806838 + 0.590773i \(0.201177\pi\)
\(702\) 1028.02 0.0552711
\(703\) −1839.09 −0.0986667
\(704\) −5957.03 −0.318912
\(705\) 0 0
\(706\) −29825.0 −1.58991
\(707\) 495.976 0.0263835
\(708\) −375.456 −0.0199301
\(709\) 11307.5 0.598959 0.299479 0.954103i \(-0.403187\pi\)
0.299479 + 0.954103i \(0.403187\pi\)
\(710\) 0 0
\(711\) 46406.3 2.44778
\(712\) −34726.9 −1.82787
\(713\) 3507.36 0.184224
\(714\) 2742.30 0.143737
\(715\) 0 0
\(716\) 703.181 0.0367027
\(717\) −32382.7 −1.68669
\(718\) 31420.6 1.63316
\(719\) −32623.4 −1.69214 −0.846070 0.533071i \(-0.821038\pi\)
−0.846070 + 0.533071i \(0.821038\pi\)
\(720\) 0 0
\(721\) −106.773 −0.00551518
\(722\) −34750.2 −1.79123
\(723\) 30988.0 1.59399
\(724\) 430.420 0.0220945
\(725\) 0 0
\(726\) −2620.89 −0.133981
\(727\) 502.545 0.0256373 0.0128187 0.999918i \(-0.495920\pi\)
0.0128187 + 0.999918i \(0.495920\pi\)
\(728\) 383.895 0.0195441
\(729\) −29783.2 −1.51314
\(730\) 0 0
\(731\) 2378.66 0.120353
\(732\) −3138.51 −0.158474
\(733\) −8631.37 −0.434935 −0.217467 0.976068i \(-0.569780\pi\)
−0.217467 + 0.976068i \(0.569780\pi\)
\(734\) 18487.8 0.929697
\(735\) 0 0
\(736\) −2695.90 −0.135017
\(737\) 3765.95 0.188223
\(738\) −25575.0 −1.27565
\(739\) −18357.5 −0.913792 −0.456896 0.889520i \(-0.651039\pi\)
−0.456896 + 0.889520i \(0.651039\pi\)
\(740\) 0 0
\(741\) −5944.93 −0.294726
\(742\) 2878.52 0.142417
\(743\) −11182.6 −0.552155 −0.276078 0.961135i \(-0.589035\pi\)
−0.276078 + 0.961135i \(0.589035\pi\)
\(744\) 5823.55 0.286965
\(745\) 0 0
\(746\) −14507.8 −0.712021
\(747\) −15843.0 −0.775991
\(748\) 242.960 0.0118763
\(749\) 2556.29 0.124706
\(750\) 0 0
\(751\) 16733.4 0.813063 0.406531 0.913637i \(-0.366738\pi\)
0.406531 + 0.913637i \(0.366738\pi\)
\(752\) −20433.3 −0.990857
\(753\) 8680.53 0.420101
\(754\) −365.950 −0.0176752
\(755\) 0 0
\(756\) 115.587 0.00556064
\(757\) 24402.4 1.17163 0.585813 0.810446i \(-0.300775\pi\)
0.585813 + 0.810446i \(0.300775\pi\)
\(758\) 2290.19 0.109741
\(759\) −9711.19 −0.464419
\(760\) 0 0
\(761\) 8469.33 0.403434 0.201717 0.979444i \(-0.435348\pi\)
0.201717 + 0.979444i \(0.435348\pi\)
\(762\) −28539.7 −1.35680
\(763\) −3207.74 −0.152199
\(764\) −920.805 −0.0436042
\(765\) 0 0
\(766\) −7737.62 −0.364976
\(767\) −473.570 −0.0222941
\(768\) −6496.08 −0.305218
\(769\) 32834.7 1.53973 0.769864 0.638208i \(-0.220324\pi\)
0.769864 + 0.638208i \(0.220324\pi\)
\(770\) 0 0
\(771\) −6209.20 −0.290038
\(772\) 718.202 0.0334827
\(773\) 35571.4 1.65513 0.827564 0.561371i \(-0.189726\pi\)
0.827564 + 0.561371i \(0.189726\pi\)
\(774\) −5653.64 −0.262553
\(775\) 0 0
\(776\) −31399.1 −1.45253
\(777\) 320.097 0.0147792
\(778\) −8500.11 −0.391701
\(779\) 36530.0 1.68013
\(780\) 0 0
\(781\) 2281.01 0.104508
\(782\) −12538.7 −0.573381
\(783\) −1755.02 −0.0801014
\(784\) 19822.3 0.902982
\(785\) 0 0
\(786\) 34671.8 1.57341
\(787\) −15729.6 −0.712452 −0.356226 0.934400i \(-0.615937\pi\)
