Properties

Label 275.3.q.f.24.4
Level $275$
Weight $3$
Character 275.24
Analytic conductor $7.493$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(24,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.24"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.q (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,-26,0,40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 24.4
Character \(\chi\) \(=\) 275.24
Dual form 275.3.q.f.149.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0941972 - 0.289909i) q^{2} +(-3.03467 - 4.17687i) q^{3} +(3.16089 + 2.29652i) q^{4} +(-1.49677 + 0.486330i) q^{6} +(8.17974 + 5.94293i) q^{7} +(1.94998 - 1.41674i) q^{8} +(-5.45583 + 16.7913i) q^{9} +(-1.50807 + 10.8961i) q^{11} -20.1718i q^{12} +(-1.49891 + 4.61316i) q^{13} +(2.49342 - 1.81157i) q^{14} +(4.60237 + 14.1646i) q^{16} +(0.883556 + 2.71930i) q^{17} +(4.35403 + 3.16339i) q^{18} +(12.5616 + 17.2895i) q^{19} -52.2005i q^{21} +(3.01683 + 1.46359i) q^{22} -12.1155i q^{23} +(-11.8351 - 3.84545i) q^{24} +(1.19620 + 0.869094i) q^{26} +(42.4999 - 13.8091i) q^{27} +(12.2072 + 37.5699i) q^{28} +(28.0610 - 38.6227i) q^{29} +(9.63737 - 29.6608i) q^{31} +14.1812 q^{32} +(50.0882 - 26.7672i) q^{33} +0.871580 q^{34} +(-55.8070 + 40.5461i) q^{36} +(-11.6773 + 16.0724i) q^{37} +(6.19566 - 2.01309i) q^{38} +(23.8172 - 7.73869i) q^{39} +(23.5474 + 32.4102i) q^{41} +(-15.1334 - 4.91714i) q^{42} -28.7133 q^{43} +(-29.7901 + 30.9782i) q^{44} +(-3.51240 - 1.14125i) q^{46} +(-2.31141 - 3.18139i) q^{47} +(45.1971 - 62.2085i) q^{48} +(16.4479 + 50.6214i) q^{49} +(8.67687 - 11.9427i) q^{51} +(-15.3321 + 11.1394i) q^{52} +(-59.9100 - 19.4659i) q^{53} -13.6219i q^{54} +24.3699 q^{56} +(34.0958 - 104.936i) q^{57} +(-8.55381 - 11.7733i) q^{58} +(-41.4758 - 30.1339i) q^{59} +(31.6001 - 10.2675i) q^{61} +(-7.69112 - 5.58793i) q^{62} +(-144.417 + 104.925i) q^{63} +(-17.0737 + 52.5473i) q^{64} +(-3.04189 - 17.0424i) q^{66} +90.1298i q^{67} +(-3.45212 + 10.6245i) q^{68} +(-50.6049 + 36.7666i) q^{69} +(1.85591 + 5.71191i) q^{71} +(13.1502 + 40.4722i) q^{72} +(105.902 + 76.9424i) q^{73} +(3.55957 + 4.89933i) q^{74} +83.4983i q^{76} +(-77.0905 + 80.1652i) q^{77} -7.63380i q^{78} +(-85.4604 - 27.7678i) q^{79} +(-58.1000 - 42.2121i) q^{81} +(11.6141 - 3.77365i) q^{82} +(-27.3155 - 84.0686i) q^{83} +(119.880 - 165.000i) q^{84} +(-2.70472 + 8.32426i) q^{86} -246.478 q^{87} +(12.4963 + 23.3837i) q^{88} +118.531 q^{89} +(-39.6764 + 28.8266i) q^{91} +(27.8236 - 38.2959i) q^{92} +(-153.135 + 49.7567i) q^{93} +(-1.14004 + 0.370422i) q^{94} +(-43.0353 - 59.2330i) q^{96} +(63.5544 + 20.6501i) q^{97} +16.2250 q^{98} +(-174.733 - 84.7699i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 26 q^{4} + 40 q^{6} - 8 q^{9} + 24 q^{11} + 120 q^{14} - 86 q^{16} + 160 q^{19} - 420 q^{24} - 240 q^{26} - 10 q^{29} - 92 q^{31} - 20 q^{34} - 78 q^{36} + 570 q^{39} + 460 q^{41} - 976 q^{44} + 410 q^{46}+ \cdots - 1338 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{1}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0941972 0.289909i 0.0470986 0.144955i −0.924742 0.380596i \(-0.875719\pi\)
0.971840 + 0.235641i \(0.0757190\pi\)
\(3\) −3.03467 4.17687i −1.01156 1.39229i −0.917957 0.396679i \(-0.870163\pi\)
−0.0935994 0.995610i \(-0.529837\pi\)
\(4\) 3.16089 + 2.29652i 0.790223 + 0.574131i
\(5\) 0 0
\(6\) −1.49677 + 0.486330i −0.249462 + 0.0810550i
\(7\) 8.17974 + 5.94293i 1.16853 + 0.848990i 0.990833 0.135095i \(-0.0431339\pi\)
0.177701 + 0.984084i \(0.443134\pi\)
\(8\) 1.94998 1.41674i 0.243747 0.177093i
\(9\) −5.45583 + 16.7913i −0.606203 + 1.86570i
\(10\) 0 0
\(11\) −1.50807 + 10.8961i −0.137097 + 0.990558i
\(12\) 20.1718i 1.68099i
\(13\) −1.49891 + 4.61316i −0.115301 + 0.354859i −0.992010 0.126162i \(-0.959734\pi\)
0.876709 + 0.481021i \(0.159734\pi\)
\(14\) 2.49342 1.81157i 0.178101 0.129398i
\(15\) 0 0
\(16\) 4.60237 + 14.1646i 0.287648 + 0.885290i
\(17\) 0.883556 + 2.71930i 0.0519739 + 0.159959i 0.973675 0.227943i \(-0.0731999\pi\)
−0.921701 + 0.387902i \(0.873200\pi\)
\(18\) 4.35403 + 3.16339i 0.241891 + 0.175744i
\(19\) 12.5616 + 17.2895i 0.661136 + 0.909975i 0.999518 0.0310333i \(-0.00987978\pi\)
−0.338383 + 0.941009i \(0.609880\pi\)
\(20\) 0 0
\(21\) 52.2005i 2.48574i
\(22\) 3.01683 + 1.46359i 0.137129 + 0.0665267i
\(23\) 12.1155i 0.526762i −0.964692 0.263381i \(-0.915162\pi\)
0.964692 0.263381i \(-0.0848376\pi\)
\(24\) −11.8351 3.84545i −0.493128 0.160227i
\(25\) 0 0
\(26\) 1.19620 + 0.869094i 0.0460079 + 0.0334267i
\(27\) 42.4999 13.8091i 1.57407 0.511447i
\(28\) 12.2072 + 37.5699i 0.435972 + 1.34178i
\(29\) 28.0610 38.6227i 0.967622 1.33182i 0.0243833 0.999703i \(-0.492238\pi\)
0.943239 0.332115i \(-0.107762\pi\)
\(30\) 0 0
\(31\) 9.63737 29.6608i 0.310883 0.956800i −0.666533 0.745476i \(-0.732222\pi\)
0.977416 0.211324i \(-0.0677776\pi\)
\(32\) 14.1812 0.443163
\(33\) 50.0882 26.7672i 1.51782 0.811127i
\(34\) 0.871580 0.0256347
\(35\) 0 0
\(36\) −55.8070 + 40.5461i −1.55019 + 1.12628i
\(37\) −11.6773 + 16.0724i −0.315602 + 0.434389i −0.937118 0.349012i \(-0.886517\pi\)
0.621516 + 0.783402i \(0.286517\pi\)
\(38\) 6.19566 2.01309i 0.163044 0.0529761i
\(39\) 23.8172 7.73869i 0.610699 0.198428i
\(40\) 0 0
\(41\) 23.5474 + 32.4102i 0.574326 + 0.790493i 0.993059 0.117617i \(-0.0375255\pi\)
−0.418733 + 0.908110i \(0.637526\pi\)
\(42\) −15.1334 4.91714i −0.360319 0.117075i
\(43\) −28.7133 −0.667752 −0.333876 0.942617i \(-0.608357\pi\)
−0.333876 + 0.942617i \(0.608357\pi\)
\(44\) −29.7901 + 30.9782i −0.677047 + 0.704050i
\(45\) 0 0
\(46\) −3.51240 1.14125i −0.0763566 0.0248098i
\(47\) −2.31141 3.18139i −0.0491790 0.0676891i 0.783719 0.621115i \(-0.213320\pi\)
−0.832898 + 0.553426i \(0.813320\pi\)
\(48\) 45.1971 62.2085i 0.941607 1.29601i
\(49\) 16.4479 + 50.6214i 0.335671 + 1.03309i
\(50\) 0 0
\(51\) 8.67687 11.9427i 0.170135 0.234170i
\(52\) −15.3321 + 11.1394i −0.294848 + 0.214220i
\(53\) −59.9100 19.4659i −1.13038 0.367282i −0.316658 0.948540i \(-0.602561\pi\)
−0.813719 + 0.581258i \(0.802561\pi\)
\(54\) 13.6219i 0.252257i
\(55\) 0 0
\(56\) 24.3699 0.435177
\(57\) 34.0958 104.936i 0.598172 1.84098i
\(58\) −8.55381 11.7733i −0.147479 0.202988i
\(59\) −41.4758 30.1339i −0.702979 0.510744i 0.177922 0.984045i \(-0.443063\pi\)
−0.880901 + 0.473300i \(0.843063\pi\)
\(60\) 0 0
\(61\) 31.6001 10.2675i 0.518035 0.168320i −0.0383184 0.999266i \(-0.512200\pi\)
0.556353 + 0.830946i \(0.312200\pi\)
\(62\) −7.69112 5.58793i −0.124050 0.0901279i
\(63\) −144.417 + 104.925i −2.29233 + 1.66548i
\(64\) −17.0737 + 52.5473i −0.266776 + 0.821052i
\(65\) 0 0
\(66\) −3.04189 17.0424i −0.0460892 0.258218i
\(67\) 90.1298i 1.34522i 0.739997 + 0.672611i \(0.234827\pi\)
−0.739997 + 0.672611i \(0.765173\pi\)
