Properties

Label 275.3.d.c.274.13
Level $275$
Weight $3$
Character 275.274
Analytic conductor $7.493$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(274,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.274"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 32 x^{14} - 54 x^{13} + 51 x^{12} - 118 x^{11} + 770 x^{10} - 1222 x^{9} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{22} \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.13
Root \(-1.07977 - 1.07977i\) of defining polynomial
Character \(\chi\) \(=\) 275.274
Dual form 275.3.d.c.274.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.15955 q^{2} -3.03112i q^{3} +5.98274 q^{4} -9.57697i q^{6} +5.67155 q^{7} +6.26455 q^{8} -0.187686 q^{9} +(10.8573 - 1.76614i) q^{11} -18.1344i q^{12} -17.2349 q^{13} +17.9195 q^{14} -4.13780 q^{16} -3.43437 q^{17} -0.593004 q^{18} -18.5738i q^{19} -17.1911i q^{21} +(34.3041 - 5.58019i) q^{22} +15.7918i q^{23} -18.9886i q^{24} -54.4546 q^{26} -26.7112i q^{27} +33.9314 q^{28} +52.6031i q^{29} +27.5484 q^{31} -38.1318 q^{32} +(-5.35337 - 32.9097i) q^{33} -10.8510 q^{34} -1.12288 q^{36} +40.1425i q^{37} -58.6848i q^{38} +52.2411i q^{39} +74.8398i q^{41} -54.3162i q^{42} -9.72983 q^{43} +(64.9563 - 10.5663i) q^{44} +49.8949i q^{46} -18.2212i q^{47} +12.5422i q^{48} -16.8335 q^{49} +10.4100i q^{51} -103.112 q^{52} -75.2040i q^{53} -84.3952i q^{54} +35.5297 q^{56} -56.2994 q^{57} +166.202i q^{58} -1.75672 q^{59} +48.5900i q^{61} +87.0404 q^{62} -1.06447 q^{63} -103.928 q^{64} +(-16.9142 - 103.980i) q^{66} +35.4901i q^{67} -20.5469 q^{68} +47.8668 q^{69} +110.499 q^{71} -1.17577 q^{72} +50.7154 q^{73} +126.832i q^{74} -111.122i q^{76} +(61.5777 - 10.0167i) q^{77} +165.058i q^{78} +12.7481i q^{79} -82.6540 q^{81} +236.460i q^{82} -112.062 q^{83} -102.850i q^{84} -30.7419 q^{86} +159.446 q^{87} +(68.0161 - 11.0640i) q^{88} -66.3600 q^{89} -97.7488 q^{91} +94.4781i q^{92} -83.5024i q^{93} -57.5709i q^{94} +115.582i q^{96} -65.1302i q^{97} -53.1863 q^{98} +(-2.03776 + 0.331479i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 56 q^{4} + 8 q^{9} + 16 q^{11} + 176 q^{16} - 200 q^{26} + 72 q^{31} - 160 q^{34} - 432 q^{36} - 24 q^{44} - 344 q^{49} - 160 q^{56} + 32 q^{59} + 1176 q^{64} + 360 q^{66} - 16 q^{69} + 552 q^{71}+ \cdots + 368 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.15955 1.57977 0.789887 0.613253i \(-0.210139\pi\)
0.789887 + 0.613253i \(0.210139\pi\)
\(3\) 3.03112i 1.01037i −0.863010 0.505187i \(-0.831424\pi\)
0.863010 0.505187i \(-0.168576\pi\)
\(4\) 5.98274 1.49568
\(5\) 0 0
