Properties

Label 275.3.x.f.226.2
Level $275$
Weight $3$
Character 275.226
Analytic conductor $7.493$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(51,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.51"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 7])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.x (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-5,13] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 25x^{10} + 235x^{8} + 1025x^{6} + 2090x^{4} + 1880x^{2} + 605 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 226.2
Root \(-0.914937i\) of defining polynomial
Character \(\chi\) \(=\) 275.226
Dual form 275.3.x.f.101.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.289909 + 0.0941972i) q^{2} +(4.17687 + 3.03467i) q^{3} +(-3.16089 + 2.29652i) q^{4} +(-1.49677 - 0.486330i) q^{6} +(5.94293 + 8.17974i) q^{7} +(1.41674 - 1.94998i) q^{8} +(5.45583 + 16.7913i) q^{9} +(-1.50807 - 10.8961i) q^{11} -20.1718 q^{12} +(-4.61316 + 1.49891i) q^{13} +(-2.49342 - 1.81157i) q^{14} +(4.60237 - 14.1646i) q^{16} +(2.71930 + 0.883556i) q^{17} +(-3.16339 - 4.35403i) q^{18} +(-12.5616 + 17.2895i) q^{19} +52.2005i q^{21} +(1.46359 + 3.01683i) q^{22} +12.1155 q^{23} +(11.8351 - 3.84545i) q^{24} +(1.19620 - 0.869094i) q^{26} +(-13.8091 + 42.4999i) q^{27} +(-37.5699 - 12.2072i) q^{28} +(-28.0610 - 38.6227i) q^{29} +(9.63737 + 29.6608i) q^{31} +14.1812i q^{32} +(26.7672 - 50.0882i) q^{33} -0.871580 q^{34} +(-55.8070 - 40.5461i) q^{36} +(16.0724 - 11.6773i) q^{37} +(2.01309 - 6.19566i) q^{38} +(-23.8172 - 7.73869i) q^{39} +(23.5474 - 32.4102i) q^{41} +(-4.91714 - 15.1334i) q^{42} +28.7133i q^{43} +(29.7901 + 30.9782i) q^{44} +(-3.51240 + 1.14125i) q^{46} +(-3.18139 - 2.31141i) q^{47} +(62.2085 - 45.1971i) q^{48} +(-16.4479 + 50.6214i) q^{49} +(8.67687 + 11.9427i) q^{51} +(11.1394 - 15.3321i) q^{52} +(19.4659 + 59.9100i) q^{53} -13.6219i q^{54} +24.3699 q^{56} +(-104.936 + 34.0958i) q^{57} +(11.7733 + 8.55381i) q^{58} +(41.4758 - 30.1339i) q^{59} +(31.6001 + 10.2675i) q^{61} +(-5.58793 - 7.69112i) q^{62} +(-104.925 + 144.417i) q^{63} +(17.0737 + 52.5473i) q^{64} +(-3.04189 + 17.0424i) q^{66} +90.1298 q^{67} +(-10.6245 + 3.45212i) q^{68} +(50.6049 + 36.7666i) q^{69} +(1.85591 - 5.71191i) q^{71} +(40.4722 + 13.1502i) q^{72} +(-76.9424 - 105.902i) q^{73} +(-3.55957 + 4.89933i) q^{74} -83.4983i q^{76} +(80.1652 - 77.0905i) q^{77} +7.63380 q^{78} +(85.4604 - 27.7678i) q^{79} +(-58.1000 + 42.2121i) q^{81} +(-3.77365 + 11.6141i) q^{82} +(84.0686 + 27.3155i) q^{83} +(-119.880 - 165.000i) q^{84} +(-2.70472 - 8.32426i) q^{86} -246.478i q^{87} +(-23.3837 - 12.4963i) q^{88} -118.531 q^{89} +(-39.6764 - 28.8266i) q^{91} +(-38.2959 + 27.8236i) q^{92} +(-49.7567 + 153.135i) q^{93} +(1.14004 + 0.370422i) q^{94} +(-43.0353 + 59.2330i) q^{96} +(20.6501 + 63.5544i) q^{97} -16.2250i q^{98} +(174.733 - 84.7699i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 5 q^{2} + 13 q^{3} + 13 q^{4} + 20 q^{6} + 5 q^{7} + 35 q^{8} + 4 q^{9} + 12 q^{11} + 2 q^{12} - 70 q^{13} - 60 q^{14} - 43 q^{16} + 15 q^{17} + 30 q^{18} - 80 q^{19} + 10 q^{22} - 42 q^{23} + 210 q^{24}+ \cdots + 669 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{9}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.289909 + 0.0941972i −0.144955 + 0.0470986i −0.380596 0.924742i \(-0.624281\pi\)
0.235641 + 0.971840i \(0.424281\pi\)
\(3\) 4.17687 + 3.03467i 1.39229 + 1.01156i 0.995610 + 0.0935994i \(0.0298373\pi\)
0.396679 + 0.917957i \(0.370163\pi\)
\(4\) −3.16089 + 2.29652i −0.790223 + 0.574131i
\(5\) 0 0
\(6\) −1.49677 0.486330i −0.249462 0.0810550i
\(7\) 5.94293 + 8.17974i 0.848990 + 1.16853i 0.984084 + 0.177701i \(0.0568661\pi\)
−0.135095 + 0.990833i \(0.543134\pi\)
\(8\) 1.41674 1.94998i 0.177093 0.243747i
\(9\) 5.45583 + 16.7913i 0.606203 + 1.86570i
\(10\) 0 0
\(11\) −1.50807 10.8961i −0.137097 0.990558i
\(12\) −20.1718 −1.68099
\(13\) −4.61316 + 1.49891i −0.354859 + 0.115301i −0.481021 0.876709i \(-0.659734\pi\)
0.126162 + 0.992010i \(0.459734\pi\)
\(14\) −2.49342 1.81157i −0.178101 0.129398i
\(15\) 0 0
\(16\) 4.60237 14.1646i 0.287648 0.885290i
\(17\) 2.71930 + 0.883556i 0.159959 + 0.0519739i 0.387902 0.921701i \(-0.373200\pi\)
−0.227943 + 0.973675i \(0.573200\pi\)
\(18\) −3.16339 4.35403i −0.175744 0.241891i
\(19\) −12.5616 + 17.2895i −0.661136 + 0.909975i −0.999518 0.0310333i \(-0.990120\pi\)
0.338383 + 0.941009i \(0.390120\pi\)
\(20\) 0 0
\(21\) 52.2005i 2.48574i
\(22\) 1.46359 + 3.01683i 0.0665267 + 0.137129i
\(23\) 12.1155 0.526762 0.263381 0.964692i \(-0.415162\pi\)
0.263381 + 0.964692i \(0.415162\pi\)
\(24\) 11.8351 3.84545i 0.493128 0.160227i
\(25\) 0 0
\(26\) 1.19620 0.869094i 0.0460079 0.0334267i
\(27\) −13.8091 + 42.4999i −0.511447 + 1.57407i
\(28\) −37.5699 12.2072i −1.34178 0.435972i
\(29\) −28.0610 38.6227i −0.967622 1.33182i −0.943239 0.332115i \(-0.892238\pi\)
−0.0243833 0.999703i \(-0.507762\pi\)
\(30\) 0 0
\(31\) 9.63737 + 29.6608i 0.310883 + 0.956800i 0.977416 + 0.211324i \(0.0677776\pi\)
−0.666533 + 0.745476i \(0.732222\pi\)
\(32\) 14.1812i 0.443163i
\(33\) 26.7672 50.0882i 0.811127 1.51782i
\(34\) −0.871580 −0.0256347
\(35\) 0 0
\(36\) −55.8070 40.5461i −1.55019 1.12628i
\(37\) 16.0724 11.6773i 0.434389 0.315602i −0.349012 0.937118i \(-0.613483\pi\)
0.783402 + 0.621516i \(0.213483\pi\)
\(38\) 2.01309 6.19566i 0.0529761 0.163044i
\(39\) −23.8172 7.73869i −0.610699 0.198428i
\(40\) 0 0
\(41\) 23.5474 32.4102i 0.574326 0.790493i −0.418733 0.908110i \(-0.637526\pi\)
0.993059 + 0.117617i \(0.0375255\pi\)
\(42\) −4.91714 15.1334i −0.117075 0.360319i
\(43\) 28.7133i 0.667752i 0.942617 + 0.333876i \(0.108357\pi\)
−0.942617 + 0.333876i \(0.891643\pi\)
\(44\) 29.7901 + 30.9782i 0.677047 + 0.704050i
\(45\) 0 0
\(46\) −3.51240 + 1.14125i −0.0763566 + 0.0248098i
\(47\) −3.18139 2.31141i −0.0676891 0.0491790i 0.553426 0.832898i \(-0.313320\pi\)
−0.621115 + 0.783719i \(0.713320\pi\)
\(48\) 62.2085 45.1971i 1.29601 0.941607i
\(49\) −16.4479 + 50.6214i −0.335671 + 1.03309i
\(50\) 0 0
\(51\) 8.67687 + 11.9427i 0.170135 + 0.234170i
\(52\) 11.1394 15.3321i 0.214220 0.294848i
\(53\) 19.4659 + 59.9100i 0.367282 + 1.13038i 0.948540 + 0.316658i \(0.102561\pi\)
−0.581258 + 0.813719i \(0.697439\pi\)
\(54\) 13.6219i 0.252257i
\(55\) 0 0
\(56\) 24.3699 0.435177
\(57\) −104.936 + 34.0958i −1.84098 + 0.598172i
\(58\) 11.7733 + 8.55381i 0.202988 + 0.147479i
\(59\) 41.4758 30.1339i 0.702979 0.510744i −0.177922 0.984045i \(-0.556937\pi\)
0.880901 + 0.473300i \(0.156937\pi\)
\(60\) 0 0
\(61\) 31.6001 + 10.2675i 0.518035 + 0.168320i 0.556353 0.830946i \(-0.312200\pi\)
−0.0383184 + 0.999266i \(0.512200\pi\)
\(62\) −5.58793 7.69112i −0.0901279 0.124050i
\(63\) −104.925 + 144.417i −1.66548 + 2.29233i