\(68\) −3.45212 + 10.6245i −0.0507665 + 0.156243i
\(69\) −50.6049 + 36.7666i −0.733405 + 0.532850i
\(70\) 0 0
\(71\) 1.85591 + 5.71191i 0.0261396 + 0.0804494i 0.963275 0.268516i \(-0.0865331\pi\)
−0.937136 + 0.348965i \(0.886533\pi\)
\(72\) 13.1502 + 40.4722i 0.182642 + 0.562114i
\(73\) 105.902 + 76.9424i 1.45071 + 1.05401i 0.985664 + 0.168722i \(0.0539639\pi\)
0.465051 + 0.885284i \(0.346036\pi\)
\(74\) 3.55957 + 4.89933i 0.0481023 + 0.0662072i
\(75\) 0 0
\(76\) 83.4983i 1.09866i
\(77\) −77.0905 + 80.1652i −1.00118 + 1.04111i
\(78\) 7.63380i 0.0978693i
\(79\) −85.4604 27.7678i −1.08178 0.351491i −0.286714 0.958016i \(-0.592563\pi\)
−0.795064 + 0.606525i \(0.792563\pi\)
\(80\) 0 0
\(81\) −58.1000 42.2121i −0.717284 0.521137i
\(82\) 11.6141 3.77365i 0.141636 0.0460202i
\(83\) −27.3155 84.0686i −0.329103 1.01287i −0.969554 0.244876i \(-0.921253\pi\)
0.640451 0.767999i \(-0.278747\pi\)
\(84\) 119.880 165.000i 1.42714 1.96429i
\(85\) 0 0
\(86\) −2.70472 + 8.32426i −0.0314502 + 0.0967937i
\(87\) −246.478 −2.83308
\(88\) 12.4963 + 23.3837i 0.142003 + 0.265724i
\(89\) 118.531 1.33180 0.665902 0.746039i \(-0.268047\pi\)
0.665902 + 0.746039i \(0.268047\pi\)
\(90\) 0 0
\(91\) −39.6764 + 28.8266i −0.436004 + 0.316775i
\(92\) 27.8236 38.2959i 0.302430 0.416260i
\(93\) −153.135 + 49.7567i −1.64662 + 0.535018i
\(94\) −1.14004 + 0.370422i −0.0121281 + 0.00394066i
\(95\) 0 0
\(96\) −43.0353 59.2330i −0.448284 0.617010i
\(97\) 63.5544 + 20.6501i 0.655200 + 0.212887i 0.617705 0.786410i \(-0.288062\pi\)
0.0374942 + 0.999297i \(0.488062\pi\)
\(98\) 16.2250 0.165561
\(99\) −174.733 84.7699i −1.76498 0.856262i
\(100\) 0 0
\(101\) 12.3073 + 3.99890i 0.121855 + 0.0395931i 0.369310 0.929306i \(-0.379594\pi\)
−0.247455 + 0.968899i \(0.579594\pi\)
\(102\) −2.64496 3.64047i −0.0259310 0.0356909i
\(103\) 66.4251 91.4263i 0.644904 0.887634i −0.353961 0.935260i \(-0.615166\pi\)
0.998865 + 0.0476260i \(0.0151656\pi\)
\(104\) 3.61282 + 11.1191i 0.0347387 + 0.106915i
\(105\) 0 0
\(106\) −11.2867 + 15.5348i −0.106478 + 0.146555i
\(107\) −12.9688 + 9.42241i −0.121204 + 0.0880599i −0.646736 0.762714i \(-0.723866\pi\)
0.525532 + 0.850774i \(0.323866\pi\)
\(108\) 166.051 + 53.9531i 1.53751 + 0.499566i
\(109\) 156.813i 1.43865i −0.694671 0.719327i \(-0.744450\pi\)
0.694671 0.719327i \(-0.255550\pi\)
\(110\) 0 0
\(111\) 102.569 0.924045
\(112\) −46.5333 + 143.215i −0.415476 + 1.27870i
\(113\) −18.8099 25.8896i −0.166459 0.229112i 0.717636 0.696419i \(-0.245224\pi\)
−0.884095 + 0.467307i \(0.845224\pi\)
\(114\) −27.2102 19.7694i −0.238686 0.173416i
\(115\) 0 0
\(116\) 177.396 57.6394i 1.52928 0.496892i
\(117\) −69.2833 50.3372i −0.592165 0.430233i
\(118\) −12.6430 + 9.18568i −0.107144 + 0.0778447i
\(119\) −8.93338 + 27.4941i −0.0750704 + 0.231043i
\(120\) 0 0
\(121\) −116.451 32.8642i −0.962409 0.271605i
\(122\) 10.1283i 0.0830192i
\(123\) 63.9145 196.709i 0.519630 1.59926i
\(124\) 98.5794 71.6221i 0.794995 0.577598i
\(125\) 0 0
\(126\) 16.8151 + 51.7514i 0.133453 + 0.410726i
\(127\) −33.3284 102.574i −0.262428 0.807671i −0.992275 0.124060i \(-0.960408\pi\)
0.729846 0.683611i \(-0.239592\pi\)
\(128\) 59.5170 + 43.2416i 0.464977 + 0.337825i
\(129\) 87.1355 + 119.932i 0.675469 + 0.929703i
\(130\) 0 0
\(131\) 48.6741i 0.371558i 0.982592 + 0.185779i \(0.0594808\pi\)
−0.982592 + 0.185779i \(0.940519\pi\)
\(132\) 219.795 + 30.4205i 1.66511 + 0.230458i
\(133\) 216.076i 1.62463i
\(134\) 26.1295 + 8.48998i 0.194996 + 0.0633580i
\(135\) 0 0
\(136\) 5.57546 + 4.05081i 0.0409961 + 0.0297854i
\(137\) −71.4507 + 23.2157i −0.521538 + 0.169458i −0.557943 0.829879i \(-0.688409\pi\)
0.0364052 + 0.999337i \(0.488409\pi\)
\(138\) 5.89214 + 18.1341i 0.0426967 + 0.131407i
\(139\) 28.3745 39.0542i 0.204133 0.280965i −0.694660 0.719338i \(-0.744445\pi\)
0.898793 + 0.438373i \(0.144445\pi\)
\(140\) 0 0
\(141\) −6.27385 + 19.3089i −0.0444954 + 0.136943i
\(142\) 1.83076 0.0128926
\(143\) −48.0052 23.2892i −0.335700 0.162862i
\(144\) −262.953 −1.82606
\(145\) 0 0
\(146\) 32.2820 23.4542i 0.221110 0.160646i
\(147\) 161.525 222.320i 1.09881 1.51238i
\(148\) −73.8213 + 23.9860i −0.498793 + 0.162068i
\(149\) −114.600 + 37.2357i −0.769126 + 0.249904i −0.667191 0.744887i \(-0.732503\pi\)
−0.101935 + 0.994791i \(0.532503\pi\)
\(150\) 0 0
\(151\) −45.4102 62.5018i −0.300730 0.413919i 0.631733 0.775186i \(-0.282344\pi\)
−0.932462 + 0.361268i \(0.882344\pi\)
\(152\) 48.9896 + 15.9177i 0.322300 + 0.104722i
\(153\) −50.4812 −0.329943
\(154\) 15.9789 + 29.9006i 0.103759 + 0.194160i
\(155\) 0 0
\(156\) 93.0559 + 30.2357i 0.596512 + 0.193819i
\(157\) 31.8599 + 43.8515i 0.202930 + 0.279309i 0.898337 0.439307i \(-0.144776\pi\)
−0.695407 + 0.718616i \(0.744776\pi\)
\(158\) −16.1003 + 22.1601i −0.101900 + 0.140254i
\(159\) 100.501 + 309.309i 0.632079 + 1.94534i
\(160\) 0 0
\(161\) 72.0017 99.1018i 0.447215 0.615539i
\(162\) −17.7105 + 12.8675i −0.109324 + 0.0794287i
\(163\) −193.205 62.7761i −1.18531 0.385129i −0.350971 0.936386i \(-0.614148\pi\)
−0.834336 + 0.551257i \(0.814148\pi\)
\(164\) 156.522i 0.954404i
\(165\) 0 0
\(166\) −26.9453 −0.162321
\(167\) 41.0093 126.214i 0.245565 0.755771i −0.749978 0.661462i \(-0.769936\pi\)
0.995543 0.0943081i \(-0.0300639\pi\)
\(168\) −73.9546 101.790i −0.440206 0.605891i
\(169\) 117.689 + 85.5063i 0.696387 + 0.505954i
\(170\) 0 0
\(171\) −358.848 + 116.597i −2.09853 + 0.681852i
\(172\) −90.7598 65.9408i −0.527673 0.383377i
\(173\) 90.4855 65.7416i 0.523037 0.380009i −0.294709 0.955587i \(-0.595223\pi\)
0.817747 + 0.575578i \(0.195223\pi\)
\(174\) −23.2175 + 71.4562i −0.133434 + 0.410668i
\(175\) 0 0
\(176\) −161.281 + 28.7868i −0.916367 + 0.163562i
\(177\) 264.685i 1.49540i
\(178\) 11.1652 34.3631i 0.0627261 0.193051i
\(179\) −38.7619 + 28.1621i −0.216547 + 0.157330i −0.690771 0.723074i \(-0.742729\pi\)
0.474224 + 0.880404i \(0.342729\pi\)
\(180\) 0 0
\(181\) 2.09873 + 6.45923i 0.0115952 + 0.0356864i 0.956687 0.291119i \(-0.0940277\pi\)
−0.945092 + 0.326806i \(0.894028\pi\)
\(182\) 4.61968 + 14.2179i 0.0253829 + 0.0781204i
\(183\) −138.782 100.831i −0.758371 0.550989i
\(184\) −17.1646 23.6250i −0.0932857 0.128397i
\(185\) 0 0
\(186\) 49.0823i 0.263883i
\(187\) −30.9624 + 5.52645i −0.165574 + 0.0295532i
\(188\) 15.3642i 0.0817246i
\(189\) 429.705 + 139.619i 2.27357 + 0.738728i
\(190\) 0 0
\(191\) 60.7195 + 44.1153i 0.317903 + 0.230970i 0.735280 0.677763i \(-0.237051\pi\)
−0.417377 + 0.908733i \(0.637051\pi\)
\(192\) 271.296 88.1494i 1.41300 0.459112i
\(193\) 117.250 + 360.857i 0.607511 + 1.86973i 0.478513 + 0.878081i \(0.341176\pi\)
0.128998 + 0.991645i \(0.458824\pi\)
\(194\) 11.9733 16.4798i 0.0617180 0.0849475i
\(195\) 0 0