\(6\) 9.57697i 1.59616i
\(7\) 5.67155 0.810221 0.405111 0.914268i \(-0.367233\pi\)
0.405111 + 0.914268i \(0.367233\pi\)
\(8\) 6.26455 0.783069
\(9\) −0.187686 −0.0208540
\(10\) 0 0
\(11\) 10.8573 1.76614i 0.987026 0.160558i
\(12\) 18.1344i 1.51120i
\(13\) −17.2349 −1.32576 −0.662882 0.748724i \(-0.730667\pi\)
−0.662882 + 0.748724i \(0.730667\pi\)
\(14\) 17.9195 1.27997
\(15\) 0 0
\(16\) −4.13780 −0.258612
\(17\) −3.43437 −0.202022 −0.101011 0.994885i \(-0.532208\pi\)
−0.101011 + 0.994885i \(0.532208\pi\)
\(18\) −0.593004 −0.0329446
\(19\) 18.5738i 0.977569i −0.872405 0.488784i \(-0.837441\pi\)
0.872405 0.488784i \(-0.162559\pi\)
\(20\) 0 0
\(21\) 17.1911i 0.818626i
\(22\) 34.3041 5.58019i 1.55928 0.253645i
\(23\) 15.7918i 0.686599i 0.939226 + 0.343300i \(0.111545\pi\)
−0.939226 + 0.343300i \(0.888455\pi\)
\(24\) 18.9886i 0.791192i
\(25\) 0 0
\(26\) −54.4546 −2.09441
\(27\) 26.7112i 0.989303i
\(28\) 33.9314 1.21184
\(29\) 52.6031i 1.81390i 0.421238 + 0.906950i \(0.361596\pi\)
−0.421238 + 0.906950i \(0.638404\pi\)
\(30\) 0 0
\(31\) 27.5484 0.888657 0.444328 0.895864i \(-0.353442\pi\)
0.444328 + 0.895864i \(0.353442\pi\)
\(32\) −38.1318 −1.19162
\(33\) −5.35337 32.9097i −0.162223 0.997265i
\(34\) −10.8510 −0.319148
\(35\) 0 0
\(36\) −1.12288 −0.0311910
\(37\) 40.1425i 1.08493i 0.840077 + 0.542467i \(0.182510\pi\)
−0.840077 + 0.542467i \(0.817490\pi\)
\(38\) 58.6848i 1.54434i
\(39\) 52.2411i 1.33952i
\(40\) 0 0
\(41\) 74.8398i 1.82536i 0.408675 + 0.912680i \(0.365991\pi\)
−0.408675 + 0.912680i \(0.634009\pi\)
\(42\) 54.3162i 1.29324i
\(43\) −9.72983 −0.226275 −0.113138 0.993579i \(-0.536090\pi\)
−0.113138 + 0.993579i \(0.536090\pi\)
\(44\) 64.9563 10.5663i 1.47628 0.240144i
\(45\) 0 0
\(46\) 49.8949i 1.08467i
\(47\) 18.2212i 0.387686i −0.981033 0.193843i \(-0.937905\pi\)
0.981033 0.193843i \(-0.0620952\pi\)
\(48\) 12.5422i 0.261295i
\(49\) −16.8335 −0.343541
\(50\) 0 0
\(51\) 10.4100i 0.204117i
\(52\) −103.112 −1.98292
\(53\) 75.2040i 1.41894i −0.704734 0.709471i \(-0.748934\pi\)
0.704734 0.709471i \(-0.251066\pi\)
\(54\) 84.3952i 1.56287i
\(55\) 0 0
\(56\) 35.5297 0.634459
\(57\) −56.2994 −0.987709
\(58\) 166.202i 2.86555i
\(59\) −1.75672 −0.0297750 −0.0148875 0.999889i \(-0.504739\pi\)
−0.0148875 + 0.999889i \(0.504739\pi\)
\(60\) 0 0
\(61\) 48.5900i 0.796557i 0.917265 + 0.398278i \(0.130392\pi\)
−0.917265 + 0.398278i \(0.869608\pi\)
\(62\) 87.0404 1.40388
\(63\) −1.06447 −0.0168964
\(64\) −103.928 −1.62387
\(65\) 0 0
\(66\) −16.9142 103.980i −0.256276 1.57545i
\(67\) 35.4901i 0.529702i 0.964289 + 0.264851i \(0.0853228\pi\)