\(64\) 17.0737 + 52.5473i 0.266776 + 0.821052i
\(65\) 0 0
\(66\) −3.04189 + 17.0424i −0.0460892 + 0.258218i
\(67\) 90.1298 1.34522 0.672611 0.739997i \(-0.265173\pi\)
0.672611 + 0.739997i \(0.265173\pi\)
\(68\) −10.6245 + 3.45212i −0.156243 + 0.0507665i
\(69\) 50.6049 + 36.7666i 0.733405 + 0.532850i
\(70\) 0 0
\(71\) 1.85591 5.71191i 0.0261396 0.0804494i −0.937136 0.348965i \(-0.886533\pi\)
0.963275 + 0.268516i \(0.0865331\pi\)
\(72\) 40.4722 + 13.1502i 0.562114 + 0.182642i
\(73\) −76.9424 105.902i −1.05401 1.45071i −0.885284 0.465051i \(-0.846036\pi\)
−0.168722 0.985664i \(-0.553964\pi\)
\(74\) −3.55957 + 4.89933i −0.0481023 + 0.0662072i
\(75\) 0 0
\(76\) 83.4983i 1.09866i
\(77\) 80.1652 77.0905i 1.04111 1.00118i
\(78\) 7.63380 0.0978693
\(79\) 85.4604 27.7678i 1.08178 0.351491i 0.286714 0.958016i \(-0.407437\pi\)
0.795064 + 0.606525i \(0.207437\pi\)
\(80\) 0 0
\(81\) −58.1000 + 42.2121i −0.717284 + 0.521137i
\(82\) −3.77365 + 11.6141i −0.0460202 + 0.141636i
\(83\) 84.0686 + 27.3155i 1.01287 + 0.329103i 0.767999 0.640451i \(-0.221253\pi\)
0.244876 + 0.969554i \(0.421253\pi\)
\(84\) −119.880 165.000i −1.42714 1.96429i
\(85\) 0 0
\(86\) −2.70472 8.32426i −0.0314502 0.0967937i
\(87\) 246.478i 2.83308i
\(88\) −23.3837 12.4963i −0.265724 0.142003i
\(89\) −118.531 −1.33180 −0.665902 0.746039i \(-0.731953\pi\)
−0.665902 + 0.746039i \(0.731953\pi\)
\(90\) 0 0
\(91\) −39.6764 28.8266i −0.436004 0.316775i
\(92\) −38.2959 + 27.8236i −0.416260 + 0.302430i
\(93\) −49.7567 + 153.135i −0.535018 + 1.64662i
\(94\) 1.14004 + 0.370422i 0.0121281 + 0.00394066i
\(95\) 0 0
\(96\) −43.0353 + 59.2330i −0.448284 + 0.617010i
\(97\) 20.6501 + 63.5544i 0.212887 + 0.655200i 0.999297 + 0.0374942i \(0.0119376\pi\)
−0.786410 + 0.617705i \(0.788062\pi\)
\(98\) 16.2250i 0.165561i
\(99\) 174.733 84.7699i 1.76498 0.856262i
\(100\) 0 0
\(101\) 12.3073 3.99890i 0.121855 0.0395931i −0.247455 0.968899i \(-0.579594\pi\)
0.369310 + 0.929306i \(0.379594\pi\)
\(102\) −3.64047 2.64496i −0.0356909 0.0259310i
\(103\) 91.4263 66.4251i 0.887634 0.644904i −0.0476260 0.998865i \(-0.515166\pi\)
0.935260 + 0.353961i \(0.115166\pi\)
\(104\) −3.61282 + 11.1191i −0.0347387 + 0.106915i
\(105\) 0 0
\(106\) −11.2867 15.5348i −0.106478 0.146555i
\(107\) 9.42241 12.9688i 0.0880599 0.121204i −0.762714 0.646736i \(-0.776134\pi\)
0.850774 + 0.525532i \(0.176134\pi\)
\(108\) −53.9531 166.051i −0.499566 1.53751i
\(109\) 156.813i 1.43865i −0.694671 0.719327i \(-0.744450\pi\)
0.694671 0.719327i \(-0.255550\pi\)
\(110\) 0 0
\(111\) 102.569 0.924045
\(112\) 143.215 46.5333i 1.27870 0.415476i
\(113\) 25.8896 + 18.8099i 0.229112 + 0.166459i 0.696419 0.717636i \(-0.254776\pi\)
−0.467307 + 0.884095i \(0.654776\pi\)
\(114\) 27.2102 19.7694i 0.238686 0.173416i
\(115\) 0 0
\(116\) 177.396 + 57.6394i 1.52928 + 0.496892i
\(117\) −50.3372 69.2833i −0.430233 0.592165i
\(118\) −9.18568 + 12.6430i −0.0778447 + 0.107144i
\(119\) 8.93338 + 27.4941i 0.0750704 + 0.231043i
\(120\) 0 0
\(121\) −116.451 + 32.8642i −0.962409 + 0.271605i
\(122\) −10.1283 −0.0830192
\(123\) 196.709 63.9145i 1.59926 0.519630i
\(124\) −98.5794 71.6221i −0.794995 0.577598i
\(125\) 0 0
\(126\) 16.8151 51.7514i 0.133453 0.410726i
\(127\) −102.574 33.3284i −0.807671 0.262428i −0.124060 0.992275i \(-0.539592\pi\)
−0.683611 + 0.729846i \(0.739592\pi\)
\(128\) −43.2416 59.5170i −0.337825 0.464977i
\(129\) −87.1355 + 119.932i −0.675469 + 0.929703i
\(130\) 0 0
\(131\) 48.6741i 0.371558i −0.982592 0.185779i \(-0.940519\pi\)
0.982592 0.185779i \(-0.0594808\pi\)
\(132\) 30.4205 + 219.795i 0.230458 + 1.66511i
\(133\) −216.076 −1.62463
\(134\) −26.1295 + 8.48998i −0.194996 + 0.0633580i
\(135\) 0 0
\(136\) 5.57546 4.05081i 0.0409961 0.0297854i
\(137\) 23.2157 71.4507i 0.169458 0.521538i −0.829879 0.557943i \(-0.811591\pi\)
0.999337 + 0.0364052i \(0.0115907\pi\)
\(138\) −18.1341 5.89214i −0.131407 0.0426967i
\(139\) −28.3745 39.0542i −0.204133 0.280965i 0.694660 0.719338i \(-0.255555\pi\)
−0.898793 + 0.438373i \(0.855555\pi\)
\(140\) 0 0
\(141\) −6.27385 19.3089i −0.0444954 0.136943i
\(142\) 1.83076i 0.0128926i
\(143\) 23.2892 + 48.0052i 0.162862 + 0.335700i
\(144\) 262.953 1.82606
\(145\) 0 0
\(146\) 32.2820 + 23.4542i 0.221110 + 0.160646i
\(147\) −222.320 + 161.525i −1.51238 + 1.09881i
\(148\) −23.9860 + 73.8213i −0.162068 + 0.498793i
\(149\) 114.600 + 37.2357i 0.769126 + 0.249904i 0.667191 0.744887i \(-0.267497\pi\)
0.101935 + 0.994791i \(0.467497\pi\)
\(150\) 0 0
\(151\) −45.4102 + 62.5018i −0.300730 + 0.413919i −0.932462 0.361268i \(-0.882344\pi\)
0.631733 + 0.775186i \(0.282344\pi\)
\(152\) 15.9177 + 48.9896i 0.104722 + 0.322300i
\(153\) 50.4812i 0.329943i
\(154\) −15.9789 + 29.9006i −0.103759 + 0.194160i
\(155\) 0 0
\(156\) 93.0559 30.2357i 0.596512 0.193819i
\(157\) 43.8515 + 31.8599i 0.279309 + 0.202930i 0.718616 0.695407i \(-0.244776\pi\)
−0.439307 + 0.898337i \(0.644776\pi\)
\(158\) −22.1601 + 16.1003i −0.140254 + 0.101900i
\(159\) −100.501 + 309.309i −0.632079 + 1.94534i
\(160\) 0 0
\(161\) 72.0017 + 99.1018i 0.447215 + 0.615539i
\(162\) 12.8675 17.7105i 0.0794287 0.109324i
\(163\) 62.7761 + 193.205i 0.385129 + 1.18531i 0.936386 + 0.350971i \(0.114148\pi\)
−0.551257 + 0.834336i \(0.685852\pi\)
\(164\) 156.522i 0.954404i
\(165\) 0 0
\(166\) −26.9453 −0.162321
\(167\) −126.214 + 41.0093i −0.755771 + 0.245565i −0.661462 0.749978i \(-0.730064\pi\)
−0.0943081 + 0.995543i \(0.530064\pi\)
\(168\) 101.790 + 73.9546i 0.605891 + 0.440206i
\(169\) −117.689 + 85.5063i −0.696387 + 0.505954i
\(170\) 0 0
\(171\) −358.848 116.597i −2.09853 0.681852i
\(172\) −65.9408 90.7598i −0.383377 0.527673i
\(173\) 65.7416 90.4855i 0.380009 0.523037i −0.575578 0.817747i \(-0.695223\pi\)
0.955587 + 0.294709i \(0.0952229\pi\)
\(174\) 23.2175 + 71.4562i 0.133434 + 0.410668i
\(175\) 0 0
\(176\) −161.281 28.7868i −0.916367 0.163562i
\(177\) 264.685 1.49540
\(178\) 34.3631 11.1652i 0.193051 0.0627261i
\(179\) 38.7619 + 28.1621i 0.216547 + 0.157330i 0.690771 0.723074i \(-0.257271\pi\)
−0.474224 + 0.880404i \(0.657271\pi\)
\(180\) 0 0
\(181\) 2.09873 6.45923i 0.0115952 0.0356864i −0.945092 0.326806i \(-0.894028\pi\)
0.956687 + 0.291119i \(0.0940277\pi\)
\(182\) 14.2179 + 4.61968i 0.0781204 + 0.0253829i
\(183\) 100.831 + 138.782i 0.550989 + 0.758371i
\(184\) 17.1646 23.6250i 0.0932857 0.128397i
\(185\) 0 0
\(186\) 49.0823i 0.263883i
\(187\) 5.52645 30.9624i 0.0295532 0.165574i
\(188\) 15.3642 0.0817246
\(189\) −429.705 + 139.619i −2.27357 + 0.738728i
\(190\) 0 0
\(191\) 60.7195 44.1153i 0.317903 0.230970i −0.417377 0.908733i \(-0.637051\pi\)
0.735280 + 0.677763i \(0.237051\pi\)
\(192\) −88.1494 + 271.296i −0.459112 + 1.41300i
\(193\) −360.857 117.250i −1.86973 0.607511i −0.991645 0.128998i \(-0.958824\pi\)