\(196\) −64.2633 + 197.782i −0.327874 + 1.00909i
\(197\) 91.4898 0.464415 0.232208 0.972666i \(-0.425405\pi\)
0.232208 + 0.972666i \(0.425405\pi\)
\(198\) −41.0349 + 42.6715i −0.207247 + 0.215513i
\(199\) −24.0213 −0.120710 −0.0603551 0.998177i \(-0.519223\pi\)
−0.0603551 + 0.998177i \(0.519223\pi\)
\(200\) 0 0
\(201\) 376.460 273.514i 1.87294 1.36077i
\(202\) 2.31864 3.19133i 0.0114784 0.0157987i
\(203\) 459.064 149.159i 2.26140 0.734773i
\(204\) 54.8533 17.8229i 0.268889 0.0873673i
\(205\) 0 0
\(206\) −20.2483 27.8693i −0.0982926 0.135288i
\(207\) 203.436 + 66.1002i 0.982781 + 0.319325i
\(208\) −72.2423 −0.347319
\(209\) −207.333 + 110.799i −0.992023 + 0.530138i
\(210\) 0 0
\(211\) −349.688 113.620i −1.65729 0.538486i −0.676987 0.735995i \(-0.736715\pi\)
−0.980301 + 0.197509i \(0.936715\pi\)
\(212\) −144.665 199.115i −0.682383 0.939219i
\(213\) 18.2258 25.0856i 0.0855671 0.117773i
\(214\) 1.51002 + 4.64735i 0.00705615 + 0.0217166i
\(215\) 0 0
\(216\) 63.3100 87.1387i 0.293102 0.403420i
\(217\) 255.103 185.343i 1.17559 0.854117i
\(218\) −45.4616 14.7714i −0.208540 0.0677586i
\(219\) 675.834i 3.08600i
\(220\) 0 0
\(221\) −13.8690 −0.0627555
\(222\) 9.66172 29.7357i 0.0435212 0.133945i
\(223\) 104.183 + 143.396i 0.467190 + 0.643032i 0.975980 0.217858i \(-0.0699071\pi\)
−0.508790 + 0.860891i \(0.669907\pi\)
\(224\) 115.999 + 84.2779i 0.517851 + 0.376241i
\(225\) 0 0
\(226\) −9.27747 + 3.01443i −0.0410508 + 0.0133382i
\(227\) −14.9656 10.8732i −0.0659279 0.0478994i 0.554333 0.832295i \(-0.312973\pi\)
−0.620261 + 0.784395i \(0.712973\pi\)
\(228\) 348.761 253.390i 1.52966 1.11136i
\(229\) 41.3284 127.196i 0.180473 0.555440i −0.819368 0.573268i \(-0.805675\pi\)
0.999841 + 0.0178283i \(0.00567522\pi\)
\(230\) 0 0
\(231\) 568.784 + 78.7219i 2.46227 + 0.340787i
\(232\) 115.069i 0.495985i
\(233\) 13.6070 41.8780i 0.0583991 0.179734i −0.917602 0.397501i \(-0.869877\pi\)
0.976001 + 0.217767i \(0.0698774\pi\)
\(234\) −21.1195 + 15.3442i −0.0902544 + 0.0655736i
\(235\) 0 0
\(236\) −61.8973 190.500i −0.262277 0.807204i
\(237\) 143.362 + 441.223i 0.604903 + 1.86170i
\(238\) 7.12930 + 5.17974i 0.0299550 + 0.0217636i
\(239\) −97.2433 133.844i −0.406876 0.560017i 0.555577 0.831465i \(-0.312497\pi\)
−0.962453 + 0.271448i \(0.912497\pi\)
\(240\) 0 0
\(241\) 68.3979i 0.283809i −0.989880 0.141904i \(-0.954677\pi\)
0.989880 0.141904i \(-0.0453225\pi\)
\(242\) −20.4970 + 30.6646i −0.0846985 + 0.126713i
\(243\) 31.4080i 0.129251i
\(244\) 123.464 + 40.1160i 0.506001 + 0.164410i
\(245\) 0 0
\(246\) −51.0071 37.0588i −0.207346 0.150645i
\(247\) −98.5880 + 32.0332i −0.399142 + 0.129689i
\(248\) −23.2290 71.4915i −0.0936653 0.288272i
\(249\) −268.250 + 369.214i −1.07731 + 1.48279i
\(250\) 0 0
\(251\) 104.767 322.440i 0.417399 1.28462i −0.492688 0.870206i \(-0.663986\pi\)
0.910087 0.414417i \(-0.136014\pi\)
\(252\) −697.449 −2.76766
\(253\) 132.012 + 18.2710i 0.521788 + 0.0722175i
\(254\) −32.8767 −0.129436
\(255\) 0 0
\(256\) −160.655 + 116.723i −0.627559 + 0.455949i
\(257\) 148.075 203.807i 0.576167 0.793025i −0.417102 0.908860i \(-0.636954\pi\)
0.993269 + 0.115835i \(0.0369542\pi\)
\(258\) 42.9772 13.9641i 0.166578 0.0541246i
\(259\) −191.034 + 62.0708i −0.737584 + 0.239656i
\(260\) 0 0
\(261\) 495.430 + 681.901i 1.89820 + 2.61265i
\(262\) 14.1111 + 4.58496i 0.0538590 + 0.0174999i
\(263\) −424.803 −1.61522 −0.807610 0.589717i \(-0.799239\pi\)
−0.807610 + 0.589717i \(0.799239\pi\)
\(264\) 59.7486 123.157i 0.226320 0.466505i
\(265\) 0 0
\(266\) 62.6425 + 20.3538i 0.235498 + 0.0765180i
\(267\) −359.701 495.086i −1.34720 1.85426i
\(268\) −206.985 + 284.891i −0.772333 + 1.06303i
\(269\) −154.300 474.888i −0.573608 1.76538i −0.640872 0.767648i \(-0.721427\pi\)
0.0672640 0.997735i \(-0.478573\pi\)
\(270\) 0 0
\(271\) −138.031 + 189.983i −0.509339 + 0.701045i −0.983808 0.179227i \(-0.942640\pi\)
0.474468 + 0.880273i \(0.342640\pi\)
\(272\) −34.4515 + 25.0305i −0.126660 + 0.0920239i
\(273\) 240.809 + 78.2437i 0.882086 + 0.286607i
\(274\) 22.9011i 0.0835806i
\(275\) 0 0
\(276\) −244.392 −0.885479
\(277\) 42.0248 129.339i 0.151714 0.466928i −0.846099 0.533026i \(-0.821055\pi\)
0.997813 + 0.0660976i \(0.0210549\pi\)
\(278\) −8.64937 11.9048i −0.0311128 0.0428232i
\(279\) 445.464 + 323.648i 1.59664 + 1.16003i
\(280\) 0 0
\(281\) −287.964 + 93.5652i −1.02478 + 0.332972i −0.772726 0.634740i \(-0.781107\pi\)
−0.252057 + 0.967712i \(0.581107\pi\)
\(282\) 5.00685 + 3.63769i 0.0177548 + 0.0128996i
\(283\) 8.61523 6.25933i 0.0304425 0.0221178i −0.572460 0.819933i \(-0.694011\pi\)
0.602902 + 0.797815i \(0.294011\pi\)
\(284\) −7.25119 + 22.3169i −0.0255324 + 0.0785805i
\(285\) 0 0
\(286\) −11.2737 + 11.7234i −0.0394186 + 0.0409908i
\(287\) 405.047i 1.41131i
\(288\) −77.3703 + 238.121i −0.268647 + 0.826810i
\(289\) 227.192 165.065i 0.786131 0.571158i
\(290\) 0 0
\(291\) −106.614 328.124i −0.366371 1.12757i
\(292\) 158.045 + 486.414i 0.541251 + 1.66580i
\(293\) −267.010 193.994i −0.911296 0.662095i 0.0300463 0.999549i \(-0.490435\pi\)
−0.941342 + 0.337453i \(0.890435\pi\)
\(294\) −49.2374 67.7695i −0.167474 0.230509i
\(295\) 0 0
\(296\) 47.8845i 0.161772i
\(297\) 86.3727 + 483.910i 0.290817 + 1.62933i
\(298\) 36.7310i 0.123259i
\(299\) 55.8909 + 18.1600i 0.186926 + 0.0607359i
\(300\) 0 0
\(301\) −234.868 170.641i −0.780291 0.566914i
\(302\) −22.3973 + 7.27734i −0.0741634 + 0.0240971i
\(303\) −20.6459 63.5415i −0.0681382 0.209708i
\(304\) −187.087 + 257.503i −0.615418 + 0.847050i
\(305\) 0 0
\(306\) −4.75519 + 14.6350i −0.0155398 + 0.0478267i
\(307\) −111.473 −0.363104 −0.181552 0.983381i \(-0.558112\pi\)
−0.181552 + 0.983381i \(0.558112\pi\)
\(308\) −427.776 + 76.3534i −1.38888 + 0.247901i
\(309\) −583.454 −1.88820
\(310\) 0 0
\(311\) −327.747 + 238.122i −1.05385 + 0.765665i −0.972940 0.231057i \(-0.925782\pi\)
−0.0809071 + 0.996722i \(0.525782\pi\)
\(312\) 35.4794 48.8331i 0.113716 0.156516i
\(313\) −161.450 + 52.4582i −0.515814 + 0.167598i −0.555345 0.831620i \(-0.687414\pi\)
0.0395307 + 0.999218i \(0.487414\pi\)
\(314\) 15.7141 5.10581i 0.0500448 0.0162605i
\(315\) 0 0
\(316\) −206.362 284.033i −0.653044 0.898838i
\(317\) 367.389 + 119.372i 1.15895 + 0.376567i 0.824510 0.565848i \(-0.191451\pi\)
0.334445 + 0.942415i \(0.391451\pi\)
\(318\) 99.1383 0.311756
\(319\) 378.520 + 364.003i 1.18658 + 1.14107i
\(320\) 0 0
\(321\) 78.7123 + 25.5752i 0.245210 + 0.0796735i
\(322\) −21.9482 30.2091i −0.0681620 0.0938170i
\(323\) −35.9167 + 49.4350i −0.111197 + 0.153050i
\(324\) −86.7068 266.856i −0.267613 0.823630i
\(325\) 0 0
\(326\) −36.3987 + 50.0986i −0.111653 + 0.153677i
\(327\) −654.988 + 475.877i −2.00302 + 1.45528i
\(328\) 91.8337 + 29.8386i 0.279981 + 0.0909713i
\(329\) 39.7595i 0.120849i