−0.964289 + 0.264851i \(0.914677\pi\)
\(68\) −20.5469 −0.302161
\(69\) 47.8668 0.693721
\(70\) 0 0
\(71\) 110.499 1.55632 0.778159 0.628067i \(-0.216154\pi\)
0.778159 + 0.628067i \(0.216154\pi\)
\(72\) −1.17577 −0.0163301
\(73\) 50.7154 0.694732 0.347366 0.937730i \(-0.387076\pi\)
0.347366 + 0.937730i \(0.387076\pi\)
\(74\) 126.832i 1.71395i
\(75\) 0 0
\(76\) 111.122i 1.46213i
\(77\) 61.5777 10.0167i 0.799710 0.130087i
\(78\) 165.058i 2.11613i
\(79\) 12.7481i 0.161368i 0.996740 + 0.0806842i \(0.0257105\pi\)
−0.996740 + 0.0806842i \(0.974289\pi\)
\(80\) 0 0
\(81\) −82.6540 −1.02042
\(82\) 236.460i 2.88366i
\(83\) −112.062 −1.35015 −0.675075 0.737749i \(-0.735889\pi\)
−0.675075 + 0.737749i \(0.735889\pi\)
\(84\) 102.850i 1.22441i
\(85\) 0 0
\(86\) −30.7419 −0.357463
\(87\) 159.446 1.83272
\(88\) 68.0161 11.0640i 0.772910 0.125728i
\(89\) −66.3600 −0.745618 −0.372809 0.927908i \(-0.621605\pi\)
−0.372809 + 0.927908i \(0.621605\pi\)
\(90\) 0 0
\(91\) −97.7488 −1.07416
\(92\) 94.4781i 1.02694i
\(93\) 83.5024i 0.897875i
\(94\) 57.5709i 0.612456i
\(95\) 0 0
\(96\) 115.582i 1.20398i
\(97\) 65.1302i 0.671445i −0.941961 0.335723i \(-0.891020\pi\)
0.941961 0.335723i \(-0.108980\pi\)
\(98\) −53.1863 −0.542717
\(99\) −2.03776 + 0.331479i −0.0205835 + 0.00334828i
\(100\) 0 0
\(101\) 172.019i 1.70316i −0.524229 0.851578i \(-0.675646\pi\)
0.524229 0.851578i \(-0.324354\pi\)
\(102\) 32.8908i 0.322459i
\(103\) 28.3278i 0.275027i 0.990500 + 0.137514i \(0.0439111\pi\)
−0.990500 + 0.137514i \(0.956089\pi\)
\(104\) −107.969 −1.03816
\(105\) 0 0
\(106\) 237.610i 2.24161i
\(107\) −63.2464 −0.591088 −0.295544 0.955329i \(-0.595501\pi\)
−0.295544 + 0.955329i \(0.595501\pi\)
\(108\) 159.806i 1.47968i
\(109\) 128.641i 1.18020i −0.807331 0.590098i \(-0.799089\pi\)
0.807331 0.590098i \(-0.200911\pi\)
\(110\) 0 0
\(111\) 121.677 1.09619
\(112\) −23.4677 −0.209533
\(113\) 35.4694i 0.313889i −0.987607 0.156944i \(-0.949836\pi\)
0.987607 0.156944i \(-0.0501643\pi\)
\(114\) −177.881 −1.56036
\(115\) 0 0
\(116\) 314.711i 2.71302i
\(117\) 3.23476 0.0276475
\(118\) −5.55045 −0.0470377
\(119\) −19.4782 −0.163682
\(120\) 0 0
\(121\) 114.762 38.3509i 0.948442 0.316949i
\(122\) 153.522i 1.25838i
\(123\) 226.848 1.84430
\(124\) 164.815 1.32915
\(125\) 0 0
\(126\) −3.36325 −0.0266925
\(127\) −210.686 −1.65895 −0.829473 0.558547i \(-0.811359\pi\)
−0.829473 + 0.558547i \(0.811359\pi\)
\(128\) −175.838 −1.37374
\(129\) 29.4923i 0.228622i
\(130\) 0 0
\(131\) 131.724i 1.00553i −0.864424 0.502764i \(-0.832316\pi\)