−0.878081 0.478513i \(-0.841176\pi\)
\(194\) −11.9733 16.4798i −0.0617180 0.0849475i
\(195\) 0 0
\(196\) −64.2633 197.782i −0.327874 1.00909i
\(197\) 91.4898i 0.464415i 0.972666 + 0.232208i \(0.0745949\pi\)
−0.972666 + 0.232208i \(0.925405\pi\)
\(198\) −42.6715 + 41.0349i −0.215513 + 0.207247i
\(199\) 24.0213 0.120710 0.0603551 0.998177i \(-0.480777\pi\)
0.0603551 + 0.998177i \(0.480777\pi\)
\(200\) 0 0
\(201\) 376.460 + 273.514i 1.87294 + 1.36077i
\(202\) −3.19133 + 2.31864i −0.0157987 + 0.0114784i
\(203\) 149.159 459.064i 0.734773 2.26140i
\(204\) −54.8533 17.8229i −0.268889 0.0873673i
\(205\) 0 0
\(206\) −20.2483 + 27.8693i −0.0982926 + 0.135288i
\(207\) 66.1002 + 203.436i 0.319325 + 0.982781i
\(208\) 72.2423i 0.347319i
\(209\) 207.333 + 110.799i 0.992023 + 0.530138i
\(210\) 0 0
\(211\) −349.688 + 113.620i −1.65729 + 0.538486i −0.980301 0.197509i \(-0.936715\pi\)
−0.676987 + 0.735995i \(0.736715\pi\)
\(212\) −199.115 144.665i −0.939219 0.682383i
\(213\) 25.0856 18.2258i 0.117773 0.0855671i
\(214\) −1.51002 + 4.64735i −0.00705615 + 0.0217166i
\(215\) 0 0
\(216\) 63.3100 + 87.1387i 0.293102 + 0.403420i
\(217\) −185.343 + 255.103i −0.854117 + 1.17559i
\(218\) 14.7714 + 45.4616i 0.0677586 + 0.208540i
\(219\) 675.834i 3.08600i
\(220\) 0 0
\(221\) −13.8690 −0.0627555
\(222\) −29.7357 + 9.66172i −0.133945 + 0.0435212i
\(223\) −143.396 104.183i −0.643032 0.467190i 0.217858 0.975980i \(-0.430093\pi\)
−0.860891 + 0.508790i \(0.830093\pi\)
\(224\) −115.999 + 84.2779i −0.517851 + 0.376241i
\(225\) 0 0
\(226\) −9.27747 3.01443i −0.0410508 0.0133382i
\(227\) −10.8732 14.9656i −0.0478994 0.0659279i 0.784395 0.620261i \(-0.212973\pi\)
−0.832295 + 0.554333i \(0.812973\pi\)
\(228\) 253.390 348.761i 1.11136 1.52966i
\(229\) −41.3284 127.196i −0.180473 0.555440i 0.819368 0.573268i \(-0.194325\pi\)
−0.999841 + 0.0178283i \(0.994325\pi\)
\(230\) 0 0
\(231\) 568.784 78.7219i 2.46227 0.340787i
\(232\) −115.069 −0.495985
\(233\) 41.8780 13.6070i 0.179734 0.0583991i −0.217767 0.976001i \(-0.569877\pi\)
0.397501 + 0.917602i \(0.369877\pi\)
\(234\) 21.1195 + 15.3442i 0.0902544 + 0.0655736i
\(235\) 0 0
\(236\) −61.8973 + 190.500i −0.262277 + 0.807204i
\(237\) 441.223 + 143.362i 1.86170 + 0.604903i
\(238\) −5.17974 7.12930i −0.0217636 0.0299550i
\(239\) 97.2433 133.844i 0.406876 0.560017i −0.555577 0.831465i \(-0.687503\pi\)
0.962453 + 0.271448i \(0.0875026\pi\)
\(240\) 0 0
\(241\) 68.3979i 0.283809i 0.989880 + 0.141904i \(0.0453225\pi\)
−0.989880 + 0.141904i \(0.954677\pi\)
\(242\) 30.6646 20.4970i 0.126713 0.0846985i
\(243\) 31.4080 0.129251
\(244\) −123.464 + 40.1160i −0.506001 + 0.164410i
\(245\) 0 0
\(246\) −51.0071 + 37.0588i −0.207346 + 0.150645i
\(247\) 32.0332 98.5880i 0.129689 0.399142i
\(248\) 71.4915 + 23.2290i 0.288272 + 0.0936653i
\(249\) 268.250 + 369.214i 1.07731 + 1.48279i
\(250\) 0 0
\(251\) 104.767 + 322.440i 0.417399 + 1.28462i 0.910087 + 0.414417i \(0.136014\pi\)
−0.492688 + 0.870206i \(0.663986\pi\)
\(252\) 697.449i 2.76766i
\(253\) −18.2710 132.012i −0.0722175 0.521788i
\(254\) 32.8767 0.129436
\(255\) 0 0
\(256\) −160.655 116.723i −0.627559 0.455949i
\(257\) −203.807 + 148.075i −0.793025 + 0.576167i −0.908860 0.417102i \(-0.863046\pi\)
0.115835 + 0.993269i \(0.463046\pi\)
\(258\) 13.9641 42.9772i 0.0541246 0.166578i
\(259\) 191.034 + 62.0708i 0.737584 + 0.239656i
\(260\) 0 0
\(261\) 495.430 681.901i 1.89820 2.61265i
\(262\) 4.58496 + 14.1111i 0.0174999 + 0.0538590i
\(263\) 424.803i 1.61522i 0.589717 + 0.807610i \(0.299239\pi\)
−0.589717 + 0.807610i \(0.700761\pi\)
\(264\) −59.7486 123.157i −0.226320 0.466505i
\(265\) 0 0
\(266\) 62.6425 20.3538i 0.235498 0.0765180i
\(267\) −495.086 359.701i −1.85426 1.34720i
\(268\) −284.891 + 206.985i −1.06303 + 0.772333i
\(269\) 154.300 474.888i 0.573608 1.76538i −0.0672640 0.997735i \(-0.521427\pi\)
0.640872 0.767648i \(-0.278573\pi\)
\(270\) 0 0
\(271\) −138.031 189.983i −0.509339 0.701045i 0.474468 0.880273i \(-0.342640\pi\)
−0.983808 + 0.179227i \(0.942640\pi\)
\(272\) 25.0305 34.4515i 0.0920239 0.126660i
\(273\) −78.2437 240.809i −0.286607 0.882086i
\(274\) 22.9011i 0.0835806i
\(275\) 0 0
\(276\) −244.392 −0.885479
\(277\) −129.339 + 42.0248i −0.466928 + 0.151714i −0.533026 0.846099i \(-0.678945\pi\)
0.0660976 + 0.997813i \(0.478945\pi\)
\(278\) 11.9048 + 8.64937i 0.0428232 + 0.0311128i
\(279\) −445.464 + 323.648i −1.59664 + 1.16003i
\(280\) 0 0
\(281\) −287.964 93.5652i −1.02478 0.332972i −0.252057 0.967712i \(-0.581107\pi\)
−0.772726 + 0.634740i \(0.781107\pi\)
\(282\) 3.63769 + 5.00685i 0.0128996 + 0.0177548i
\(283\) 6.25933 8.61523i 0.0221178 0.0304425i −0.797815 0.602902i \(-0.794011\pi\)
0.819933 + 0.572460i \(0.194011\pi\)
\(284\) 7.25119 + 22.3169i 0.0255324 + 0.0785805i
\(285\) 0 0
\(286\) −11.2737 11.7234i −0.0394186 0.0409908i
\(287\) 405.047 1.41131
\(288\) −238.121 + 77.3703i −0.826810 + 0.268647i
\(289\) −227.192 165.065i −0.786131 0.571158i
\(290\) 0 0
\(291\) −106.614 + 328.124i −0.366371 + 1.12757i
\(292\) 486.414 + 158.045i 1.66580 + 0.541251i
\(293\) 193.994 + 267.010i 0.662095 + 0.911296i 0.999549 0.0300463i \(-0.00956549\pi\)
−0.337453 + 0.941342i \(0.609565\pi\)
\(294\) 49.2374 67.7695i 0.167474 0.230509i
\(295\) 0 0
\(296\) 47.8845i 0.161772i
\(297\) 483.910 + 86.3727i 1.62933 + 0.290817i
\(298\) −36.7310 −0.123259
\(299\) −55.8909 + 18.1600i −0.186926 + 0.0607359i
\(300\) 0 0
\(301\) −234.868 + 170.641i −0.780291 + 0.566914i
\(302\) 7.27734 22.3973i 0.0240971 0.0741634i
\(303\) 63.5415 + 20.6459i 0.209708 + 0.0681382i
\(304\) 187.087 + 257.503i 0.615418 + 0.847050i
\(305\) 0 0
\(306\) −4.75519 14.6350i −0.0155398 0.0478267i
\(307\) 111.473i 0.363104i −0.983381 0.181552i \(-0.941888\pi\)
0.983381 0.181552i \(-0.0581121\pi\)
\(308\) −76.3534 + 427.776i −0.247901 + 1.38888i
\(309\) 583.454 1.88820
\(310\) 0 0
\(311\) −327.747 238.122i −1.05385 0.765665i −0.0809071 0.996722i \(-0.525782\pi\)
−0.972940 + 0.231057i \(0.925782\pi\)
\(312\) −48.8331 + 35.4794i −0.156516 + 0.113716i
\(313\) −52.4582 + 161.450i −0.167598 + 0.515814i −0.999218 0.0395307i \(-0.987414\pi\)
0.831620 + 0.555345i \(0.187414\pi\)
\(314\) −15.7141 5.10581i −0.0500448 0.0162605i
\(315\) 0 0
\(316\) −206.362 + 284.033i −0.653044 + 0.898838i
\(317\) 119.372 + 367.389i 0.376567 + 1.15895i 0.942415 + 0.334445i \(0.108549\pi\)
−0.565848 + 0.824510i \(0.691451\pi\)
\(318\) 99.1383i 0.311756i
\(319\) −378.520 + 364.003i −1.18658 + 1.14107i
\(320\) 0 0
\(321\) 78.7123 25.5752i 0.245210 0.0796735i
\(322\) −30.2091 21.9482i −0.0938170 0.0681620i
\(323\) −49.4350 + 35.9167i −0.153050 + 0.111197i
\(324\) 86.7068 266.856i 0.267613 0.823630i
\(325\) 0 0
\(326\) −36.3987 50.0986i −0.111653 0.153677i