\(330\) 0 0
\(331\) 118.966 0.359413 0.179706 0.983720i \(-0.442485\pi\)
0.179706 + 0.983720i \(0.442485\pi\)
\(332\) 106.724 328.463i 0.321458 0.989346i
\(333\) −206.168 283.765i −0.619122 0.852148i
\(334\) −32.7275 23.7780i −0.0979867 0.0711915i
\(335\) 0 0
\(336\) 739.402 240.246i 2.20060 0.715018i
\(337\) −358.847 260.717i −1.06483 0.773642i −0.0898516 0.995955i \(-0.528639\pi\)
−0.974975 + 0.222313i \(0.928639\pi\)
\(338\) 35.8751 26.0648i 0.106139 0.0771147i
\(339\) −51.0556 + 157.133i −0.150606 + 0.463519i
\(340\) 0 0
\(341\) 308.654 + 149.741i 0.905144 + 0.439122i
\(342\) 115.016i 0.336305i
\(343\) −13.2053 + 40.6417i −0.0384993 + 0.118489i
\(344\) −55.9903 + 40.6793i −0.162763 + 0.118254i
\(345\) 0 0
\(346\) −10.5356 32.4252i −0.0304497 0.0937146i
\(347\) −163.076 501.898i −0.469961 1.44639i −0.852635 0.522507i \(-0.824997\pi\)
0.382674 0.923883i \(-0.375003\pi\)
\(348\) −779.091 566.042i −2.23877 1.62656i
\(349\) −318.255 438.040i −0.911905 1.25513i −0.966512 0.256622i \(-0.917390\pi\)
0.0546065 0.998508i \(-0.482610\pi\)
\(350\) 0 0
\(351\) 216.758i 0.617543i
\(352\) −21.3862 + 154.520i −0.0607563 + 0.438978i
\(353\) 216.813i 0.614201i 0.951677 + 0.307101i \(0.0993588\pi\)
−0.951677 + 0.307101i \(0.900641\pi\)
\(354\) 76.7347 + 24.9326i 0.216765 + 0.0704311i
\(355\) 0 0
\(356\) 374.662 + 272.208i 1.05242 + 0.764630i
\(357\) 141.949 46.1221i 0.397616 0.129193i
\(358\) 4.51321 + 13.8902i 0.0126067 + 0.0387995i
\(359\) 329.315 453.263i 0.917311 1.26257i −0.0472967 0.998881i \(-0.515061\pi\)
0.964608 0.263689i \(-0.0849394\pi\)
\(360\) 0 0
\(361\) −29.5795 + 91.0363i −0.0819376 + 0.252178i
\(362\) 2.07029 0.00571902
\(363\) 216.123 + 586.134i 0.595379 + 1.61469i
\(364\) −191.614 −0.526411
\(365\) 0 0
\(366\) −42.3047 + 30.7362i −0.115587 + 0.0839786i
\(367\) −18.1911 + 25.0380i −0.0495671 + 0.0682233i −0.833081 0.553151i \(-0.813425\pi\)
0.783514 + 0.621374i \(0.213425\pi\)
\(368\) 171.612 55.7602i 0.466337 0.151522i
\(369\) −672.680 + 218.567i −1.82298 + 0.592323i
\(370\) 0 0
\(371\) −374.364 515.267i −1.00907 1.38886i
\(372\) −598.312 194.403i −1.60837 0.522590i
\(373\) 483.806 1.29707 0.648534 0.761186i \(-0.275383\pi\)
0.648534 + 0.761186i \(0.275383\pi\)
\(374\) −1.31440 + 9.49685i −0.00351444 + 0.0253927i
\(375\) 0 0
\(376\) −9.01440 2.92896i −0.0239745 0.00778977i
\(377\) 136.112 + 187.342i 0.361040 + 0.496928i
\(378\) 80.9540 111.424i 0.214164 0.294771i
\(379\) −25.3368 77.9786i −0.0668517 0.205748i 0.912050 0.410078i \(-0.134499\pi\)
−0.978902 + 0.204330i \(0.934499\pi\)
\(380\) 0 0
\(381\) −327.298 + 450.487i −0.859050 + 1.18238i
\(382\) 18.5090 13.4476i 0.0484530 0.0352031i
\(383\) 693.283 + 225.261i 1.81014 + 0.588150i 0.999998 + 0.00191562i \(0.000609760\pi\)
0.810141 + 0.586234i \(0.199390\pi\)
\(384\) 379.819i 0.989111i
\(385\) 0 0
\(386\) 115.660 0.299638
\(387\) 156.655 482.135i 0.404793 1.24583i
\(388\) 153.465 + 211.227i 0.395529 + 0.544399i
\(389\) 193.321 + 140.456i 0.496969 + 0.361069i 0.807858 0.589377i \(-0.200627\pi\)
−0.310889 + 0.950446i \(0.600627\pi\)
\(390\) 0 0
\(391\) 32.9458 10.7047i 0.0842604 0.0273779i
\(392\) 103.790 + 75.4082i 0.264772 + 0.192368i
\(393\) 203.305 147.710i 0.517316 0.375852i
\(394\) 8.61808 26.5237i 0.0218733 0.0673191i
\(395\) 0 0
\(396\) −357.635 669.226i −0.903120 1.68997i
\(397\) 354.733i 0.893535i 0.894650 + 0.446768i \(0.147425\pi\)
−0.894650 + 0.446768i \(0.852575\pi\)
\(398\) −2.26274 + 6.96401i −0.00568528 + 0.0174975i
\(399\) 902.522 655.721i 2.26196 1.64341i
\(400\) 0 0
\(401\) 79.1417 + 243.573i 0.197361 + 0.607414i 0.999941 + 0.0108700i \(0.00346008\pi\)
−0.802580 + 0.596545i \(0.796540\pi\)
\(402\) −43.8328 134.904i −0.109037 0.335581i
\(403\) 122.384 + 88.9175i 0.303684 + 0.220639i
\(404\) 29.7187 + 40.9042i 0.0735610 + 0.101248i
\(405\) 0 0
\(406\) 147.137i 0.362407i
\(407\) −157.517 151.476i −0.387020 0.372176i
\(408\) 35.5808i 0.0872079i
\(409\) −261.500 84.9666i −0.639365 0.207742i −0.0286458 0.999590i \(-0.509119\pi\)
−0.610719 + 0.791847i \(0.709119\pi\)
\(410\) 0 0
\(411\) 313.798 + 227.988i 0.763500 + 0.554715i
\(412\) 419.925 136.442i 1.01924 0.331170i
\(413\) −160.177 492.975i −0.387839 1.19364i
\(414\) 38.3261 52.7514i 0.0925752 0.127419i
\(415\) 0 0
\(416\) −21.2563 + 65.4202i −0.0510969 + 0.157260i
\(417\) −249.232 −0.597678
\(418\) 12.5914 + 70.5446i 0.0301231 + 0.168767i
\(419\) −44.0757 −0.105193 −0.0525963 0.998616i \(-0.516750\pi\)
−0.0525963 + 0.998616i \(0.516750\pi\)
\(420\) 0 0
\(421\) 65.8608 47.8507i 0.156439 0.113660i −0.506812 0.862057i \(-0.669176\pi\)
0.663251 + 0.748397i \(0.269176\pi\)
\(422\) −65.8792 + 90.6750i −0.156112 + 0.214870i
\(423\) 66.0303 21.4546i 0.156100 0.0507200i
\(424\) −144.401 + 46.9188i −0.340569 + 0.110658i
\(425\) 0 0
\(426\) −5.55574 7.64682i −0.0130416 0.0179503i
\(427\) 319.500 + 103.812i 0.748243 + 0.243119i
\(428\) −62.6319 −0.146336
\(429\) 48.4038 + 271.186i 0.112829 + 0.632136i
\(430\) 0 0
\(431\) 690.547 + 224.372i 1.60220 + 0.520585i 0.967649 0.252299i \(-0.0811866\pi\)
0.634547 + 0.772884i \(0.281187\pi\)
\(432\) 391.201 + 538.442i 0.905558 + 1.24639i
\(433\) 204.033 280.828i 0.471208 0.648563i −0.505577 0.862781i \(-0.668720\pi\)
0.976786 + 0.214218i \(0.0687205\pi\)
\(434\) −29.7027 91.4156i −0.0684394 0.210635i
\(435\) 0 0
\(436\) 360.126 495.670i 0.825976 1.13686i
\(437\) 209.472 152.190i 0.479340 0.348261i
\(438\) −195.930 63.6617i −0.447330 0.145346i
\(439\) 72.1914i 0.164445i 0.996614 + 0.0822226i \(0.0262018\pi\)
−0.996614 + 0.0822226i \(0.973798\pi\)
\(440\) 0 0
\(441\) −939.738 −2.13092
\(442\) −1.30642 + 4.02074i −0.00295569 + 0.00909669i
\(443\) 220.886 + 304.024i 0.498614 + 0.686284i 0.981948 0.189153i \(-0.0605741\pi\)
−0.483333 + 0.875436i \(0.660574\pi\)
\(444\) 324.210 + 235.552i 0.730202 + 0.530523i
\(445\) 0 0
\(446\) 51.3857 16.6962i 0.115214 0.0374355i
\(447\) 503.301 + 365.670i 1.12595 + 0.818053i
\(448\) −451.943 + 328.356i −1.00880 + 0.732937i
\(449\) −34.6764 + 106.723i −0.0772302 + 0.237690i −0.982217 0.187750i \(-0.939881\pi\)
0.904987 + 0.425440i \(0.139881\pi\)
\(450\) 0 0
\(451\) −388.657 + 207.699i −0.861767 + 0.460529i
\(452\) 125.032i 0.276619i
\(453\) −123.256 + 379.344i −0.272089 + 0.837405i
\(454\) −4.56195 + 3.31445i −0.0100483 + 0.00730055i
\(455\) 0 0
\(456\) −82.1812 252.928i −0.180222 0.554666i
\(457\) 57.6949 + 177.567i 0.126247 + 0.388549i 0.994126 0.108227i \(-0.0345173\pi\)
−0.867879 + 0.496775i \(0.834517\pi\)
\(458\) −32.9822 23.9630i −0.0720136 0.0523209i
\(459\) 75.1021 + 103.369i 0.163621 + 0.225205i
\(460\) 0 0
\(461\) 559.922i 1.21458i −0.794479 0.607291i \(-0.792256\pi\)
0.794479 0.607291i \(-0.207744\pi\)
\(462\) 76.4000 157.480i 0.165368 0.340866i