−0.356226 + 0.934400i \(0.615937\pi\)
\(788\) −1885.47 −0.0852373
\(789\) −48996.7 −2.21081
\(790\) 0 0
\(791\) 906.431 0.0407446
\(792\) −9198.09 −0.412676
\(793\) −3958.67 −0.177272
\(794\) 38819.0 1.73506
\(795\) 0 0
\(796\) −441.415 −0.0196552
\(797\) −7888.07 −0.350577 −0.175288 0.984517i \(-0.556086\pi\)
−0.175288 + 0.984517i \(0.556086\pi\)
\(798\) 9309.91 0.412991
\(799\) 14171.8 0.627485
\(800\) 0 0
\(801\) −53394.2 −2.35530
\(802\) 17107.2 0.753214
\(803\) −11116.6 −0.488538
\(804\) 1454.58 0.0638050
\(805\) 0 0
\(806\) 461.154 0.0201532
\(807\) 7824.86 0.341323
\(808\) −3765.36 −0.163942
\(809\) 5896.97 0.256275 0.128138 0.991756i \(-0.459100\pi\)
0.128138 + 0.991756i \(0.459100\pi\)
\(810\) 0 0
\(811\) 14197.9 0.614744 0.307372 0.951589i \(-0.400550\pi\)
0.307372 + 0.951589i \(0.400550\pi\)
\(812\) −41.1458 −0.00177824
\(813\) 36287.3 1.56538
\(814\) −394.999 −0.0170082
\(815\) 0 0
\(816\) −19418.2 −0.833053
\(817\) 8075.35 0.345803
\(818\) 11454.1 0.489589
\(819\) 590.258 0.0251835
\(820\) 0 0
\(821\) −19841.7 −0.843459 −0.421729 0.906722i \(-0.638577\pi\)
−0.421729 + 0.906722i \(0.638577\pi\)
\(822\) 34909.3 1.48127
\(823\) 28202.2 1.19449 0.597246 0.802058i \(-0.296262\pi\)
0.597246 + 0.802058i \(0.296262\pi\)
\(824\) 810.602 0.0342702
\(825\) 0 0
\(826\) 741.622 0.0312401
\(827\) −34031.0 −1.43092 −0.715462 0.698651i \(-0.753784\pi\)
−0.715462 + 0.698651i \(0.753784\pi\)
\(828\) −2139.71 −0.0898067
\(829\) 4931.55 0.206610 0.103305 0.994650i \(-0.467058\pi\)
0.103305 + 0.994650i \(0.467058\pi\)
\(830\) 0 0
\(831\) −4501.92 −0.187930
\(832\) −2902.15 −0.120930
\(833\) −13748.0 −0.571836
\(834\) 690.138 0.0286541
\(835\) 0 0
\(836\) 824.830 0.0341236
\(837\) 2211.60 0.0913312
\(838\) 25373.0 1.04594
\(839\) −38189.8 −1.57146 −0.785731 0.618568i \(-0.787713\pi\)
−0.785731 + 0.618568i \(0.787713\pi\)
\(840\) 0 0
\(841\) −23764.3 −0.974384
\(842\) −35915.6 −1.46999
\(843\) 42106.8 1.72033
\(844\) 57.5250 0.00234608
\(845\) 0 0
\(846\) −33683.7 −1.36888
\(847\) −371.687 −0.0150783
\(848\) −20382.7 −0.825406
\(849\) 37488.0 1.51541
\(850\) 0 0
\(851\) −1463.59 −0.0589556
\(852\) 881.030 0.0354268
\(853\) −42966.8 −1.72469 −0.862343 0.506325i \(-0.831003\pi\)
−0.862343 + 0.506325i \(0.831003\pi\)
\(854\) 6199.37 0.248405
\(855\) 0 0
\(856\) −19406.8 −0.774898
\(857\) 17281.5 0.688828 0.344414 0.938818i \(-0.388078\pi\)
0.344414 + 0.938818i \(0.388078\pi\)
\(858\) −1276.85 −0.0508052
\(859\) 9316.75 0.370062 0.185031 0.982733i \(-0.440761\pi\)
0.185031 + 0.982733i \(0.440761\pi\)
\(860\) 0 0
\(861\) −6358.10 −0.251665
\(862\) −13413.5 −0.530005
\(863\) 9647.65 0.380544 0.190272 0.981731i \(-0.439063\pi\)
0.190272 + 0.981731i \(0.439063\pi\)
\(864\) −1699.93 −0.0669361
\(865\) 0 0
\(866\) −32083.3 −1.25893
\(867\) −25483.6 −0.998232
\(868\) 51.8501 0.00202754
\(869\) −14236.5 −0.555742
\(870\) 0 0
\(871\) 1834.70 0.0713735