\(327\) 475.877 654.988i 1.45528 2.00302i
\(328\) −29.8386 91.8337i −0.0909713 0.279981i
\(329\) 39.7595i 0.120849i
\(330\) 0 0
\(331\) 118.966 0.359413 0.179706 0.983720i \(-0.442485\pi\)
0.179706 + 0.983720i \(0.442485\pi\)
\(332\) −328.463 + 106.724i −0.989346 + 0.321458i
\(333\) 283.765 + 206.168i 0.852148 + 0.619122i
\(334\) 32.7275 23.7780i 0.0979867 0.0711915i
\(335\) 0 0
\(336\) 739.402 + 240.246i 2.20060 + 0.715018i
\(337\) −260.717 358.847i −0.773642 1.06483i −0.995955 0.0898516i \(-0.971361\pi\)
0.222313 0.974975i \(-0.428639\pi\)
\(338\) 26.0648 35.8751i 0.0771147 0.106139i
\(339\) 51.0556 + 157.133i 0.150606 + 0.463519i
\(340\) 0 0
\(341\) 308.654 149.741i 0.905144 0.439122i
\(342\) 115.016 0.336305
\(343\) −40.6417 + 13.2053i −0.118489 + 0.0384993i
\(344\) 55.9903 + 40.6793i 0.162763 + 0.118254i
\(345\) 0 0
\(346\) −10.5356 + 32.4252i −0.0304497 + 0.0937146i
\(347\) −501.898 163.076i −1.44639 0.469961i −0.522507 0.852635i \(-0.675003\pi\)
−0.923883 + 0.382674i \(0.875003\pi\)
\(348\) 566.042 + 779.091i 1.62656 + 2.23877i
\(349\) 318.255 438.040i 0.911905 1.25513i −0.0546065 0.998508i \(-0.517390\pi\)
0.966512 0.256622i \(-0.0826096\pi\)
\(350\) 0 0
\(351\) 216.758i 0.617543i
\(352\) 154.520 21.3862i 0.438978 0.0607563i
\(353\) −216.813 −0.614201 −0.307101 0.951677i \(-0.599359\pi\)
−0.307101 + 0.951677i \(0.599359\pi\)
\(354\) −76.7347 + 24.9326i −0.216765 + 0.0704311i
\(355\) 0 0
\(356\) 374.662 272.208i 1.05242 0.764630i
\(357\) −46.1221 + 141.949i −0.129193 + 0.397616i
\(358\) −13.8902 4.51321i −0.0387995 0.0126067i
\(359\) −329.315 453.263i −0.917311 1.26257i −0.964608 0.263689i \(-0.915061\pi\)
0.0472967 0.998881i \(-0.484939\pi\)
\(360\) 0 0
\(361\) −29.5795 91.0363i −0.0819376 0.252178i
\(362\) 2.07029i 0.00571902i
\(363\) −586.134 216.123i −1.61469 0.595379i
\(364\) 191.614 0.526411
\(365\) 0 0
\(366\) −42.3047 30.7362i −0.115587 0.0839786i
\(367\) 25.0380 18.1911i 0.0682233 0.0495671i −0.553151 0.833081i \(-0.686575\pi\)
0.621374 + 0.783514i \(0.286575\pi\)
\(368\) 55.7602 171.612i 0.151522 0.466337i
\(369\) 672.680 + 218.567i 1.82298 + 0.592323i
\(370\) 0 0
\(371\) −374.364 + 515.267i −1.00907 + 1.38886i
\(372\) −194.403 598.312i −0.522590 1.60837i
\(373\) 483.806i 1.29707i −0.761186 0.648534i \(-0.775383\pi\)
0.761186 0.648534i \(-0.224617\pi\)
\(374\) 1.31440 + 9.49685i 0.00351444 + 0.0253927i
\(375\) 0 0
\(376\) −9.01440 + 2.92896i −0.0239745 + 0.00778977i
\(377\) 187.342 + 136.112i 0.496928 + 0.361040i
\(378\) 111.424 80.9540i 0.294771 0.214164i
\(379\) 25.3368 77.9786i 0.0668517 0.205748i −0.912050 0.410078i \(-0.865501\pi\)
0.978902 + 0.204330i \(0.0655015\pi\)
\(380\) 0 0
\(381\) −327.298 450.487i −0.859050 1.18238i
\(382\) −13.4476 + 18.5090i −0.0352031 + 0.0484530i
\(383\) −225.261 693.283i −0.588150 1.81014i −0.586234 0.810141i \(-0.699390\pi\)
−0.00191562 0.999998i \(-0.500610\pi\)
\(384\) 379.819i 0.989111i
\(385\) 0 0
\(386\) 115.660 0.299638
\(387\) −482.135 + 156.655i −1.24583 + 0.404793i
\(388\) −211.227 153.465i −0.544399 0.395529i
\(389\) −193.321 + 140.456i −0.496969 + 0.361069i −0.807858 0.589377i \(-0.799373\pi\)
0.310889 + 0.950446i \(0.399373\pi\)
\(390\) 0 0
\(391\) 32.9458 + 10.7047i 0.0842604 + 0.0273779i
\(392\) 75.4082 + 103.790i 0.192368 + 0.264772i
\(393\) 147.710 203.305i 0.375852 0.517316i
\(394\) −8.61808 26.5237i −0.0218733 0.0673191i
\(395\) 0 0
\(396\) −357.635 + 669.226i −0.903120 + 1.68997i
\(397\) 354.733 0.893535 0.446768 0.894650i \(-0.352575\pi\)
0.446768 + 0.894650i \(0.352575\pi\)
\(398\) −6.96401 + 2.26274i −0.0174975 + 0.00568528i
\(399\) −902.522 655.721i −2.26196 1.64341i
\(400\) 0 0
\(401\) 79.1417 243.573i 0.197361 0.607414i −0.802580 0.596545i \(-0.796540\pi\)
0.999941 0.0108700i \(-0.00346008\pi\)
\(402\) −134.904 43.8328i −0.335581 0.109037i
\(403\) −88.9175 122.384i −0.220639 0.303684i
\(404\) −29.7187 + 40.9042i −0.0735610 + 0.101248i
\(405\) 0 0
\(406\) 147.137i 0.362407i
\(407\) −151.476 157.517i −0.372176 0.387020i
\(408\) 35.5808 0.0872079
\(409\) 261.500 84.9666i 0.639365 0.207742i 0.0286458 0.999590i \(-0.490881\pi\)
0.610719 + 0.791847i \(0.290881\pi\)
\(410\) 0 0
\(411\) 313.798 227.988i 0.763500 0.554715i
\(412\) −136.442 + 419.925i −0.331170 + 1.01924i
\(413\) 492.975 + 160.177i 1.19364 + 0.387839i
\(414\) −38.3261 52.7514i −0.0925752 0.127419i
\(415\) 0 0
\(416\) −21.2563 65.4202i −0.0510969 0.157260i
\(417\) 249.232i 0.597678i
\(418\) −70.5446 12.5914i −0.168767 0.0301231i
\(419\) 44.0757 0.105193 0.0525963 0.998616i \(-0.483250\pi\)
0.0525963 + 0.998616i \(0.483250\pi\)
\(420\) 0 0
\(421\) 65.8608 + 47.8507i 0.156439 + 0.113660i 0.663251 0.748397i \(-0.269176\pi\)
−0.506812 + 0.862057i \(0.669176\pi\)
\(422\) 90.6750 65.8792i 0.214870 0.156112i
\(423\) 21.4546 66.0303i 0.0507200 0.156100i
\(424\) 144.401 + 46.9188i 0.340569 + 0.110658i
\(425\) 0 0
\(426\) −5.55574 + 7.64682i −0.0130416 + 0.0179503i
\(427\) 103.812 + 319.500i 0.243119 + 0.748243i
\(428\) 62.6319i 0.146336i
\(429\) −48.4038 + 271.186i −0.112829 + 0.632136i
\(430\) 0 0
\(431\) 690.547 224.372i 1.60220 0.520585i 0.634547 0.772884i \(-0.281187\pi\)
0.967649 + 0.252299i \(0.0811866\pi\)
\(432\) 538.442 + 391.201i 1.24639 + 0.905558i
\(433\) 280.828 204.033i 0.648563 0.471208i −0.214218 0.976786i \(-0.568720\pi\)
0.862781 + 0.505577i \(0.168720\pi\)
\(434\) 29.7027 91.4156i 0.0684394 0.210635i
\(435\) 0 0
\(436\) 360.126 + 495.670i 0.825976 + 1.13686i
\(437\) −152.190 + 209.472i −0.348261 + 0.479340i
\(438\) 63.6617 + 195.930i 0.145346 + 0.447330i
\(439\) 72.1914i 0.164445i 0.996614 + 0.0822226i \(0.0262018\pi\)
−0.996614 + 0.0822226i \(0.973798\pi\)
\(440\) 0 0
\(441\) −939.738 −2.13092
\(442\) 4.02074 1.30642i 0.00909669 0.00295569i
\(443\) −304.024 220.886i −0.686284 0.498614i 0.189153 0.981948i \(-0.439426\pi\)
−0.875436 + 0.483333i \(0.839426\pi\)
\(444\) −324.210 + 235.552i −0.730202 + 0.530523i
\(445\) 0 0
\(446\) 51.3857 + 16.6962i 0.115214 + 0.0374355i
\(447\) 365.670 + 503.301i 0.818053 + 1.12595i
\(448\) −328.356 + 451.943i −0.732937 + 1.00880i
\(449\) 34.6764 + 106.723i 0.0772302 + 0.237690i 0.982217 0.187750i \(-0.0601194\pi\)
−0.904987 + 0.425440i \(0.860119\pi\)
\(450\) 0 0
\(451\) −388.657 207.699i −0.861767 0.460529i
\(452\) −125.032 −0.276619
\(453\) −379.344 + 123.256i −0.837405 + 0.272089i
\(454\) 4.56195 + 3.31445i 0.0100483 + 0.00730055i
\(455\) 0 0
\(456\) −82.1812 + 252.928i −0.180222 + 0.554666i
\(457\) 177.567 + 57.6949i 0.388549 + 0.126247i 0.496775 0.867879i \(-0.334517\pi\)
−0.108227 + 0.994126i \(0.534517\pi\)
\(458\) 23.9630 + 32.9822i 0.0523209 + 0.0720136i
\(459\) −75.1021 + 103.369i −0.163621 + 0.225205i
\(460\) 0 0
\(461\) 559.922i 1.21458i 0.794479 + 0.607291i \(0.207744\pi\)