0.864424 0.502764i \(-0.167684\pi\)
\(132\) −32.0278 196.890i −0.242635 1.49159i
\(133\) 105.342i 0.792047i
\(134\) 112.133i 0.836810i
\(135\) 0 0
\(136\) −21.5148 −0.158197
\(137\) 167.934i 1.22580i −0.790162 0.612898i \(-0.790004\pi\)
0.790162 0.612898i \(-0.209996\pi\)
\(138\) 151.237 1.09592
\(139\) 90.6142i 0.651901i −0.945387 0.325950i \(-0.894316\pi\)
0.945387 0.325950i \(-0.105684\pi\)
\(140\) 0 0
\(141\) −55.2308 −0.391708
\(142\) 349.125 2.45863
\(143\) −187.125 + 30.4392i −1.30856 + 0.212862i
\(144\) 0.776608 0.00539311
\(145\) 0 0
\(146\) 160.238 1.09752
\(147\) 51.0244i 0.347105i
\(148\) 240.162i 1.62272i
\(149\) 72.8977i 0.489246i 0.969618 + 0.244623i \(0.0786642\pi\)
−0.969618 + 0.244623i \(0.921336\pi\)
\(150\) 0 0
\(151\) 237.180i 1.57073i 0.619035 + 0.785364i \(0.287524\pi\)
−0.619035 + 0.785364i \(0.712476\pi\)
\(152\) 116.357i 0.765504i
\(153\) 0.644584 0.00421296
\(154\) 194.558 31.6483i 1.26336 0.205509i
\(155\) 0 0
\(156\) 312.545i 2.00349i
\(157\) 105.915i 0.674620i −0.941394 0.337310i \(-0.890483\pi\)
0.941394 0.337310i \(-0.109517\pi\)
\(158\) 40.2783i 0.254926i
\(159\) −227.952 −1.43366
\(160\) 0 0
\(161\) 89.5639i 0.556297i
\(162\) −261.149 −1.61203
\(163\) 143.233i 0.878730i 0.898309 + 0.439365i \(0.144797\pi\)
−0.898309 + 0.439365i \(0.855203\pi\)
\(164\) 447.747i 2.73016i
\(165\) 0 0
\(166\) −354.067 −2.13293
\(167\) 35.5974 0.213158 0.106579 0.994304i \(-0.466010\pi\)
0.106579 + 0.994304i \(0.466010\pi\)
\(168\) 107.695i 0.641041i
\(169\) 128.043 0.757650
\(170\) 0 0
\(171\) 3.48605i 0.0203862i
\(172\) −58.2110 −0.338436
\(173\) 196.047 1.13322 0.566609 0.823987i \(-0.308255\pi\)
0.566609 + 0.823987i \(0.308255\pi\)
\(174\) 503.778 2.89528
\(175\) 0 0
\(176\) −44.9253 + 7.30791i −0.255257 + 0.0415222i
\(177\) 5.32484i 0.0300838i
\(178\) −209.668 −1.17791
\(179\) 65.1824 0.364148 0.182074 0.983285i \(-0.441719\pi\)
0.182074 + 0.983285i \(0.441719\pi\)
\(180\) 0 0
\(181\) −157.016 −0.867493 −0.433746 0.901035i \(-0.642809\pi\)
−0.433746 + 0.901035i \(0.642809\pi\)
\(182\) −308.842 −1.69693
\(183\) 147.282 0.804820
\(184\) 98.9285i 0.537655i
\(185\) 0 0
\(186\) 263.830i 1.41844i
\(187\) −37.2879 + 6.06556i −0.199401 + 0.0324361i
\(188\) 109.013i 0.579856i
\(189\) 151.494i 0.801554i
\(190\) 0 0
\(191\) 161.967 0.847995 0.423997 0.905663i \(-0.360627\pi\)
0.423997 + 0.905663i \(0.360627\pi\)
\(192\) 315.018i 1.64072i
\(193\) 0.742915 0.00384930 0.00192465 0.999998i \(-0.499387\pi\)
0.00192465 + 0.999998i \(0.499387\pi\)
\(194\) 205.782i 1.06073i
\(195\) 0 0
\(196\) −100.711 −0.513829