\(463\) 648.611i 1.40089i −0.713708 0.700444i \(-0.752986\pi\)
0.713708 0.700444i \(-0.247014\pi\)
\(464\) 676.224 + 219.719i 1.45738 + 0.473532i
\(465\) 0 0
\(466\) −10.8591 7.88958i −0.0233028 0.0169304i
\(467\) −856.339 + 278.242i −1.83370 + 0.595806i −0.834722 + 0.550671i \(0.814372\pi\)
−0.998981 + 0.0451348i \(0.985628\pi\)
\(468\) −103.396 318.221i −0.220932 0.679960i
\(469\) −535.635 + 737.238i −1.14208 + 1.57194i
\(470\) 0 0
\(471\) 86.4772 266.149i 0.183603 0.565073i
\(472\) −123.569 −0.261798
\(473\) 43.3016 312.864i 0.0915468 0.661447i
\(474\) 141.419 0.298352
\(475\) 0 0
\(476\) −91.3783 + 66.3902i −0.191971 + 0.139475i
\(477\) 653.718 899.765i 1.37048 1.88630i
\(478\) −47.9626 + 15.5840i −0.100340 + 0.0326025i
\(479\) 441.790 143.546i 0.922317 0.299679i 0.190900 0.981609i \(-0.438859\pi\)
0.731417 + 0.681930i \(0.238859\pi\)
\(480\) 0 0
\(481\) −56.6415 77.9603i −0.117758 0.162080i
\(482\) −19.8292 6.44289i −0.0411394 0.0133670i
\(483\) −632.437 −1.30939
\(484\) −292.617 371.314i −0.604581 0.767177i
\(485\) 0 0
\(486\) −9.10546 2.95854i −0.0187355 0.00608753i
\(487\) 19.3672 + 26.6567i 0.0397685 + 0.0547366i 0.828438 0.560081i \(-0.189230\pi\)
−0.788670 + 0.614817i \(0.789230\pi\)
\(488\) 47.0731 64.7906i 0.0964613 0.132768i
\(489\) 324.106 + 997.496i 0.662794 + 2.03987i
\(490\) 0 0
\(491\) −469.003 + 645.528i −0.955200 + 1.31472i −0.00602158 + 0.999982i \(0.501917\pi\)
−0.949179 + 0.314738i \(0.898083\pi\)
\(492\) 653.773 474.994i 1.32881 0.965434i
\(493\) 129.820 + 42.1812i 0.263327 + 0.0855603i
\(494\) 31.5990i 0.0639656i
\(495\) 0 0
\(496\) 464.489 0.936470
\(497\) −18.7646 + 57.7514i −0.0377557 + 0.116200i
\(498\) 81.7701 + 112.547i 0.164197 + 0.225998i
\(499\) 479.816 + 348.607i 0.961555 + 0.698611i 0.953511 0.301357i \(-0.0974396\pi\)
0.00804363 + 0.999968i \(0.497440\pi\)
\(500\) 0 0
\(501\) −651.627 + 211.727i −1.30065 + 0.422608i
\(502\) −83.6096 60.7459i −0.166553 0.121008i
\(503\) −634.532 + 461.015i −1.26150 + 0.916530i −0.998830 0.0483569i \(-0.984602\pi\)
−0.262665 + 0.964887i \(0.584602\pi\)
\(504\) −132.958 + 409.203i −0.263806 + 0.811910i
\(505\) 0 0
\(506\) 17.7321 36.5505i 0.0350437 0.0722342i
\(507\) 751.056i 1.48137i
\(508\) 130.217 400.766i 0.256332 0.788909i
\(509\) −639.768 + 464.819i −1.25691 + 0.913200i −0.998602 0.0528625i \(-0.983165\pi\)
−0.258310 + 0.966062i \(0.583165\pi\)
\(510\) 0 0
\(511\) 408.989 + 1258.74i 0.800369 + 2.46328i
\(512\) 109.640 + 337.436i 0.214140 + 0.659055i
\(513\) 772.619 + 561.340i 1.50608 + 1.09423i
\(514\) −45.1374 62.1263i −0.0878160 0.120868i
\(515\) 0 0
\(516\) 579.200i 1.12248i
\(517\) 38.1506 20.3877i 0.0737922 0.0394346i
\(518\) 61.2295i 0.118204i
\(519\) −549.187 178.442i −1.05816 0.343818i
\(520\) 0 0
\(521\) −514.280 373.646i −0.987101 0.717171i −0.0278170 0.999613i \(-0.508856\pi\)
−0.959284 + 0.282442i \(0.908856\pi\)
\(522\) 244.357 79.3966i 0.468118 0.152101i
\(523\) 58.7556 + 180.831i 0.112343 + 0.345757i 0.991384 0.130990i \(-0.0418156\pi\)
−0.879040 + 0.476747i \(0.841816\pi\)
\(524\) −111.781 + 153.854i −0.213323 + 0.293614i
\(525\) 0 0
\(526\) −40.0152 + 123.154i −0.0760746 + 0.234134i
\(527\) 89.1719 0.169207
\(528\) 609.672 + 586.289i 1.15468 + 1.11040i
\(529\) 382.214 0.722522
\(530\) 0 0
\(531\) 732.273 532.027i 1.37905 1.00193i
\(532\) −496.225 + 682.995i −0.932753 + 1.28382i
\(533\) −184.809 + 60.0480i −0.346733 + 0.112660i
\(534\) −177.413 + 57.6449i −0.332234 + 0.107949i
\(535\) 0 0
\(536\) 127.691 + 175.751i 0.238229 + 0.327894i
\(537\) 235.259 + 76.4403i 0.438099 + 0.142347i
\(538\) −152.209 −0.282917
\(539\) −576.382 + 102.878i −1.06936 + 0.190868i
\(540\) 0 0
\(541\) 37.6026 + 12.2178i 0.0695058 + 0.0225838i 0.343563 0.939129i \(-0.388366\pi\)
−0.274058 + 0.961713i \(0.588366\pi\)
\(542\) 42.0758 + 57.9123i 0.0776306 + 0.106849i
\(543\) 20.6104 28.3678i 0.0379565 0.0522427i
\(544\) 12.5299 + 38.5630i 0.0230329 + 0.0708879i
\(545\) 0 0
\(546\) 45.3671 62.4425i 0.0830900 0.114364i
\(547\) 478.368 347.554i 0.874529 0.635383i −0.0572690 0.998359i \(-0.518239\pi\)
0.931799 + 0.362976i \(0.118239\pi\)
\(548\) −279.164 90.7057i −0.509423 0.165521i
\(549\) 586.626i 1.06853i
\(550\) 0 0
\(551\) 1020.26 1.85165
\(552\) −46.5896 + 143.388i −0.0844015 + 0.259761i
\(553\) −534.022 735.018i −0.965682 1.32915i
\(554\) −33.5380 24.3668i −0.0605379 0.0439833i
\(555\) 0 0
\(556\) 179.378 58.2834i 0.322622 0.104826i
\(557\) −176.596 128.305i −0.317049 0.230350i 0.417866 0.908509i \(-0.362778\pi\)
−0.734915 + 0.678159i \(0.762778\pi\)
\(558\) 135.790 98.6573i 0.243351 0.176805i
\(559\) 43.0386 132.459i 0.0769921 0.236957i
\(560\) 0 0
\(561\) 117.044 + 112.555i 0.208634 + 0.200632i
\(562\) 92.2970i 0.164229i
\(563\) 115.865 356.595i 0.205799 0.633383i −0.793881 0.608073i \(-0.791943\pi\)
0.999680 0.0253101i \(-0.00805730\pi\)
\(564\) −64.1743 + 46.6254i −0.113784 + 0.0826691i
\(565\) 0 0
\(566\) −1.00311 3.08725i −0.00177227 0.00545450i
\(567\) −224.379 690.568i −0.395730 1.21793i
\(568\) 11.7113 + 8.50874i 0.0206184 + 0.0149802i
\(569\) 131.674 + 181.234i 0.231413 + 0.318513i 0.908894 0.417028i \(-0.136928\pi\)
−0.677480 + 0.735541i \(0.736928\pi\)
\(570\) 0 0
\(571\) 176.017i 0.308262i −0.988050 0.154131i \(-0.950742\pi\)
0.988050 0.154131i \(-0.0492577\pi\)
\(572\) −98.2549 183.860i −0.171774 0.321433i
\(573\) 387.492i 0.676252i
\(574\) 117.427 + 38.1543i 0.204577 + 0.0664710i
\(575\) 0 0
\(576\) −789.188 573.378i −1.37012 0.995449i
\(577\) 635.162 206.377i 1.10080 0.357672i 0.298391 0.954444i \(-0.403550\pi\)
0.802411 + 0.596772i \(0.203550\pi\)
\(578\) −26.4529 81.4137i −0.0457663 0.140854i
\(579\) 1151.44 1584.82i 1.98867 2.73716i
\(580\) 0 0
\(581\) 276.180 849.994i 0.475352 1.46298i
\(582\) −105.169 −0.180703
\(583\) 302.452 623.432i 0.518785 1.06935i
\(584\) 315.514 0.540264
\(585\) 0 0
\(586\) −81.3922 + 59.1349i −0.138895 + 0.100913i
\(587\) 57.4195 79.0311i 0.0978185 0.134636i −0.757302 0.653065i \(-0.773483\pi\)
0.855121 + 0.518429i \(0.173483\pi\)
\(588\) 1021.13 331.784i 1.73661 0.564259i
\(589\) 633.882 205.961i 1.07620 0.349679i
\(590\) 0 0
\(591\) −277.641 382.141i −0.469782 0.646600i
\(592\) −281.403 91.4335i −0.475343 0.154448i
\(593\) 479.081 0.807893 0.403947 0.914783i \(-0.367638\pi\)
0.403947 + 0.914783i \(0.367638\pi\)
\(594\) 148.426 + 20.5427i 0.249875 + 0.0345837i
\(595\) 0 0
\(596\) −447.751 145.483i −0.751259 0.244099i
\(597\) 72.8968 + 100.334i 0.122105 + 0.168063i
\(598\) 10.5295 14.4927i 0.0176079 0.0242352i
\(599\) −146.829 451.894i −0.245124 0.754414i −0.995616 0.0935345i \(-0.970183\pi\)
0.750492 0.660879i \(-0.229817\pi\)
\(600\) 0 0
\(601\) 316.409 435.499i 0.526470 0.724624i −0.460117 0.887858i \(-0.652193\pi\)