−0.794479 + 0.607291i \(0.792256\pi\)
\(462\) −157.480 + 76.4000i −0.340866 + 0.165368i
\(463\) 648.611 1.40089 0.700444 0.713708i \(-0.252986\pi\)
0.700444 + 0.713708i \(0.252986\pi\)
\(464\) −676.224 + 219.719i −1.45738 + 0.473532i
\(465\) 0 0
\(466\) −10.8591 + 7.88958i −0.0233028 + 0.0169304i
\(467\) 278.242 856.339i 0.595806 1.83370i 0.0451348 0.998981i \(-0.485628\pi\)
0.550671 0.834722i \(-0.314372\pi\)
\(468\) 318.221 + 103.396i 0.679960 + 0.220932i
\(469\) 535.635 + 737.238i 1.14208 + 1.57194i
\(470\) 0 0
\(471\) 86.4772 + 266.149i 0.183603 + 0.565073i
\(472\) 123.569i 0.261798i
\(473\) 312.864 43.3016i 0.661447 0.0915468i
\(474\) −141.419 −0.298352
\(475\) 0 0
\(476\) −91.3783 66.3902i −0.191971 0.139475i
\(477\) −899.765 + 653.718i −1.88630 + 1.37048i
\(478\) −15.5840 + 47.9626i −0.0326025 + 0.100340i
\(479\) −441.790 143.546i −0.922317 0.299679i −0.190900 0.981609i \(-0.561141\pi\)
−0.731417 + 0.681930i \(0.761141\pi\)
\(480\) 0 0
\(481\) −56.6415 + 77.9603i −0.117758 + 0.162080i
\(482\) −6.44289 19.8292i −0.0133670 0.0411394i
\(483\) 632.437i 1.30939i
\(484\) 292.617 371.314i 0.604581 0.767177i
\(485\) 0 0
\(486\) −9.10546 + 2.95854i −0.0187355 + 0.00608753i
\(487\) 26.6567 + 19.3672i 0.0547366 + 0.0397685i 0.614817 0.788670i \(-0.289230\pi\)
−0.560081 + 0.828438i \(0.689230\pi\)
\(488\) 64.7906 47.0731i 0.132768 0.0964613i
\(489\) −324.106 + 997.496i −0.662794 + 2.03987i
\(490\) 0 0
\(491\) −469.003 645.528i −0.955200 1.31472i −0.949179 0.314738i \(-0.898083\pi\)
−0.00602158 0.999982i \(-0.501917\pi\)
\(492\) −474.994 + 653.773i −0.965434 + 1.32881i
\(493\) −42.1812 129.820i −0.0855603 0.263327i
\(494\) 31.5990i 0.0639656i
\(495\) 0 0
\(496\) 464.489 0.936470
\(497\) 57.7514 18.7646i 0.116200 0.0377557i
\(498\) −112.547 81.7701i −0.225998 0.164197i
\(499\) −479.816 + 348.607i −0.961555 + 0.698611i −0.953511 0.301357i \(-0.902560\pi\)
−0.00804363 + 0.999968i \(0.502560\pi\)
\(500\) 0 0
\(501\) −651.627 211.727i −1.30065 0.422608i
\(502\) −60.7459 83.6096i −0.121008 0.166553i
\(503\) −461.015 + 634.532i −0.916530 + 1.26150i 0.0483569 + 0.998830i \(0.484602\pi\)
−0.964887 + 0.262665i \(0.915398\pi\)
\(504\) 132.958 + 409.203i 0.263806 + 0.811910i
\(505\) 0 0
\(506\) 17.7321 + 36.5505i 0.0350437 + 0.0722342i
\(507\) −751.056 −1.48137
\(508\) 400.766 130.217i 0.788909 0.256332i
\(509\) 639.768 + 464.819i 1.25691 + 0.913200i 0.998602 0.0528625i \(-0.0168345\pi\)
0.258310 + 0.966062i \(0.416835\pi\)
\(510\) 0 0
\(511\) 408.989 1258.74i 0.800369 2.46328i
\(512\) 337.436 + 109.640i 0.659055 + 0.214140i
\(513\) −561.340 772.619i −1.09423 1.50608i
\(514\) 45.1374 62.1263i 0.0878160 0.120868i
\(515\) 0 0
\(516\) 579.200i 1.12248i
\(517\) −20.3877 + 38.1506i −0.0394346 + 0.0737922i
\(518\) −61.2295 −0.118204
\(519\) 549.187 178.442i 1.05816 0.343818i
\(520\) 0 0
\(521\) −514.280 + 373.646i −0.987101 + 0.717171i −0.959284 0.282442i \(-0.908856\pi\)
−0.0278170 + 0.999613i \(0.508856\pi\)
\(522\) −79.3966 + 244.357i −0.152101 + 0.468118i
\(523\) −180.831 58.7556i −0.345757 0.112343i 0.130990 0.991384i \(-0.458184\pi\)
−0.476747 + 0.879040i \(0.658184\pi\)
\(524\) 111.781 + 153.854i 0.213323 + 0.293614i
\(525\) 0 0
\(526\) −40.0152 123.154i −0.0760746 0.234134i
\(527\) 89.1719i 0.169207i
\(528\) −586.289 609.672i −1.11040 1.15468i
\(529\) −382.214 −0.722522
\(530\) 0 0
\(531\) 732.273 + 532.027i 1.37905 + 1.00193i
\(532\) 682.995 496.225i 1.28382 0.932753i
\(533\) −60.0480 + 184.809i −0.112660 + 0.346733i
\(534\) 177.413 + 57.6449i 0.332234 + 0.107949i
\(535\) 0 0
\(536\) 127.691 175.751i 0.238229 0.327894i
\(537\) 76.4403 + 235.259i 0.142347 + 0.438099i
\(538\) 152.209i 0.282917i
\(539\) 576.382 + 102.878i 1.06936 + 0.190868i
\(540\) 0 0
\(541\) 37.6026 12.2178i 0.0695058 0.0225838i −0.274058 0.961713i \(-0.588366\pi\)
0.343563 + 0.939129i \(0.388366\pi\)
\(542\) 57.9123 + 42.0758i 0.106849 + 0.0776306i
\(543\) 28.3678 20.6104i 0.0522427 0.0379565i
\(544\) −12.5299 + 38.5630i −0.0230329 + 0.0708879i
\(545\) 0 0
\(546\) 45.3671 + 62.4425i 0.0830900 + 0.114364i
\(547\) −347.554 + 478.368i −0.635383 + 0.874529i −0.998359 0.0572690i \(-0.981761\pi\)
0.362976 + 0.931799i \(0.381761\pi\)
\(548\) 90.7057 + 279.164i 0.165521 + 0.509423i
\(549\) 586.626i 1.06853i
\(550\) 0 0
\(551\) 1020.26 1.85165
\(552\) 143.388 46.5896i 0.259761 0.0844015i
\(553\) 735.018 + 534.022i 1.32915 + 0.965682i
\(554\) 33.5380 24.3668i 0.0605379 0.0439833i
\(555\) 0 0
\(556\) 179.378 + 58.2834i 0.322622 + 0.104826i
\(557\) −128.305 176.596i −0.230350 0.317049i 0.678159 0.734915i \(-0.262778\pi\)
−0.908509 + 0.417866i \(0.862778\pi\)
\(558\) 98.6573 135.790i 0.176805 0.243351i
\(559\) −43.0386 132.459i −0.0769921 0.236957i
\(560\) 0 0
\(561\) 117.044 112.555i 0.208634 0.200632i
\(562\) 92.2970 0.164229
\(563\) 356.595 115.865i 0.633383 0.205799i 0.0253101 0.999680i \(-0.491943\pi\)
0.608073 + 0.793881i \(0.291943\pi\)
\(564\) 64.1743 + 46.6254i 0.113784 + 0.0826691i
\(565\) 0 0
\(566\) −1.00311 + 3.08725i −0.00177227 + 0.00545450i
\(567\) −690.568 224.379i −1.21793 0.395730i
\(568\) −8.50874 11.7113i −0.0149802 0.0206184i
\(569\) −131.674 + 181.234i −0.231413 + 0.318513i −0.908894 0.417028i \(-0.863072\pi\)
0.677480 + 0.735541i \(0.263072\pi\)
\(570\) 0 0
\(571\) 176.017i 0.308262i 0.988050 + 0.154131i \(0.0492577\pi\)
−0.988050 + 0.154131i \(0.950742\pi\)
\(572\) −183.860 98.2549i −0.321433 0.171774i
\(573\) 387.492 0.676252
\(574\) −117.427 + 38.1543i −0.204577 + 0.0664710i
\(575\) 0 0
\(576\) −789.188 + 573.378i −1.37012 + 0.995449i
\(577\) −206.377 + 635.162i −0.357672 + 1.10080i 0.596772 + 0.802411i \(0.296450\pi\)
−0.954444 + 0.298391i \(0.903550\pi\)
\(578\) 81.4137 + 26.4529i 0.140854 + 0.0457663i
\(579\) −1151.44 1584.82i −1.98867 2.73716i
\(580\) 0 0
\(581\) 276.180 + 849.994i 0.475352 + 1.46298i
\(582\) 105.169i 0.180703i
\(583\) 623.432 302.452i 1.06935 0.518785i
\(584\) −315.514 −0.540264
\(585\) 0 0
\(586\) −81.3922 59.1349i −0.138895 0.100913i
\(587\) −79.0311 + 57.4195i −0.134636 + 0.0978185i −0.653065 0.757302i \(-0.726517\pi\)
0.518429 + 0.855121i \(0.326517\pi\)
\(588\) 331.784 1021.13i 0.564259 1.73661i
\(589\) −633.882 205.961i −1.07620 0.349679i
\(590\) 0 0
\(591\) −277.641 + 382.141i −0.469782 + 0.646600i
\(592\) −91.4335 281.403i −0.154448 0.475343i
\(593\) 479.081i 0.807893i −0.914783 0.403947i \(-0.867638\pi\)
0.914783 0.403947i \(-0.132362\pi\)
\(594\) −148.426 + 20.5427i −0.249875 + 0.0345837i
\(595\) 0 0
\(596\) −447.751 + 145.483i −0.751259 + 0.244099i
\(597\) 100.334 + 72.8968i 0.168063 + 0.122105i
\(598\) 14.4927 10.5295i 0.0242352 0.0176079i
\(599\) 146.829 451.894i 0.245124 0.754414i −0.750492 0.660879i \(-0.770183\pi\)