\(872\) 24352.6 0.945737
\(873\) −48277.6 −1.87165
\(874\) −42568.0 −1.64746
\(875\) 0 0
\(876\) −4293.75 −0.165608
\(877\) −19728.7 −0.759624 −0.379812 0.925064i \(-0.624011\pi\)
−0.379812 + 0.925064i \(0.624011\pi\)
\(878\) 32304.3 1.24171
\(879\) −18464.1 −0.708509
\(880\) 0 0
\(881\) 19473.9 0.744712 0.372356 0.928090i \(-0.378550\pi\)
0.372356 + 0.928090i \(0.378550\pi\)
\(882\) 32676.4 1.24748
\(883\) −49092.4 −1.87100 −0.935499 0.353329i \(-0.885050\pi\)
−0.935499 + 0.353329i \(0.885050\pi\)
\(884\) 118.365 0.00450346
\(885\) 0 0
\(886\) 27599.5 1.04653
\(887\) −9292.86 −0.351774 −0.175887 0.984410i \(-0.556279\pi\)
−0.175887 + 0.984410i \(0.556279\pi\)
\(888\) −2430.12 −0.0918348
\(889\) −4047.41 −0.152695
\(890\) 0 0
\(891\) 4525.85 0.170170
\(892\) −2108.05 −0.0791288
\(893\) 48112.0 1.80292
\(894\) 52598.5 1.96774
\(895\) 0 0
\(896\) 3949.89 0.147273
\(897\) −4731.10 −0.176106
\(898\) 943.252 0.0350520
\(899\) −787.273 −0.0292069
\(900\) 0 0
\(901\) 14136.7 0.522709
\(902\) 7845.88 0.289622
\(903\) −1405.53 −0.0517974
\(904\) −6881.46 −0.253179
\(905\) 0 0
\(906\) 55811.5 2.04659
\(907\) −37688.7 −1.37975 −0.689875 0.723928i \(-0.742335\pi\)
−0.689875 + 0.723928i \(0.742335\pi\)
\(908\) −949.559 −0.0347051
\(909\) −5789.42 −0.211246
\(910\) 0 0
\(911\) 33049.6 1.20196 0.600979 0.799265i \(-0.294778\pi\)
0.600979 + 0.799265i \(0.294778\pi\)
\(912\) −65923.1 −2.39357
\(913\) 4860.31 0.176180
\(914\) −28870.0 −1.04479
\(915\) 0 0
\(916\) −1026.44 −0.0370247
\(917\) 4917.06 0.177073
\(918\) −7906.43 −0.284260
\(919\) −23148.0 −0.830883 −0.415442 0.909620i \(-0.636373\pi\)
−0.415442 + 0.909620i \(0.636373\pi\)
\(920\) 0 0
\(921\) 13304.1 0.475986
\(922\) −12933.4 −0.461973
\(923\) 1111.26 0.0396290
\(924\) −143.563 −0.00511134
\(925\) 0 0
\(926\) 9374.21 0.332673
\(927\) 1246.34 0.0441588
\(928\) 605.131 0.0214056
\(929\) −23177.9 −0.818561 −0.409280 0.912409i \(-0.634220\pi\)
−0.409280 + 0.912409i \(0.634220\pi\)
\(930\) 0 0
\(931\) −46673.3 −1.64302
\(932\) 2355.98 0.0828033
\(933\) 28325.1 0.993916
\(934\) 13979.8 0.489757
\(935\) 0 0
\(936\) −4481.13 −0.156485
\(937\) 34574.7 1.20545 0.602724 0.797950i \(-0.294082\pi\)
0.602724 + 0.797950i \(0.294082\pi\)
\(938\) −2873.18 −0.100014
\(939\) −56959.1 −1.97954
\(940\) 0 0
\(941\) 41831.2 1.44916 0.724578 0.689192i \(-0.242034\pi\)
0.724578 + 0.689192i \(0.242034\pi\)
\(942\) 53629.6 1.85493
\(943\) 29071.3 1.00392
\(944\) −5251.40 −0.181058
\(945\) 0 0
\(946\) 1734.42 0.0596097
\(947\) −27231.2 −0.934419 −0.467209 0.884147i \(-0.654741\pi\)
−0.467209 + 0.884147i \(0.654741\pi\)
\(948\) −5498.79 −0.188389
\(949\) −5415.79 −0.185252
\(950\) 0 0
\(951\) 124.534 0.00424635
\(952\) −2952.50 −0.100516
\(953\) −40939.4 −1.39156 −0.695781 0.718254i \(-0.744942\pi\)
−0.695781 + 0.718254i \(0.744942\pi\)
\(954\) −33600.3 −1.14030
\(955\) 0 0
\(956\) 2188.87 0.0740515