0.986587 + 0.163234i \(0.0521926\pi\)
\(602\) −71.5943 + 52.0163i −0.118927 + 0.0864059i
\(603\) −1513.40 491.733i −2.50978 0.815477i
\(604\) 301.847i 0.499747i
\(605\) 0 0
\(606\) −20.3660 −0.0336073
\(607\) −127.052 + 391.027i −0.209312 + 0.644196i 0.790197 + 0.612853i \(0.209978\pi\)
−0.999509 + 0.0313426i \(0.990022\pi\)
\(608\) 178.138 + 245.186i 0.292991 + 0.403267i
\(609\) −2016.13 1464.80i −3.31055 2.40526i
\(610\) 0 0
\(611\) 18.1408 5.89431i 0.0296904 0.00964700i
\(612\) −159.566 115.931i −0.260728 0.189430i
\(613\) −201.079 + 146.092i −0.328025 + 0.238324i −0.739592 0.673056i \(-0.764981\pi\)
0.411567 + 0.911379i \(0.364981\pi\)
\(614\) −10.5004 + 32.3170i −0.0171017 + 0.0526336i
\(615\) 0 0
\(616\) −36.7514 + 265.538i −0.0596614 + 0.431067i
\(617\) 1141.96i 1.85082i 0.378964 + 0.925411i \(0.376280\pi\)
−0.378964 + 0.925411i \(0.623720\pi\)
\(618\) −54.9597 + 169.149i −0.0889316 + 0.273703i
\(619\) 4.57281 3.32234i 0.00738742 0.00536727i −0.584085 0.811692i \(-0.698547\pi\)
0.591473 + 0.806325i \(0.298547\pi\)
\(620\) 0 0
\(621\) −167.304 514.909i −0.269411 0.829161i
\(622\) 38.1609 + 117.447i 0.0613519 + 0.188822i
\(623\) 969.549 + 704.418i 1.55626 + 1.13069i
\(624\) 219.232 + 301.746i 0.351333 + 0.483568i
\(625\) 0 0
\(626\) 51.7472i 0.0826633i
\(627\) 1091.98 + 529.763i 1.74159 + 0.844917i
\(628\) 211.777i 0.337224i
\(629\) −54.0233 17.5532i −0.0858876 0.0279066i
\(630\) 0 0
\(631\) 601.402 + 436.944i 0.953094 + 0.692463i 0.951537 0.307536i \(-0.0995043\pi\)
0.00155713 + 0.999999i \(0.499504\pi\)
\(632\) −205.986 + 66.9288i −0.325927 + 0.105900i
\(633\) 586.610 + 1805.40i 0.926714 + 2.85213i
\(634\) 69.2140 95.2649i 0.109170 0.150260i
\(635\) 0 0
\(636\) −392.664 + 1208.49i −0.617396 + 1.90015i
\(637\) −258.179 −0.405304
\(638\) 141.183 75.4485i 0.221290 0.118258i
\(639\) −106.036 −0.165940
\(640\) 0 0
\(641\) −292.789 + 212.724i −0.456769 + 0.331862i −0.792263 0.610180i \(-0.791097\pi\)
0.335493 + 0.942043i \(0.391097\pi\)
\(642\) 14.8290 20.4103i 0.0230981 0.0317918i
\(643\) −615.565 + 200.009i −0.957333 + 0.311056i −0.745692 0.666291i \(-0.767881\pi\)
−0.211641 + 0.977347i \(0.567881\pi\)
\(644\) 455.179 147.897i 0.706800 0.229653i
\(645\) 0 0
\(646\) 10.9484 + 15.0692i 0.0169480 + 0.0233269i
\(647\) −694.892 225.784i −1.07402 0.348971i −0.281969 0.959423i \(-0.590988\pi\)
−0.792053 + 0.610453i \(0.790988\pi\)
\(648\) −173.097 −0.267125
\(649\) 390.891 406.482i 0.602298 0.626320i
\(650\) 0 0
\(651\) −1548.31 503.076i −2.37835 0.772774i
\(652\) −466.534 642.128i −0.715542 0.984859i
\(653\) 176.964 243.570i 0.271001 0.373001i −0.651726 0.758454i \(-0.725955\pi\)
0.922727 + 0.385453i \(0.125955\pi\)
\(654\) 76.2630 + 234.713i 0.116610 + 0.358889i
\(655\) 0 0
\(656\) −350.705 + 482.704i −0.534611 + 0.735829i
\(657\) −1869.75 + 1358.45i −2.84589 + 2.06766i
\(658\) −11.5266 3.74523i −0.0175177 0.00569184i
\(659\) 596.433i 0.905057i 0.891750 + 0.452529i \(0.149478\pi\)
−0.891750 + 0.452529i \(0.850522\pi\)
\(660\) 0 0
\(661\) 882.175 1.33461 0.667303 0.744786i \(-0.267449\pi\)
0.667303 + 0.744786i \(0.267449\pi\)
\(662\) 11.2062 34.4892i 0.0169278 0.0520985i
\(663\) 42.0877 + 57.9288i 0.0634807 + 0.0873737i
\(664\) −172.368 125.233i −0.259591 0.188604i
\(665\) 0 0
\(666\) −101.687 + 33.0400i −0.152683 + 0.0496096i
\(667\) −467.934 339.974i −0.701551 0.509707i
\(668\) 419.479 304.769i 0.627962 0.456241i
\(669\) 282.784 870.320i 0.422697 1.30093i
\(670\) 0 0
\(671\) 64.2210 + 359.803i 0.0957094 + 0.536220i
\(672\) 740.266i 1.10159i
\(673\) −124.617 + 383.533i −0.185167 + 0.569886i −0.999951 0.00987877i \(-0.996855\pi\)
0.814784 + 0.579764i \(0.196855\pi\)
\(674\) −109.387 + 79.4741i −0.162295 + 0.117914i
\(675\) 0 0
\(676\) 175.636 + 540.553i 0.259817 + 0.799634i
\(677\) 193.523 + 595.604i 0.285854 + 0.879769i 0.986141 + 0.165908i \(0.0530554\pi\)
−0.700287 + 0.713861i \(0.746945\pi\)
\(678\) 40.7450 + 29.6029i 0.0600958 + 0.0436622i
\(679\) 397.136 + 546.611i 0.584884 + 0.805024i
\(680\) 0 0
\(681\) 95.5059i 0.140244i
\(682\) 72.4855 75.3765i 0.106284 0.110523i
\(683\) 935.585i 1.36982i 0.728629 + 0.684909i \(0.240158\pi\)
−0.728629 + 0.684909i \(0.759842\pi\)
\(684\) −1402.05 455.553i −2.04978 0.666013i
\(685\) 0 0
\(686\) 10.5385 + 7.65666i 0.0153622 + 0.0111613i
\(687\) −656.698 + 213.374i −0.955892 + 0.310588i
\(688\) −132.149 406.714i −0.192078 0.591154i
\(689\) 179.599 247.197i 0.260666 0.358776i
\(690\) 0 0
\(691\) 255.366 785.937i 0.369561 1.13739i −0.577515 0.816380i \(-0.695977\pi\)
0.947076 0.321011i \(-0.104023\pi\)
\(692\) 436.992 0.631491
\(693\) −925.486 1731.82i −1.33548 2.49902i
\(694\) −160.866 −0.231795
\(695\) 0 0
\(696\) −480.626 + 349.195i −0.690555 + 0.501718i
\(697\) −67.3278 + 92.6687i −0.0965965 + 0.132954i
\(698\) −156.971 + 51.0029i −0.224886 + 0.0730700i
\(699\) −216.212 + 70.2514i −0.309316 + 0.100503i
\(700\) 0 0
\(701\) −139.111 191.469i −0.198446 0.273138i 0.698184 0.715919i \(-0.253992\pi\)
−0.896630 + 0.442781i \(0.853992\pi\)
\(702\) 62.8400 + 20.4180i 0.0895157 + 0.0290854i
\(703\) −424.570 −0.603940
\(704\) −546.814 265.282i −0.776725 0.376821i
\(705\) 0 0
\(706\) 62.8561 + 20.4232i 0.0890313 + 0.0289280i
\(707\) 76.9057 + 105.852i 0.108778 + 0.149719i
\(708\) −607.856 + 836.642i −0.858554 + 1.18170i
\(709\) 278.848 + 858.205i 0.393297 + 1.21044i 0.930280 + 0.366851i \(0.119564\pi\)
−0.536982 + 0.843593i \(0.680436\pi\)
\(710\) 0 0
\(711\) 932.515 1283.50i 1.31155 1.80520i
\(712\) 231.132 167.927i 0.324623 0.235853i
\(713\) −359.356 116.762i −0.504006 0.163761i
\(714\) 45.4969i 0.0637212i
\(715\) 0 0
\(716\) −187.197 −0.261449
\(717\) −263.947 + 812.345i −0.368127 + 1.13298i
\(718\) −100.385 138.167i −0.139811 0.192434i
\(719\) −318.157 231.154i −0.442499 0.321494i 0.344128 0.938923i \(-0.388174\pi\)
−0.786627 + 0.617428i \(0.788174\pi\)
\(720\) 0 0
\(721\) 1086.68 353.084i 1.50718 0.489714i
\(722\) 23.6060 + 17.1507i 0.0326952 + 0.0237545i
\(723\) −285.689 + 207.565i −0.395144 + 0.287089i
\(724\) −8.19991 + 25.2367i −0.0113258 + 0.0348574i
\(725\) 0 0
\(726\) 190.284 7.44370i 0.262099 0.0102530i
\(727\) 1284.55i 1.76691i −0.468514 0.883456i \(-0.655210\pi\)
0.468514 0.883456i \(-0.344790\pi\)
\(728\) −36.5282 + 112.422i −0.0501761 + 0.154426i
\(729\) −654.087 + 475.222i −0.897238 + 0.651882i
\(730\) 0 0
\(731\) −25.3698 78.0803i −0.0347056 0.106813i
\(732\) −207.114 637.432i −0.282943 0.870809i
\(733\) −339.175 246.425i −0.462722 0.336187i 0.331876 0.943323i \(-0.392318\pi\)
−0.794598 + 0.607136i \(0.792318\pi\)
\(734\) 5.54518 + 7.63228i 0.00755474 + 0.0103982i
\(735\) 0 0
\(736\) 171.813i 0.233441i
\(737\) −982.066 135.922i −1.33252 0.184426i