0.995616 0.0935345i \(-0.0298165\pi\)
\(600\) 0 0
\(601\) 316.409 + 435.499i 0.526470 + 0.724624i 0.986587 0.163234i \(-0.0521926\pi\)
−0.460117 + 0.887858i \(0.652193\pi\)
\(602\) 52.0163 71.5943i 0.0864059 0.118927i
\(603\) 491.733 + 1513.40i 0.815477 + 2.50978i
\(604\) 301.847i 0.499747i
\(605\) 0 0
\(606\) −20.3660 −0.0336073
\(607\) 391.027 127.052i 0.644196 0.209312i 0.0313426 0.999509i \(-0.490022\pi\)
0.612853 + 0.790197i \(0.290022\pi\)
\(608\) −245.186 178.138i −0.403267 0.292991i
\(609\) 2016.13 1464.80i 3.31055 2.40526i
\(610\) 0 0
\(611\) 18.1408 + 5.89431i 0.0296904 + 0.00964700i
\(612\) −115.931 159.566i −0.189430 0.260728i
\(613\) −146.092 + 201.079i −0.238324 + 0.328025i −0.911379 0.411567i \(-0.864981\pi\)
0.673056 + 0.739592i \(0.264981\pi\)
\(614\) 10.5004 + 32.3170i 0.0171017 + 0.0526336i
\(615\) 0 0
\(616\) −36.7514 265.538i −0.0596614 0.431067i
\(617\) 1141.96 1.85082 0.925411 0.378964i \(-0.123720\pi\)
0.925411 + 0.378964i \(0.123720\pi\)
\(618\) −169.149 + 54.9597i −0.273703 + 0.0889316i
\(619\) −4.57281 3.32234i −0.00738742 0.00536727i 0.584085 0.811692i \(-0.301453\pi\)
−0.591473 + 0.806325i \(0.701453\pi\)
\(620\) 0 0
\(621\) −167.304 + 514.909i −0.269411 + 0.829161i
\(622\) 117.447 + 38.1609i 0.188822 + 0.0613519i
\(623\) −704.418 969.549i −1.13069 1.55626i
\(624\) −219.232 + 301.746i −0.351333 + 0.483568i
\(625\) 0 0
\(626\) 51.7472i 0.0826633i
\(627\) 529.763 + 1091.98i 0.844917 + 1.74159i
\(628\) −211.777 −0.337224
\(629\) 54.0233 17.5532i 0.0858876 0.0279066i
\(630\) 0 0
\(631\) 601.402 436.944i 0.953094 0.692463i 0.00155713 0.999999i \(-0.499504\pi\)
0.951537 + 0.307536i \(0.0995043\pi\)
\(632\) 66.9288 205.986i 0.105900 0.325927i
\(633\) −1805.40 586.610i −2.85213 0.926714i
\(634\) −69.2140 95.2649i −0.109170 0.150260i
\(635\) 0 0
\(636\) −392.664 1208.49i −0.617396 1.90015i
\(637\) 258.179i 0.405304i
\(638\) 75.4485 141.183i 0.118258 0.221290i
\(639\) 106.036 0.165940
\(640\) 0 0
\(641\) −292.789 212.724i −0.456769 0.331862i 0.335493 0.942043i \(-0.391097\pi\)
−0.792263 + 0.610180i \(0.791097\pi\)
\(642\) −20.4103 + 14.8290i −0.0317918 + 0.0230981i
\(643\) −200.009 + 615.565i −0.311056 + 0.957333i 0.666291 + 0.745692i \(0.267881\pi\)
−0.977347 + 0.211641i \(0.932119\pi\)
\(644\) −455.179 147.897i −0.706800 0.229653i
\(645\) 0 0
\(646\) 10.9484 15.0692i 0.0169480 0.0233269i
\(647\) −225.784 694.892i −0.348971 1.07402i −0.959423 0.281969i \(-0.909012\pi\)
0.610453 0.792053i \(-0.290988\pi\)
\(648\) 173.097i 0.267125i
\(649\) −390.891 406.482i −0.602298 0.626320i
\(650\) 0 0
\(651\) −1548.31 + 503.076i −2.37835 + 0.772774i
\(652\) −642.128 466.534i −0.984859 0.715542i
\(653\) 243.570 176.964i 0.373001 0.271001i −0.385453 0.922727i \(-0.625955\pi\)
0.758454 + 0.651726i \(0.225955\pi\)
\(654\) −76.2630 + 234.713i −0.116610 + 0.358889i
\(655\) 0 0
\(656\) −350.705 482.704i −0.534611 0.735829i
\(657\) 1358.45 1869.75i 2.06766 2.84589i
\(658\) 3.74523 + 11.5266i 0.00569184 + 0.0175177i
\(659\) 596.433i 0.905057i 0.891750 + 0.452529i \(0.149478\pi\)
−0.891750 + 0.452529i \(0.850522\pi\)
\(660\) 0 0
\(661\) 882.175 1.33461 0.667303 0.744786i \(-0.267449\pi\)
0.667303 + 0.744786i \(0.267449\pi\)
\(662\) −34.4892 + 11.2062i −0.0520985 + 0.0169278i
\(663\) −57.9288 42.0877i −0.0873737 0.0634807i
\(664\) 172.368 125.233i 0.259591 0.188604i
\(665\) 0 0
\(666\) −101.687 33.0400i −0.152683 0.0496096i
\(667\) −339.974 467.934i −0.509707 0.701551i
\(668\) 304.769 419.479i 0.456241 0.627962i
\(669\) −282.784 870.320i −0.422697 1.30093i
\(670\) 0 0
\(671\) 64.2210 359.803i 0.0957094 0.536220i
\(672\) −740.266 −1.10159
\(673\) −383.533 + 124.617i −0.569886 + 0.185167i −0.579764 0.814784i \(-0.696855\pi\)
0.00987877 + 0.999951i \(0.496855\pi\)
\(674\) 109.387 + 79.4741i 0.162295 + 0.117914i
\(675\) 0 0
\(676\) 175.636 540.553i 0.259817 0.799634i
\(677\) 595.604 + 193.523i 0.879769 + 0.285854i 0.713861 0.700287i \(-0.246945\pi\)
0.165908 + 0.986141i \(0.446945\pi\)
\(678\) −29.6029 40.7450i −0.0436622 0.0600958i
\(679\) −397.136 + 546.611i −0.584884 + 0.805024i
\(680\) 0 0
\(681\) 95.5059i 0.140244i
\(682\) −75.3765 + 72.4855i −0.110523 + 0.106284i
\(683\) −935.585 −1.36982 −0.684909 0.728629i \(-0.740158\pi\)
−0.684909 + 0.728629i \(0.740158\pi\)
\(684\) 1402.05 455.553i 2.04978 0.666013i
\(685\) 0 0
\(686\) 10.5385 7.65666i 0.0153622 0.0111613i
\(687\) 213.374 656.698i 0.310588 0.955892i
\(688\) 406.714 + 132.149i 0.591154 + 0.192078i
\(689\) −179.599 247.197i −0.260666 0.358776i
\(690\) 0 0
\(691\) 255.366 + 785.937i 0.369561 + 1.13739i 0.947076 + 0.321011i \(0.104023\pi\)
−0.577515 + 0.816380i \(0.695977\pi\)
\(692\) 436.992i 0.631491i
\(693\) 1731.82 + 925.486i 2.49902 + 1.33548i
\(694\) 160.866 0.231795
\(695\) 0 0
\(696\) −480.626 349.195i −0.690555 0.501718i
\(697\) 92.6687 67.3278i 0.132954 0.0965965i
\(698\) −51.0029 + 156.971i −0.0730700 + 0.224886i
\(699\) 216.212 + 70.2514i 0.309316 + 0.100503i
\(700\) 0 0
\(701\) −139.111 + 191.469i −0.198446 + 0.273138i −0.896630 0.442781i \(-0.853992\pi\)
0.698184 + 0.715919i \(0.253992\pi\)
\(702\) 20.4180 + 62.8400i 0.0290854 + 0.0895157i
\(703\) 424.570i 0.603940i
\(704\) 546.814 265.282i 0.776725 0.376821i
\(705\) 0 0
\(706\) 62.8561 20.4232i 0.0890313 0.0289280i
\(707\) 105.852 + 76.9057i 0.149719 + 0.108778i
\(708\) −836.642 + 607.856i −1.18170 + 0.858554i
\(709\) −278.848 + 858.205i −0.393297 + 1.21044i 0.536982 + 0.843593i \(0.319564\pi\)
−0.930280 + 0.366851i \(0.880436\pi\)
\(710\) 0 0
\(711\) 932.515 + 1283.50i 1.31155 + 1.80520i
\(712\) −167.927 + 231.132i −0.235853 + 0.324623i
\(713\) 116.762 + 359.356i 0.163761 + 0.504006i
\(714\) 45.4969i 0.0637212i
\(715\) 0 0
\(716\) −187.197 −0.261449
\(717\) 812.345 263.947i 1.13298 0.368127i
\(718\) 138.167 + 100.385i 0.192434 + 0.139811i
\(719\) 318.157 231.154i 0.442499 0.321494i −0.344128 0.938923i \(-0.611826\pi\)
0.786627 + 0.617428i \(0.211826\pi\)
\(720\) 0 0
\(721\) 1086.68 + 353.084i 1.50718 + 0.489714i
\(722\) 17.1507 + 23.6060i 0.0237545 + 0.0326952i
\(723\) −207.565 + 285.689i −0.287089 + 0.395144i
\(724\) 8.19991 + 25.2367i 0.0113258 + 0.0348574i
\(725\) 0 0
\(726\) 190.284 + 7.44370i 0.262099 + 0.0102530i
\(727\) −1284.55 −1.76691 −0.883456 0.468514i \(-0.844790\pi\)
−0.883456 + 0.468514i \(0.844790\pi\)
\(728\) −112.422 + 36.5282i −0.154426 + 0.0501761i
\(729\) 654.087 + 475.222i 0.897238 + 0.651882i
\(730\) 0 0
\(731\) −25.3698 + 78.0803i −0.0347056 + 0.106813i
\(732\) −637.432 207.114i −0.870809 0.282943i
\(733\) 246.425 + 339.175i 0.336187 + 0.462722i 0.943323 0.331876i \(-0.107682\pi\)
−0.607136 + 0.794598i \(0.707682\pi\)
\(734\) −5.54518 + 7.63228i −0.00755474 + 0.0103982i
\(735\) 0 0
\(736\) 171.813i 0.233441i