\(957\) 2179.81 0.0736292
\(958\) −31601.3 −1.06575
\(959\) 4950.74 0.166703
\(960\) 0 0
\(961\) −28798.9 −0.966698
\(962\) −192.436 −0.00644945
\(963\) −29839.0 −0.998491
\(964\) −2094.60 −0.0699820
\(965\) 0 0
\(966\) 7409.03 0.246772
\(967\) 46173.1 1.53550 0.767750 0.640750i \(-0.221376\pi\)
0.767750 + 0.640750i \(0.221376\pi\)
\(968\) 2821.78 0.0936937
\(969\) 45721.8 1.51579
\(970\) 0 0
\(971\) −5153.91 −0.170337 −0.0851683 0.996367i \(-0.527143\pi\)
−0.0851683 + 0.996367i \(0.527143\pi\)
\(972\) 2764.06 0.0912111
\(973\) 97.8734 0.00322474
\(974\) −50069.0 −1.64714
\(975\) 0 0
\(976\) −43897.6 −1.43968
\(977\) −9692.13 −0.317378 −0.158689 0.987329i \(-0.550727\pi\)
−0.158689 + 0.987329i \(0.550727\pi\)
\(978\) −59026.5 −1.92992
\(979\) 16380.2 0.534744
\(980\) 0 0
\(981\) 37443.3 1.21863
\(982\) 20811.6 0.676299
\(983\) −32915.7 −1.06800 −0.534002 0.845483i \(-0.679313\pi\)
−0.534002 + 0.845483i \(0.679313\pi\)
\(984\) 48269.5 1.56380
\(985\) 0 0
\(986\) 2814.48 0.0909041
\(987\) −8373.97 −0.270057
\(988\) 401.841 0.0129395
\(989\) 6426.54 0.206625
\(990\) 0 0
\(991\) 29477.9 0.944901 0.472451 0.881357i \(-0.343370\pi\)
0.472451 + 0.881357i \(0.343370\pi\)
\(992\) −762.560 −0.0244066
\(993\) −10456.9 −0.334180
\(994\) −1740.26 −0.0555310
\(995\) 0 0
\(996\) 1877.28 0.0597227
\(997\) 31944.4 1.01473 0.507366 0.861731i \(-0.330619\pi\)
0.507366 + 0.861731i \(0.330619\pi\)
\(998\) −35268.4 −1.11864
\(999\) −922.883 −0.0292279
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.4.a.b.1.1 2
3.2 odd 2 2475.4.a.q.1.2 2
5.2 odd 4 275.4.b.c.199.1 4
5.3 odd 4 275.4.b.c.199.4 4
5.4 even 2 11.4.a.a.1.2 2
15.14 odd 2 99.4.a.c.1.1 2
20.19 odd 2 176.4.a.i.1.2 2
35.34 odd 2 539.4.a.e.1.2 2
40.19 odd 2 704.4.a.n.1.1 2
40.29 even 2 704.4.a.p.1.2 2
55.4 even 10 121.4.c.c.27.2 8
55.9 even 10 121.4.c.c.81.1 8
55.14 even 10 121.4.c.c.9.2 8
55.19 odd 10 121.4.c.f.9.1 8
55.24 odd 10 121.4.c.f.81.2 8
55.29 odd 10 121.4.c.f.27.1 8
55.39 odd 10 121.4.c.f.3.2 8
55.49 even 10 121.4.c.c.3.1 8
55.54 odd 2 121.4.a.c.1.1 2
60.59 even 2 1584.4.a.bc.1.1 2
65.64 even 2 1859.4.a.a.1.1 2
165.164 even 2 1089.4.a.v.1.2 2
220.219 even 2 1936.4.a.w.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.4.a.a.1.2 2 5.4 even 2
99.4.a.c.1.1 2 15.14 odd 2
121.4.a.c.1.1 2 55.54 odd 2
121.4.c.c.3.1 8 55.49 even 10
121.4.c.c.9.2 8 55.14 even 10
121.4.c.c.27.2 8 55.4 even 10
121.4.c.c.81.1 8 55.9 even 10
121.4.c.f.3.2 8 55.39 odd 10
121.4.c.f.9.1 8 55.19 odd 10
121.4.c.f.27.1 8 55.29 odd 10
121.4.c.f.81.2 8 55.24 odd 10
176.4.a.i.1.2 2 20.19 odd 2
275.4.a.b.1.1 2 1.1 even 1 trivial
275.4.b.c.199.1 4 5.2 odd 4
275.4.b.c.199.4 4 5.3 odd 4
539.4.a.e.1.2 2 35.34 odd 2
704.4.a.n.1.1 2 40.19 odd 2
704.4.a.p.1.2 2 40.29 even 2
1089.4.a.v.1.2 2 165.164 even 2
1584.4.a.bc.1.1 2 60.59 even 2
1859.4.a.a.1.1 2 65.64 even 2
1936.4.a.w.1.2 2 220.219 even 2
2475.4.a.q.1.2 2 3.2 odd 2