\(197\) 43.0945 0.218754 0.109377 0.994000i \(-0.465114\pi\)
0.109377 + 0.994000i \(0.465114\pi\)
\(198\) −6.43841 + 1.04732i −0.0325172 + 0.00528952i
\(199\) 201.933 1.01474 0.507370 0.861729i \(-0.330618\pi\)
0.507370 + 0.861729i \(0.330618\pi\)
\(200\) 0 0
\(201\) 107.575 0.535197
\(202\) 543.501i 2.69060i
\(203\) 298.341i 1.46966i
\(204\) 62.2802i 0.305295i
\(205\) 0 0
\(206\) 89.5031i 0.434481i
\(207\) 2.96390i 0.0143184i
\(208\) 71.3147 0.342859
\(209\) −32.8038 201.661i −0.156956 0.964886i
\(210\) 0 0
\(211\) 53.4705i 0.253415i 0.991940 + 0.126707i \(0.0404409\pi\)
−0.991940 + 0.126707i \(0.959559\pi\)
\(212\) 449.926i 2.12229i
\(213\) 334.934i 1.57246i
\(214\) −199.830 −0.933785
\(215\) 0 0
\(216\) 167.334i 0.774693i
\(217\) 156.242 0.720009
\(218\) 406.449i 1.86444i
\(219\) 153.725i 0.701939i
\(220\) 0 0
\(221\) 59.1911 0.267833
\(222\) 384.444 1.73173
\(223\) 282.600i 1.26726i −0.773635 0.633632i \(-0.781563\pi\)
0.773635 0.633632i \(-0.218437\pi\)
\(224\) −216.266 −0.965475
\(225\) 0 0
\(226\) 112.067i 0.495873i
\(227\) 111.251 0.490092 0.245046 0.969511i \(-0.421197\pi\)
0.245046 + 0.969511i \(0.421197\pi\)
\(228\) −336.825 −1.47730
\(229\) 53.3814 0.233107 0.116553 0.993184i \(-0.462815\pi\)
0.116553 + 0.993184i \(0.462815\pi\)
\(230\) 0 0
\(231\) −30.3619 186.649i −0.131437 0.808006i
\(232\) 329.535i 1.42041i
\(233\) −42.7082 −0.183297 −0.0916485 0.995791i \(-0.529214\pi\)
−0.0916485 + 0.995791i \(0.529214\pi\)
\(234\) 10.2204 0.0436768
\(235\) 0 0
\(236\) −10.5100 −0.0445340
\(237\) 38.6411 0.163042
\(238\) −61.5423 −0.258581
\(239\) 216.974i 0.907840i −0.891042 0.453920i \(-0.850025\pi\)
0.891042 0.453920i \(-0.149975\pi\)
\(240\) 0 0
\(241\) 155.081i 0.643488i −0.946827 0.321744i \(-0.895731\pi\)
0.946827 0.321744i \(-0.104269\pi\)
\(242\) 362.594 121.171i 1.49832 0.500708i
\(243\) 10.1334i 0.0417013i
\(244\) 290.701i 1.19140i
\(245\) 0 0
\(246\) 716.738 2.91357
\(247\) 320.118i 1.29603i
\(248\) 172.578 0.695880
\(249\) 339.675i 1.36416i
\(250\) 0 0
\(251\) −116.539 −0.464300 −0.232150 0.972680i \(-0.574576\pi\)
−0.232150 + 0.972680i \(0.574576\pi\)
\(252\) −6.36846 −0.0252717
\(253\) 27.8904 + 171.456i 0.110239 + 0.677692i
\(254\) −665.673 −2.62076
\(255\) 0 0
\(256\) −139.857 −0.546317
\(257\) 85.7024i 0.333472i 0.986002 + 0.166736i \(0.0533228\pi\)
−0.986002 + 0.166736i \(0.946677\pi\)
\(258\) 93.1822i 0.361171i
\(259\) 227.670i 0.879037i
\(260\) 0 0
\(261\) 9.87288i 0.0378271i
\(262\) 416.189i 1.58851i
\(263\) 398.864 1.51659 0.758296 0.651911i \(-0.226032\pi\)