\(737\) −135.922 982.066i −0.184426 1.33252i
\(738\) −215.605 −0.292147
\(739\) −269.243 + 87.4823i −0.364334 + 0.118379i −0.485462 0.874258i \(-0.661349\pi\)
0.121128 + 0.992637i \(0.461349\pi\)
\(740\) 0 0
\(741\) 432.981 314.579i 0.584319 0.424533i
\(742\) 59.9947 184.645i 0.0808554 0.248847i
\(743\) 10.6813 + 3.47057i 0.0143759 + 0.00467102i 0.316196 0.948694i \(-0.397594\pi\)
−0.301820 + 0.953365i \(0.597594\pi\)
\(744\) 228.118 + 313.978i 0.306610 + 0.422013i
\(745\) 0 0
\(746\) 45.5732 + 140.260i 0.0610901 + 0.188016i
\(747\) 1560.65i 2.08923i
\(748\) 53.6373 + 110.560i 0.0717076 + 0.147808i
\(749\) 162.078 0.216393
\(750\) 0 0
\(751\) −700.813 509.171i −0.933174 0.677990i 0.0135942 0.999908i \(-0.495673\pi\)
−0.946768 + 0.321917i \(0.895673\pi\)
\(752\) −47.3822 + 34.4252i −0.0630083 + 0.0457782i
\(753\) −540.902 + 1664.72i −0.718329 + 2.21079i
\(754\) −67.1335 21.8130i −0.0890365 0.0289297i
\(755\) 0 0
\(756\) 1037.61 1428.15i 1.37250 1.88909i
\(757\) −38.2121 117.605i −0.0504783 0.155356i 0.922640 0.385663i \(-0.126027\pi\)
−0.973118 + 0.230306i \(0.926027\pi\)
\(758\) 24.9934i 0.0329728i
\(759\) 324.299 606.845i 0.427271 0.799532i
\(760\) 0 0
\(761\) 627.999 204.049i 0.825228 0.268133i 0.134194 0.990955i \(-0.457155\pi\)
0.691034 + 0.722822i \(0.257155\pi\)
\(762\) 137.321 + 99.7698i 0.180212 + 0.130932i
\(763\) 1282.69 931.931i 1.68112 1.22140i
\(764\) −90.6160 + 278.887i −0.118607 + 0.365036i
\(765\) 0 0
\(766\) 130.611 + 179.770i 0.170510 + 0.234687i
\(767\) −146.167 + 201.181i −0.190569 + 0.262296i
\(768\) −316.820 975.071i −0.412526 1.26962i
\(769\) 753.219i 0.979479i −0.871869 0.489739i \(-0.837092\pi\)
0.871869 0.489739i \(-0.162908\pi\)
\(770\) 0 0
\(771\) −1300.63 −1.68695
\(772\) 1409.90 458.103i 1.82629 0.593398i
\(773\) −134.737 97.8922i −0.174304 0.126639i 0.497213 0.867629i \(-0.334357\pi\)
−0.671517 + 0.740989i \(0.734357\pi\)
\(774\) 125.019 90.8315i 0.161523 0.117353i
\(775\) 0 0
\(776\) 153.185 + 49.7729i 0.197404 + 0.0641404i
\(777\) 609.560 + 838.988i 0.784505 + 1.07978i
\(778\) 42.8149 58.9297i 0.0550320 0.0757451i
\(779\) 264.565 + 814.247i 0.339621 + 1.04525i
\(780\) 0 0
\(781\) −65.0365 11.6083i −0.0832734 0.0148634i
\(782\) −10.5596 −0.0135034
\(783\) 2028.96 659.249i 2.59126 0.841953i
\(784\) 641.335 + 465.957i 0.818030 + 0.594333i
\(785\) 0 0
\(786\) −23.6717 + 72.8539i −0.0301166 + 0.0926894i
\(787\) −329.445 107.043i −0.418609 0.136014i 0.0921365 0.995746i \(-0.470630\pi\)
−0.510745 + 0.859732i \(0.670630\pi\)
\(788\) −210.108 289.190i −0.266635 0.366992i
\(789\) −1289.14 + 1774.34i −1.63389 + 2.24885i
\(790\) 0 0
\(791\) 323.556i 0.409047i
\(792\) 82.2517 460.822i 0.103853 0.581846i
\(793\) −161.167 −0.203236
\(794\) −102.840 + 33.4149i −0.129522 + 0.0420843i
\(795\) 0 0
\(796\) −75.9289 + 55.1656i −0.0953880 + 0.0693035i
\(797\) −13.9224 + 42.8487i −0.0174685 + 0.0537625i −0.959411 0.282012i \(-0.908998\pi\)
0.941942 + 0.335775i \(0.108998\pi\)
\(798\) 323.417 + 105.084i 0.405284 + 0.131685i
\(799\) −6.60890 9.09636i −0.00827146 0.0113847i
\(800\) 0 0
\(801\) −646.683 1990.28i −0.807344 2.48475i
\(802\) 78.0690i 0.0973429i
\(803\) −1037.89 + 998.082i −1.29252 + 1.24294i
\(804\) −1818.08 −2.26130
\(805\) 0 0
\(806\) 37.3063 + 27.1046i 0.0462857 + 0.0336285i
\(807\) 2085.62 1515.29i 2.58441 1.87769i
\(808\) 9.63856 29.6644i 0.0119289 0.0367134i
\(809\) −1187.16 385.731i −1.46744 0.476800i −0.537106 0.843515i \(-0.680482\pi\)
−0.930333 + 0.366715i \(0.880482\pi\)
\(810\) 0 0
\(811\) −62.7425 + 86.3577i −0.0773644 + 0.106483i −0.845945 0.533270i \(-0.820963\pi\)
0.768581 + 0.639753i \(0.220963\pi\)
\(812\) 582.776 + 1793.60i 0.717704 + 2.20887i
\(813\) 1212.41i 1.49128i
\(814\) 58.7518 + 31.3971i 0.0721767 + 0.0385713i
\(815\) 0 0
\(816\) 209.098 67.9401i 0.256248 0.0832599i
\(817\) −496.440 360.685i −0.607638 0.441475i
\(818\) −67.8077 + 49.2652i −0.0828945 + 0.0602264i
\(819\) 267.568 823.491i 0.326701 1.00548i
\(820\) 0 0
\(821\) −361.534 497.608i −0.440358 0.606100i 0.529934 0.848039i \(-0.322217\pi\)
−0.970292 + 0.241939i \(0.922217\pi\)
\(822\) −69.4972 + 95.6547i −0.0845465 + 0.116368i
\(823\) 118.117 + 363.528i 0.143521 + 0.441711i 0.996818 0.0797139i \(-0.0254007\pi\)
−0.853297 + 0.521425i \(0.825401\pi\)
\(824\) 272.386i 0.330566i
\(825\) 0 0
\(826\) −158.006 −0.191291
\(827\) −909.438 + 295.494i −1.09968 + 0.357309i −0.801981 0.597350i \(-0.796220\pi\)
−0.297703 + 0.954659i \(0.596220\pi\)
\(828\) −676.131 491.238i −0.816583 0.593282i
\(829\) 591.020 429.401i 0.712931 0.517975i −0.171187 0.985239i \(-0.554760\pi\)
0.884118 + 0.467264i \(0.154760\pi\)
\(830\) 0 0
\(831\) −667.764 216.970i −0.803566 0.261095i
\(832\) −157.527 216.817i −0.189335 0.260598i
\(833\) −89.4537 + 123.122i −0.107387 + 0.147806i
\(834\) 23.4769 + 72.2545i 0.0281498 + 0.0866361i
\(835\) 0 0
\(836\) −909.809 + 125.921i −1.08829 + 0.150623i
\(837\) −1393.66 −1.66507
\(838\) −12.7780 + 4.15181i −0.0152482 + 0.00495443i
\(839\) 739.591 + 537.345i 0.881515 + 0.640458i 0.933652 0.358182i \(-0.116603\pi\)
−0.0521367 + 0.998640i \(0.516603\pi\)
\(840\) 0 0
\(841\) −444.409 + 1367.75i −0.528429 + 1.62634i
\(842\) −23.6010 7.66845i −0.0280297 0.00910742i
\(843\) −918.847 1264.68i −1.08997 1.50022i
\(844\) 844.394 1162.21i 1.00047 1.37702i
\(845\) 0 0
\(846\) 21.1638i 0.0250163i
\(847\) −960.883 757.233i −1.13445 0.894018i
\(848\) 938.193 1.10636
\(849\) 52.2888 16.9896i 0.0615887 0.0200114i
\(850\) 0 0
\(851\) 194.726 141.476i 0.228820 0.166247i
\(852\) −37.4371 + 115.220i −0.0439403 + 0.135234i
\(853\) 1041.09 + 338.270i 1.22050 + 0.396565i 0.847265 0.531171i \(-0.178248\pi\)
0.373237 + 0.927736i \(0.378248\pi\)
\(854\) −60.1920 82.8472i −0.0704824 0.0970107i
\(855\) 0 0
\(856\) −11.9398 36.7470i −0.0139484 0.0429287i
\(857\) 1161.22i 1.35499i 0.735528 + 0.677494i \(0.236934\pi\)
−0.735528 + 0.677494i \(0.763066\pi\)
\(858\) −11.5123 83.1789i −0.0134176 0.0969451i
\(859\) −465.631 −0.542061 −0.271031 0.962571i \(-0.587364\pi\)
−0.271031 + 0.962571i \(0.587364\pi\)
\(860\) 0 0
\(861\) 1691.83 + 1229.19i 1.96496 + 1.42763i
\(862\) −179.061 + 130.095i −0.207727 + 0.150922i
\(863\) −240.025 + 738.720i −0.278128 + 0.855990i 0.710247 + 0.703953i \(0.248583\pi\)
−0.988375 + 0.152037i \(0.951417\pi\)
\(864\) −602.700 195.829i −0.697570 0.226654i
\(865\) 0 0
\(866\) −62.1952 + 85.6043i −0.0718189 + 0.0988502i
\(867\) −448.034 1378.91i −0.516763 1.59043i
\(868\) 1232.00i 1.41935i
\(869\) −431.442 889.313i −0.496480 1.02337i
\(870\) 0 0
\(871\) −415.783 + 135.096i −0.477363 + 0.155105i
\(872\) −305.782 222.164i −0.350668 0.254775i
\(873\) −954.498 + 693.484i −1.09335 + 0.794368i
\(874\) 24.3897 75.0637i 0.0279058 0.0858852i
\(875\) 0 0