\(738\) 215.605i 0.292147i
\(739\) 269.243 + 87.4823i 0.364334 + 0.118379i 0.485462 0.874258i \(-0.338651\pi\)
−0.121128 + 0.992637i \(0.538651\pi\)
\(740\) 0 0
\(741\) 432.981 + 314.579i 0.584319 + 0.424533i
\(742\) −184.645 + 59.9947i −0.248847 + 0.0808554i
\(743\) −3.47057 10.6813i −0.00467102 0.0143759i 0.948694 0.316196i \(-0.102406\pi\)
−0.953365 + 0.301820i \(0.902406\pi\)
\(744\) −228.118 + 313.978i −0.306610 + 0.422013i
\(745\) 0 0
\(746\) 45.5732 140.260i 0.0610901 0.188016i
\(747\) 1560.65 2.08923
\(748\) −110.560 53.6373i −0.147808 0.0717076i
\(749\) −162.078 −0.216393
\(750\) 0 0
\(751\) −700.813 + 509.171i −0.933174 + 0.677990i −0.946768 0.321917i \(-0.895673\pi\)
0.0135942 + 0.999908i \(0.495673\pi\)
\(752\) 34.4252 47.3822i 0.0457782 0.0630083i
\(753\) −1664.72 + 540.902i −2.21079 + 0.718329i
\(754\) 67.1335 21.8130i 0.0890365 0.0289297i
\(755\) 0 0
\(756\) 1037.61 + 1428.15i 1.37250 + 1.88909i
\(757\) −117.605 38.2121i −0.155356 0.0504783i 0.230306 0.973118i \(-0.426027\pi\)
−0.385663 + 0.922640i \(0.626027\pi\)
\(758\) −24.9934 −0.0329728
\(759\) −324.299 606.845i −0.427271 0.799532i
\(760\) 0 0
\(761\) 627.999 + 204.049i 0.825228 + 0.268133i 0.691034 0.722822i \(-0.257155\pi\)
0.134194 + 0.990955i \(0.457155\pi\)
\(762\) 99.7698 + 137.321i 0.130932 + 0.180212i
\(763\) 931.931 1282.69i 1.22140 1.68112i
\(764\) 90.6160 + 278.887i 0.118607 + 0.365036i
\(765\) 0 0
\(766\) 130.611 179.770i 0.170510 0.234687i
\(767\) 201.181 146.167i 0.262296 0.190569i
\(768\) 975.071 + 316.820i 1.26962 + 0.412526i
\(769\) 753.219i 0.979479i −0.871869 0.489739i \(-0.837092\pi\)
0.871869 0.489739i \(-0.162908\pi\)
\(770\) 0 0
\(771\) −1300.63 −1.68695
\(772\) −458.103 + 1409.90i −0.593398 + 1.82629i
\(773\) 97.8922 + 134.737i 0.126639 + 0.174304i 0.867629 0.497213i \(-0.165643\pi\)
−0.740989 + 0.671517i \(0.765643\pi\)
\(774\) −125.019 90.8315i −0.161523 0.117353i
\(775\) 0 0
\(776\) 153.185 49.7729i 0.197404 0.0641404i
\(777\) 838.988 + 609.560i 1.07978 + 0.784505i
\(778\) 58.9297 42.8149i 0.0757451 0.0550320i
\(779\) −264.565 + 814.247i −0.339621 + 1.04525i
\(780\) 0 0
\(781\) −65.0365 + 11.6083i −0.0832734 + 0.0148634i
\(782\) 10.5596i 0.0135034i
\(783\) 659.249 2028.96i 0.841953 2.59126i
\(784\) −641.335 + 465.957i −0.818030 + 0.594333i
\(785\) 0 0
\(786\) −23.6717 72.8539i −0.0301166 0.0926894i
\(787\) −107.043 329.445i −0.136014 0.418609i 0.859732 0.510745i \(-0.170630\pi\)
−0.995746 + 0.0921365i \(0.970630\pi\)
\(788\) 289.190 + 210.108i 0.366992 + 0.266635i
\(789\) 1289.14 + 1774.34i 1.63389 + 2.24885i
\(790\) 0 0
\(791\) 323.556i 0.409047i
\(792\) −460.822 + 82.2517i −0.581846 + 0.103853i
\(793\) 161.167i 0.203236i
\(794\) 102.840 + 33.4149i 0.129522 + 0.0420843i
\(795\) 0 0
\(796\) −75.9289 55.1656i −0.0953880 0.0693035i
\(797\) 42.8487 13.9224i 0.0537625 0.0174685i −0.282012 0.959411i \(-0.591002\pi\)
0.335775 + 0.941942i \(0.391002\pi\)
\(798\) −105.084 323.417i −0.131685 0.405284i
\(799\) 6.60890 9.09636i 0.00827146 0.0113847i
\(800\) 0 0
\(801\) −646.683 + 1990.28i −0.807344 + 2.48475i
\(802\) 78.0690 0.0973429
\(803\) −998.082 + 1037.89i −1.24294 + 1.29252i
\(804\) 1818.08 2.26130
\(805\) 0 0
\(806\) 37.3063 27.1046i 0.0462857 0.0336285i
\(807\) −1515.29 + 2085.62i −1.87769 + 2.58441i
\(808\) 29.6644 9.63856i 0.0367134 0.0119289i
\(809\) 1187.16 385.731i 1.46744 0.476800i 0.537106 0.843515i \(-0.319518\pi\)
0.930333 + 0.366715i \(0.119518\pi\)
\(810\) 0 0
\(811\) −62.7425 86.3577i −0.0773644 0.106483i 0.768581 0.639753i \(-0.220963\pi\)
−0.845945 + 0.533270i \(0.820963\pi\)
\(812\) 1793.60 + 582.776i 2.20887 + 0.717704i
\(813\) 1212.41 1.49128
\(814\) −58.7518 + 31.3971i −0.0721767 + 0.0385713i
\(815\) 0 0
\(816\) 209.098 + 67.9401i 0.256248 + 0.0832599i
\(817\) −360.685 496.440i −0.441475 0.607638i
\(818\) −49.2652 + 67.8077i −0.0602264 + 0.0828945i
\(819\) −267.568 823.491i −0.326701 1.00548i
\(820\) 0 0
\(821\) −361.534 + 497.608i −0.440358 + 0.606100i −0.970292 0.241939i \(-0.922217\pi\)
0.529934 + 0.848039i \(0.322217\pi\)
\(822\) 95.6547 69.4972i 0.116368 0.0845465i
\(823\) −363.528 118.117i −0.441711 0.143521i 0.0797139 0.996818i \(-0.474599\pi\)
−0.521425 + 0.853297i \(0.674599\pi\)
\(824\) 272.386i 0.330566i
\(825\) 0 0
\(826\) −158.006 −0.191291
\(827\) 295.494 909.438i 0.357309 1.09968i −0.597350 0.801981i \(-0.703780\pi\)
0.954659 0.297703i \(-0.0962205\pi\)
\(828\) 491.238 + 676.131i 0.593282 + 0.816583i
\(829\) −591.020 429.401i −0.712931 0.517975i 0.171187 0.985239i \(-0.445240\pi\)
−0.884118 + 0.467264i \(0.845240\pi\)
\(830\) 0 0
\(831\) −667.764 + 216.970i −0.803566 + 0.261095i
\(832\) −216.817 157.527i −0.260598 0.189335i
\(833\) −123.122 + 89.4537i −0.147806 + 0.107387i
\(834\) −23.4769 + 72.2545i −0.0281498 + 0.0866361i
\(835\) 0 0
\(836\) −909.809 125.921i −1.08829 0.150623i
\(837\) 1393.66i 1.66507i
\(838\) −4.15181 + 12.7780i −0.00495443 + 0.0152482i
\(839\) −739.591 + 537.345i −0.881515 + 0.640458i −0.933652 0.358182i \(-0.883397\pi\)
0.0521367 + 0.998640i \(0.483397\pi\)
\(840\) 0 0
\(841\) −444.409 1367.75i −0.528429 1.62634i
\(842\) −7.66845 23.6010i −0.00910742 0.0280297i
\(843\) 1264.68 + 918.847i 1.50022 + 1.08997i
\(844\) −844.394 1162.21i −1.00047 1.37702i
\(845\) 0 0
\(846\) 21.1638i 0.0250163i
\(847\) −757.233 960.883i −0.894018 1.13445i
\(848\) 938.193i 1.10636i
\(849\) −52.2888 16.9896i −0.0615887 0.0200114i
\(850\) 0 0
\(851\) 194.726 + 141.476i 0.228820 + 0.166247i
\(852\) 115.220 37.4371i 0.135234 0.0439403i
\(853\) −338.270 1041.09i −0.396565 1.22050i −0.927736 0.373237i \(-0.878248\pi\)
0.531171 0.847265i \(-0.321752\pi\)
\(854\) 60.1920 82.8472i 0.0704824 0.0970107i
\(855\) 0 0
\(856\) −11.9398 + 36.7470i −0.0139484 + 0.0429287i
\(857\) 1161.22 1.35499 0.677494 0.735528i \(-0.263066\pi\)
0.677494 + 0.735528i \(0.263066\pi\)
\(858\) 83.1789 + 11.5123i 0.0969451 + 0.0134176i
\(859\) 465.631 0.542061 0.271031 0.962571i \(-0.412636\pi\)
0.271031 + 0.962571i \(0.412636\pi\)
\(860\) 0 0
\(861\) 1691.83 1229.19i 1.96496 1.42763i
\(862\) 130.095 179.061i 0.150922 0.207727i
\(863\) −738.720 + 240.025i −0.855990 + 0.278128i −0.703953 0.710247i \(-0.748583\pi\)
−0.152037 + 0.988375i \(0.548583\pi\)
\(864\) 602.700 195.829i 0.697570 0.226654i
\(865\) 0 0
\(866\) −62.1952 85.6043i −0.0718189 0.0988502i
\(867\) −1378.91 448.034i −1.59043 0.516763i
\(868\) 1232.00 1.41935
\(869\) 431.442 889.313i 0.496480 1.02337i
\(870\) 0 0
\(871\) −415.783 135.096i −0.477363 0.155105i
\(872\) −222.164 305.782i −0.254775 0.350668i
\(873\) −693.484 + 954.498i −0.794368 + 1.09335i
\(874\) −24.3897 75.0637i −0.0279058 0.0858852i
\(875\) 0 0
\(876\) 1552.07 2136.24i 1.77177 2.43863i