0.758296 + 0.651911i \(0.226032\pi\)
\(264\) −33.5365 206.165i −0.127032 0.780928i
\(265\) 0 0
\(266\) 332.834i 1.25125i
\(267\) 201.145i 0.753353i
\(268\) 212.328i 0.792268i
\(269\) 237.209 0.881819 0.440910 0.897552i \(-0.354656\pi\)
0.440910 + 0.897552i \(0.354656\pi\)
\(270\) 0 0
\(271\) 34.0378i 0.125601i −0.998026 0.0628003i \(-0.979997\pi\)
0.998026 0.0628003i \(-0.0200031\pi\)
\(272\) 14.2107 0.0522453
\(273\) 296.288i 1.08530i
\(274\) 530.595i 1.93648i
\(275\) 0 0
\(276\) 286.374 1.03759
\(277\) −202.654 −0.731604 −0.365802 0.930693i \(-0.619205\pi\)
−0.365802 + 0.930693i \(0.619205\pi\)
\(278\) 286.300i 1.02986i
\(279\) −5.17045 −0.0185321
\(280\) 0 0
\(281\) 100.966i 0.359311i −0.983730 0.179655i \(-0.942502\pi\)
0.983730 0.179655i \(-0.0574982\pi\)
\(282\) −174.504 −0.618809
\(283\) 162.113 0.572836 0.286418 0.958105i \(-0.407535\pi\)
0.286418 + 0.958105i \(0.407535\pi\)
\(284\) 661.084 2.32776
\(285\) 0 0
\(286\) −591.229 + 96.1741i −2.06723 + 0.336273i
\(287\) 424.458i 1.47895i
\(288\) 7.15681 0.0248500
\(289\) −277.205 −0.959187
\(290\) 0 0
\(291\) −197.417 −0.678410
\(292\) 303.417 1.03910
\(293\) −372.772 −1.27226 −0.636130 0.771582i \(-0.719466\pi\)
−0.636130 + 0.771582i \(0.719466\pi\)
\(294\) 161.214i 0.548347i
\(295\) 0 0
\(296\) 251.475i 0.849578i
\(297\) −47.1756 290.011i −0.158840 0.976468i
\(298\) 230.324i 0.772898i
\(299\) 272.170i 0.910268i
\(300\) 0 0
\(301\) −55.1832 −0.183333
\(302\) 749.381i 2.48139i
\(303\) −521.409 −1.72082
\(304\) 76.8547i 0.252811i
\(305\) 0 0
\(306\) 2.03659 0.00665553
\(307\) −445.994 −1.45275 −0.726374 0.687300i \(-0.758796\pi\)
−0.726374 + 0.687300i \(0.758796\pi\)
\(308\) 368.403 59.9274i 1.19611 0.194570i
\(309\) 85.8650 0.277880
\(310\) 0 0
\(311\) −249.222 −0.801357 −0.400679 0.916219i \(-0.631226\pi\)
−0.400679 + 0.916219i \(0.631226\pi\)
\(312\) 327.267i 1.04893i
\(313\) 463.222i 1.47994i 0.672638 + 0.739971i \(0.265161\pi\)
−0.672638 + 0.739971i \(0.734839\pi\)
\(314\) 334.644i 1.06575i
\(315\) 0 0
\(316\) 76.2686i 0.241356i
\(317\) 167.548i 0.528542i −0.964448 0.264271i \(-0.914869\pi\)
0.964448 0.264271i \(-0.0851313\pi\)
\(318\) −720.226 −2.26486
\(319\) 92.9042 + 571.127i 0.291236 + 1.79037i
\(320\) 0 0
\(321\) 191.707i 0.597220i
\(322\) 282.981i 0.878824i
\(323\) 63.7893i 0.197490i
\(324\) −494.497 −1.52623
\(325\) 0 0
\(326\) 452.551i 1.38819i
\(327\) −389.928 −1.19244
\(328\) 468.838i 1.42938i
\(329\) 103.343i 0.314112i
\(330\) 0 0
\(331\) 8.98005 0.0271301 0.0135650 0.999908i \(-0.495682\pi\)
0.0135650 + 0.999908i \(0.495682\pi\)