\(876\) 1552.07 + 2136.24i 1.77177 + 2.43863i
\(877\) −814.144 + 1120.57i −0.928329 + 1.27773i 0.0321793 + 0.999482i \(0.489755\pi\)
−0.960508 + 0.278253i \(0.910245\pi\)
\(878\) −6.80023 20.9290i −0.00774514 0.0238371i
\(879\) 1703.97i 1.93853i
\(880\) 0 0
\(881\) −1570.42 −1.78255 −0.891273 0.453467i \(-0.850187\pi\)
−0.891273 + 0.453467i \(0.850187\pi\)
\(882\) 272.439 88.5206i 0.308887 0.100364i
\(883\) 885.963 + 643.690i 1.00336 + 0.728981i 0.962805 0.270197i \(-0.0870888\pi\)
0.0405507 + 0.999177i \(0.487089\pi\)
\(884\) 43.8383 31.8504i 0.0495908 0.0360299i
\(885\) 0 0
\(886\) 108.946 + 35.3987i 0.122964 + 0.0399534i
\(887\) 520.530 + 716.448i 0.586843 + 0.807720i 0.994425 0.105449i \(-0.0336279\pi\)
−0.407582 + 0.913169i \(0.633628\pi\)
\(888\) 145.314 200.007i 0.163642 0.225233i
\(889\) −336.974 1037.10i −0.379048 1.16659i
\(890\) 0 0
\(891\) 547.567 + 569.407i 0.614554 + 0.639065i
\(892\) 692.520 0.776368
\(893\) 79.9265 25.9697i 0.0895033 0.0290814i
\(894\) −153.421 111.467i −0.171611 0.124683i
\(895\) 0 0
\(896\) 229.852 707.411i 0.256531 0.789521i
\(897\) −288.558 93.7583i −0.321693 0.104524i
\(898\) −20.1060 27.6735i −0.0223897 0.0308168i
\(899\) 875.145 1204.53i 0.973465 1.33986i
\(900\) 0 0
\(901\) 180.113i 0.199903i
\(902\) 132.240 + 23.6034i 0.146607 + 0.0261678i
\(903\) −1498.85 −1.65986
\(904\) 73.3577 23.8354i 0.0811479 0.0263666i
\(905\) 0 0
\(906\) 98.3650 71.4664i 0.108571 0.0788812i
\(907\) 96.6622 297.496i 0.106573 0.327999i −0.883523 0.468388i \(-0.844835\pi\)
0.990097 + 0.140388i \(0.0448351\pi\)
\(908\) 68.7378 + 22.3343i 0.0757025 + 0.0245972i
\(909\) 134.294 + 184.839i 0.147738 + 0.203344i
\(910\) 0 0
\(911\) −140.671 432.942i −0.154414 0.475238i 0.843687 0.536836i \(-0.180380\pi\)
−0.998101 + 0.0615976i \(0.980380\pi\)
\(912\) 1643.30i 1.80187i
\(913\) 170.853 957.216i 0.187133 1.04843i
\(914\) −56.9129 −0.0622680
\(915\) 0 0
\(916\) 422.743 + 307.141i 0.461510 + 0.335306i
\(917\) 398.141 289.267i 0.434178 0.315449i
\(918\) 12.0357 37.0421i 0.0131108 0.0403509i
\(919\) 981.783 + 319.001i 1.06832 + 0.347117i 0.789832 0.613324i \(-0.210168\pi\)
0.278485 + 0.960441i \(0.410168\pi\)
\(920\) 0 0
\(921\) 338.284 465.607i 0.367300 0.505545i
\(922\) −52.7431 162.327i −0.0572051 0.176059i
\(923\) 29.1318i 0.0315621i
\(924\) −1617.08 + 1555.06i −1.75008 + 1.68296i
\(925\) 0 0
\(926\) −188.038 + 61.0973i −0.203065 + 0.0659798i
\(927\) 1614.17 + 1172.76i 1.74129 + 1.26512i
\(928\) 547.717 397.939i 0.590212 0.428814i
\(929\) −431.640 + 1328.45i −0.464629 + 1.42998i 0.394820 + 0.918758i \(0.370807\pi\)
−0.859449 + 0.511222i \(0.829193\pi\)
\(930\) 0 0
\(931\) −668.609 920.262i −0.718162 0.988466i
\(932\) −101.123 + 139.184i −0.108501 + 0.149339i
\(933\) −646.332 1989.21i −0.692746 2.13205i
\(934\) 274.470i 0.293865i
\(935\) 0 0
\(936\) −206.416 −0.220530
\(937\) −1141.42 + 370.868i −1.21816 + 0.395804i −0.846411 0.532530i \(-0.821241\pi\)
−0.371748 + 0.928334i \(0.621241\pi\)
\(938\) −224.731 163.277i −0.239586 0.174069i
\(939\) −709.058 + 515.161i −0.755120 + 0.548627i
\(940\) 0 0
\(941\) 29.9217 + 9.72215i 0.0317978 + 0.0103317i 0.324873 0.945758i \(-0.394679\pi\)
−0.293075 + 0.956089i \(0.594679\pi\)
\(942\) −50.1411 69.0133i −0.0532283 0.0732625i
\(943\) 285.289 392.667i 0.302533 0.416401i
\(944\) −235.949 726.177i −0.249946 0.769255i
\(945\) 0 0
\(946\) −86.6233 + 42.0245i −0.0915680 + 0.0444233i
\(947\) 540.682 0.570942 0.285471 0.958387i \(-0.407850\pi\)
0.285471 + 0.958387i \(0.407850\pi\)
\(948\) −1723.89 + 560.127i −1.81845 + 0.590851i
\(949\) 513.685 + 373.214i 0.541291 + 0.393271i
\(950\) 0 0
\(951\) −616.304 + 1896.79i −0.648059 + 1.99452i
\(952\) 66.2692 + 21.5322i 0.0696105 + 0.0226178i
\(953\) 335.865 + 462.279i 0.352429 + 0.485077i 0.948020 0.318211i \(-0.103082\pi\)
−0.595591 + 0.803288i \(0.703082\pi\)
\(954\) 199.272 274.274i 0.208880 0.287499i
\(955\) 0 0
\(956\) 646.388i 0.676138i
\(957\) −2685.66 + 371.705i −2.80633 + 0.388407i
\(958\) 141.601 0.147809
\(959\) 722.418 234.728i 0.753303 0.244763i
\(960\) 0 0
\(961\) −9.41808 + 6.84263i −0.00980029 + 0.00712033i
\(962\) 9.07724 27.9369i 0.00943580 0.0290404i
\(963\) 269.171 + 87.4590i 0.279513 + 0.0908193i
\(964\) −157.077 216.198i −0.162943 0.224272i
\(965\) 0 0
\(966\) −59.5738 183.349i −0.0616705 0.189802i
\(967\) 1228.33i 1.27025i 0.772410 + 0.635125i \(0.219051\pi\)
−0.772410 + 0.635125i \(0.780949\pi\)
\(968\) −100.897 + 273.638i −0.104233 + 0.282684i
\(969\) −315.479 −0.325571
\(970\) 0 0
\(971\) −1282.98 932.137i −1.32129 0.959976i −0.999915 0.0130253i \(-0.995854\pi\)
−0.321379 0.946951i \(-0.604146\pi\)
\(972\) −99.2772 + 72.1291i −0.102137 + 0.0742069i
\(973\) 150.825 464.193i 0.155011 0.477074i
\(974\) −9.55237 3.10375i −0.00980736 0.00318660i
\(975\) 0 0
\(976\) 290.871 400.350i 0.298024 0.410194i
\(977\) −290.915 895.345i −0.297764 0.916422i −0.982279 0.187424i \(-0.939986\pi\)
0.684515 0.728998i \(-0.260014\pi\)
\(978\) 319.713i 0.326905i
\(979\) 178.752 + 1291.52i 0.182586 + 1.31923i
\(980\) 0 0
\(981\) 2633.10 855.547i 2.68410 0.872117i
\(982\) 196.775 + 142.966i 0.200382 + 0.145586i
\(983\) −564.528 + 410.154i −0.574291 + 0.417247i −0.836662 0.547720i \(-0.815496\pi\)
0.262370 + 0.964967i \(0.415496\pi\)
\(984\) 154.053 474.127i 0.156558 0.481837i
\(985\) 0 0
\(986\) 24.4574 + 33.6628i 0.0248047 + 0.0341408i
\(987\) 120.657 166.070i 0.122246 0.168257i
\(988\) 125.156 + 385.191i 0.126676 + 0.389870i
\(989\) 347.877i 0.351746i
\(990\) 0 0
\(991\) 1202.24 1.21315 0.606577 0.795025i \(-0.292542\pi\)
0.606577 + 0.795025i \(0.292542\pi\)
\(992\) −420.626 + 136.670i −0.424018 + 0.137772i
\(993\) 496.903 + 361.021i 0.500406 + 0.363566i
\(994\) −14.9751 + 10.8800i −0.0150655 + 0.0109457i
\(995\) 0 0
\(996\) −1695.82 551.004i −1.70263 0.553217i
\(997\) 476.323 + 655.602i 0.477756 + 0.657575i 0.978072 0.208268i \(-0.0667827\pi\)
−0.500316 + 0.865843i \(0.666783\pi\)
\(998\) 106.265 146.262i 0.106478 0.146555i
\(999\) 274.339 + 844.329i 0.274614 + 0.845174i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.x.f.226.2 12
5.2 odd 4 275.3.q.f.149.3 24
5.3 odd 4 275.3.q.f.149.4 24
5.4 even 2 55.3.i.d.6.2 12
11.2 odd 10 inner 275.3.x.f.101.2 12
55.2 even 20 275.3.q.f.24.4 24
55.13 even 20 275.3.q.f.24.3 24
55.14 even 10 605.3.c.d.241.5 12
55.19 odd 10 605.3.c.d.241.8 12
55.24 odd 10 55.3.i.d.46.2 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.i.d.6.2 12 5.4 even 2
55.3.i.d.46.2 yes 12 55.24 odd 10
275.3.q.f.24.3 24 55.13 even 20
275.3.q.f.24.4 24 55.2 even 20
275.3.q.f.149.3 24 5.2 odd 4
275.3.q.f.149.4 24 5.3 odd 4
275.3.x.f.101.2 12 11.2 odd 10 inner
275.3.x.f.226.2 12 1.1 even 1 trivial
605.3.c.d.241.5 12 55.14 even 10
605.3.c.d.241.8 12 55.19 odd 10