\(877\) 1120.57 814.144i 1.27773 0.928329i 0.278253 0.960508i \(-0.410245\pi\)
0.999482 + 0.0321793i \(0.0102447\pi\)
\(878\) 20.9290 + 6.80023i 0.0238371 + 0.00774514i
\(879\) 1703.97i 1.93853i
\(880\) 0 0
\(881\) −1570.42 −1.78255 −0.891273 0.453467i \(-0.850187\pi\)
−0.891273 + 0.453467i \(0.850187\pi\)
\(882\) −88.5206 + 272.439i −0.100364 + 0.308887i
\(883\) −643.690 885.963i −0.728981 1.00336i −0.999177 0.0405507i \(-0.987089\pi\)
0.270197 0.962805i \(-0.412911\pi\)
\(884\) −43.8383 31.8504i −0.0495908 0.0360299i
\(885\) 0 0
\(886\) 108.946 35.3987i 0.122964 0.0399534i
\(887\) 716.448 + 520.530i 0.807720 + 0.586843i 0.913169 0.407582i \(-0.133628\pi\)
−0.105449 + 0.994425i \(0.533628\pi\)
\(888\) 200.007 145.314i 0.225233 0.163642i
\(889\) 336.974 1037.10i 0.379048 1.16659i
\(890\) 0 0
\(891\) 547.567 569.407i 0.614554 0.639065i
\(892\) 692.520i 0.776368i
\(893\) 25.9697 79.9265i 0.0290814 0.0895033i
\(894\) 153.421 111.467i 0.171611 0.124683i
\(895\) 0 0
\(896\) 229.852 + 707.411i 0.256531 + 0.789521i
\(897\) −93.7583 288.558i −0.104524 0.321693i
\(898\) 27.6735 + 20.1060i 0.0308168 + 0.0223897i
\(899\) −875.145 1204.53i −0.973465 1.33986i
\(900\) 0 0
\(901\) 180.113i 0.199903i
\(902\) 23.6034 + 132.240i 0.0261678 + 0.146607i
\(903\) 1498.85i 1.65986i
\(904\) −73.3577 23.8354i −0.0811479 0.0263666i
\(905\) 0 0
\(906\) 98.3650 + 71.4664i 0.108571 + 0.0788812i
\(907\) −297.496 + 96.6622i −0.327999 + 0.106573i −0.468388 0.883523i \(-0.655165\pi\)
0.140388 + 0.990097i \(0.455165\pi\)
\(908\) −22.3343 68.7378i −0.0245972 0.0757025i
\(909\) −134.294 + 184.839i −0.147738 + 0.203344i
\(910\) 0 0
\(911\) −140.671 + 432.942i −0.154414 + 0.475238i −0.998101 0.0615976i \(-0.980380\pi\)
0.843687 + 0.536836i \(0.180380\pi\)
\(912\) 1643.30 1.80187
\(913\) 957.216 170.853i 1.04843 0.187133i
\(914\) 56.9129 0.0622680
\(915\) 0 0
\(916\) 422.743 307.141i 0.461510 0.335306i
\(917\) −289.267 + 398.141i −0.315449 + 0.434178i
\(918\) 37.0421 12.0357i 0.0403509 0.0131108i
\(919\) −981.783 + 319.001i −1.06832 + 0.347117i −0.789832 0.613324i \(-0.789832\pi\)
−0.278485 + 0.960441i \(0.589832\pi\)
\(920\) 0 0
\(921\) 338.284 + 465.607i 0.367300 + 0.505545i
\(922\) −162.327 52.7431i −0.176059 0.0572051i
\(923\) −29.1318 −0.0315621
\(924\) 1617.08 + 1555.06i 1.75008 + 1.68296i
\(925\) 0 0
\(926\) −188.038 61.0973i −0.203065 0.0659798i
\(927\) 1172.76 + 1614.17i 1.26512 + 1.74129i
\(928\) 397.939 547.717i 0.428814 0.590212i
\(929\) 431.640 + 1328.45i 0.464629 + 1.42998i 0.859449 + 0.511222i \(0.170807\pi\)
−0.394820 + 0.918758i \(0.629193\pi\)
\(930\) 0 0
\(931\) −668.609 + 920.262i −0.718162 + 0.988466i
\(932\) 139.184 101.123i 0.149339 0.108501i
\(933\) 1989.21 + 646.332i 2.13205 + 0.692746i
\(934\) 274.470i 0.293865i
\(935\) 0 0
\(936\) −206.416 −0.220530
\(937\) 370.868 1141.42i 0.395804 1.21816i −0.532530 0.846411i \(-0.678759\pi\)
0.928334 0.371748i \(-0.121241\pi\)
\(938\) 163.277 + 224.731i 0.174069 + 0.239586i
\(939\) 709.058 + 515.161i 0.755120 + 0.548627i
\(940\) 0 0
\(941\) 29.9217 9.72215i 0.0317978 0.0103317i −0.293075 0.956089i \(-0.594679\pi\)
0.324873 + 0.945758i \(0.394679\pi\)
\(942\) −69.0133 50.1411i −0.0732625 0.0532283i
\(943\) 392.667 285.289i 0.416401 0.302533i
\(944\) 235.949 726.177i 0.249946 0.769255i
\(945\) 0 0
\(946\) −86.6233 42.0245i −0.0915680 0.0444233i
\(947\) 540.682i 0.570942i 0.958387 + 0.285471i \(0.0921501\pi\)
−0.958387 + 0.285471i \(0.907850\pi\)
\(948\) −560.127 + 1723.89i −0.590851 + 1.81845i
\(949\) −513.685 + 373.214i −0.541291 + 0.393271i
\(950\) 0 0
\(951\) −616.304 1896.79i −0.648059 1.99452i
\(952\) 21.5322 + 66.2692i 0.0226178 + 0.0696105i
\(953\) −462.279 335.865i −0.485077 0.352429i 0.318211 0.948020i \(-0.396918\pi\)
−0.803288 + 0.595591i \(0.796918\pi\)
\(954\) −199.272 274.274i −0.208880 0.287499i
\(955\) 0 0
\(956\) 646.388i 0.676138i
\(957\) 371.705 2685.66i 0.388407 2.80633i
\(958\) 141.601i 0.147809i
\(959\) −722.418 234.728i −0.753303 0.244763i
\(960\) 0 0
\(961\) −9.41808 6.84263i −0.00980029 0.00712033i
\(962\) −27.9369 + 9.07724i −0.0290404 + 0.00943580i
\(963\) −87.4590 269.171i −0.0908193 0.279513i
\(964\) 157.077 216.198i 0.162943 0.224272i
\(965\) 0 0
\(966\) −59.5738 + 183.349i −0.0616705 + 0.189802i
\(967\) 1228.33 1.27025 0.635125 0.772410i \(-0.280949\pi\)
0.635125 + 0.772410i \(0.280949\pi\)
\(968\) −273.638 + 100.897i −0.282684 + 0.104233i
\(969\) 315.479 0.325571
\(970\) 0 0
\(971\) −1282.98 + 932.137i −1.32129 + 0.959976i −0.321379 + 0.946951i \(0.604146\pi\)
−0.999915 + 0.0130253i \(0.995854\pi\)
\(972\) 72.1291 99.2772i 0.0742069 0.102137i
\(973\) 464.193 150.825i 0.477074 0.155011i
\(974\) 9.55237 3.10375i 0.00980736 0.00318660i
\(975\) 0 0
\(976\) 290.871 + 400.350i 0.298024 + 0.410194i
\(977\) −895.345 290.915i −0.916422 0.297764i −0.187424 0.982279i \(-0.560014\pi\)
−0.728998 + 0.684515i \(0.760014\pi\)
\(978\) 319.713 0.326905
\(979\) −178.752 + 1291.52i −0.182586 + 1.31923i
\(980\) 0 0
\(981\) 2633.10 + 855.547i 2.68410 + 0.872117i
\(982\) 142.966 + 196.775i 0.145586 + 0.200382i
\(983\) −410.154 + 564.528i −0.417247 + 0.574291i −0.964967 0.262370i \(-0.915496\pi\)
0.547720 + 0.836662i \(0.315496\pi\)
\(984\) −154.053 474.127i −0.156558 0.481837i
\(985\) 0 0
\(986\) 24.4574 33.6628i 0.0248047 0.0341408i
\(987\) −166.070 + 120.657i −0.168257 + 0.122246i
\(988\) −385.191 125.156i −0.389870 0.126676i
\(989\) 347.877i 0.351746i
\(990\) 0 0
\(991\) 1202.24 1.21315 0.606577 0.795025i \(-0.292542\pi\)
0.606577 + 0.795025i \(0.292542\pi\)
\(992\) 136.670 420.626i 0.137772 0.424018i
\(993\) −361.021 496.903i −0.363566 0.500406i
\(994\) 14.9751 + 10.8800i 0.0150655 + 0.0109457i
\(995\) 0 0
\(996\) −1695.82 + 551.004i −1.70263 + 0.553217i
\(997\) 655.602 + 476.323i 0.657575 + 0.477756i 0.865843 0.500316i \(-0.166783\pi\)
−0.208268 + 0.978072i \(0.566783\pi\)
\(998\) 146.262 106.265i 0.146555 0.106478i
\(999\) −274.339 + 844.329i −0.274614 + 0.845174i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.q.f.24.4 24
5.2 odd 4 55.3.i.d.46.2 yes 12
5.3 odd 4 275.3.x.f.101.2 12
5.4 even 2 inner 275.3.q.f.24.3 24
11.6 odd 10 inner 275.3.q.f.149.3 24
55.7 even 20 605.3.c.d.241.5 12
55.17 even 20 55.3.i.d.6.2 12
55.28 even 20 275.3.x.f.226.2 12
55.37 odd 20 605.3.c.d.241.8 12
55.39 odd 10 inner 275.3.q.f.149.4 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.i.d.6.2 12 55.17 even 20
55.3.i.d.46.2 yes 12 5.2 odd 4
275.3.q.f.24.3 24 5.4 even 2 inner
275.3.q.f.24.4 24 1.1 even 1 trivial
275.3.q.f.149.3 24 11.6 odd 10 inner
275.3.q.f.149.4 24 55.39 odd 10 inner
275.3.x.f.101.2 12 5.3 odd 4
275.3.x.f.226.2 12 55.28 even 20
605.3.c.d.241.5 12 55.7 even 20
605.3.c.d.241.8 12 55.37 odd 20