\(332\) −670.440 −2.01940
\(333\) 7.53420i 0.0226252i
\(334\) 112.472 0.336742
\(335\) 0 0
\(336\) 71.1335i 0.211707i
\(337\) 263.901 0.783090 0.391545 0.920159i \(-0.371941\pi\)
0.391545 + 0.920159i \(0.371941\pi\)
\(338\) 404.557 1.19692
\(339\) −107.512 −0.317145
\(340\) 0 0
\(341\) 299.101 48.6541i 0.877128 0.142681i
\(342\) 11.0143i 0.0322056i
\(343\) −373.378 −1.08857
\(344\) −60.9530 −0.177189
\(345\) 0 0
\(346\) 619.419 1.79023
\(347\) 611.749 1.76297 0.881483 0.472216i \(-0.156546\pi\)
0.881483 + 0.472216i \(0.156546\pi\)
\(348\) 953.925 2.74117
\(349\) 282.223i 0.808662i 0.914613 + 0.404331i \(0.132496\pi\)
−0.914613 + 0.404331i \(0.867504\pi\)
\(350\) 0 0
\(351\) 460.365i 1.31158i
\(352\) −414.008 + 67.3459i −1.17616 + 0.191324i
\(353\) 173.629i 0.491868i −0.969287 0.245934i \(-0.920905\pi\)
0.969287 0.245934i \(-0.0790946\pi\)
\(354\) 16.8241i 0.0475256i
\(355\) 0 0
\(356\) −397.015 −1.11521
\(357\) 59.0407i 0.165380i
\(358\) 205.947 0.575271
\(359\) 285.384i 0.794941i 0.917615 + 0.397471i \(0.130112\pi\)
−0.917615 + 0.397471i \(0.869888\pi\)
\(360\) 0 0
\(361\) 16.0139 0.0443597
\(362\) −496.100 −1.37044
\(363\) −116.246 347.856i −0.320237 0.958281i
\(364\) −584.805 −1.60661
\(365\) 0 0
\(366\) 465.344 1.27143
\(367\) 324.275i 0.883582i 0.897118 + 0.441791i \(0.145657\pi\)
−0.897118 + 0.441791i \(0.854343\pi\)
\(368\) 65.3432i 0.177563i
\(369\) 14.0464i 0.0380661i
\(370\) 0 0
\(371\) 426.523i 1.14966i
\(372\) 499.573i 1.34294i
\(373\) 128.367 0.344148 0.172074 0.985084i \(-0.444953\pi\)
0.172074 + 0.985084i \(0.444953\pi\)
\(374\) −117.813 + 19.1644i −0.315008 + 0.0512418i
\(375\) 0 0
\(376\) 114.148i 0.303585i
\(377\) 906.611i 2.40480i
\(378\) 478.652i 1.26627i
\(379\) −684.510 −1.80610 −0.903048 0.429540i \(-0.858676\pi\)
−0.903048 + 0.429540i \(0.858676\pi\)
\(380\) 0 0
\(381\) 638.615i 1.67615i
\(382\) 511.742 1.33964
\(383\) 338.766i 0.884506i 0.896890 + 0.442253i \(0.145821\pi\)
−0.896890 + 0.442253i \(0.854179\pi\)
\(384\) 532.987i 1.38799i
\(385\) 0 0
\(386\) 2.34727 0.00608102
\(387\) 1.82616 0.00471875
\(388\) 389.657i 1.00427i
\(389\) 552.950 1.42146 0.710732 0.703463i \(-0.248364\pi\)
0.710732 + 0.703463i \(0.248364\pi\)
\(390\) 0 0
\(391\) 54.2348i 0.138708i
\(392\) −105.454 −0.269017
\(393\) −399.272 −1.01596
\(394\) 136.159 0.345581
\(395\) 0 0
\(396\) −12.1914 + 1.98315i −0.0307864 + 0.00500796i
\(397\) 111.881i 0.281815i −0.990023 0.140908i \(-0.954998\pi\)
0.990023 0.140908i \(-0.0450020\pi\)
\(398\) 638.017 1.60306
\(399\) −319.305 −0.800263
\(400\) 0 0
\(401\) −284.972 −0.710654 −0.355327 0.934742i \(-0.615630\pi\)
−0.355327 + 0.934742i \(0.615630\pi\)
\(402\) 339.887 0.845490
\(403\) −474.794 −1.17815
\(404\) 1029.14i 2.54738i
\(405\) 0 0
\(406\) 942.623i 2.32173i
\(407\) 70.8972 + 435.839i 0.174195 + 1.07086i
\(408\) 65.2139i 0.159838i
\(409\) 122.119i 0.298580i −0.988793 0.149290i \(-0.952301\pi\)
0.988793 0.149290i \(-0.0476989\pi\)
\(410\) 0 0
\(411\) −509.028 −1.23851
\(412\) 169.478i 0.411354i
\(413\) −9.96334 −0.0241243
\(414\) 9.36458i 0.0226198i
\(415\) 0 0
\(416\) 657.199 1.57980
\(417\) −274.663 −0.658663
\(418\) −103.645 637.158i −0.247955 1.52430i
\(419\) −407.625 −0.972852 −0.486426 0.873722i \(-0.661700\pi\)
−0.486426 + 0.873722i \(0.661700\pi\)
\(420\) 0 0
\(421\) −348.212 −0.827107 −0.413554 0.910480i \(-0.635713\pi\)
−0.413554 + 0.910480i \(0.635713\pi\)
\(422\) 168.943i 0.400338i
\(423\) 3.41988i 0.00808481i
\(424\) 471.119i 1.11113i
\(425\) 0 0
\(426\) 1058.24i 2.48413i
\(427\) 275.580i 0.645387i
\(428\) −378.387 −0.884081
\(429\) 92.2649 + 567.197i 0.215070 + 1.32214i
\(430\) 0 0
\(431\) 453.606i 1.05245i −0.850346 0.526225i \(-0.823607\pi\)
0.850346 0.526225i \(-0.176393\pi\)
\(432\) 110.525i 0.255846i
\(433\) 760.149i 1.75554i 0.479081 + 0.877771i \(0.340970\pi\)
−0.479081 + 0.877771i \(0.659030\pi\)
\(434\) 493.654 1.13745
\(435\) 0 0
\(436\) 769.628i 1.76520i
\(437\) 293.313 0.671198
\(438\) 485.700i 1.10890i
\(439\) 343.308i 0.782023i −0.920386 0.391011i \(-0.872125\pi\)
0.920386 0.391011i \(-0.127875\pi\)
\(440\) 0 0
\(441\) 3.15942 0.00716422
\(442\) 187.017 0.423115
\(443\) 47.4703i 0.107156i 0.998564 + 0.0535782i \(0.0170626\pi\)
−0.998564 + 0.0535782i \(0.982937\pi\)
\(444\) 727.961 1.63955
\(445\) 0 0
\(446\) 892.887i 2.00199i
\(447\) 220.962 0.494321
\(448\) −589.433 −1.31570
\(449\) 339.087 0.755205 0.377602 0.925968i \(-0.376749\pi\)
0.377602 + 0.925968i \(0.376749\pi\)
\(450\) 0 0
\(451\) 132.177 + 812.557i 0.293076 + 1.80168i
\(452\) 212.204i 0.469478i
\(453\) 718.921 1.58702
\(454\) 351.503 0.774235
\(455\) 0 0
\(456\) −352.691 −0.773445
\(457\) −276.791 −0.605669 −0.302835 0.953043i \(-0.597933\pi\)
−0.302835 + 0.953043i \(0.597933\pi\)
\(458\) 168.661 0.368256
\(459\) 91.7360i 0.199861i
\(460\) 0 0
\(461\) 156.898i 0.340342i −0.985415 0.170171i \(-0.945568\pi\)
0.985415 0.170171i \(-0.0544321\pi\)
\(462\) −95.9298 589.727i −0.207640 1.27647i
\(463\) 407.669i 0.880494i 0.897877 + 0.440247i \(0.145109\pi\)
−0.897877 + 0.440247i \(0.854891\pi\)
\(464\) 217.661i 0.469097i
\(465\) 0 0
\(466\) −134.939 −0.289568
\(467\) 749.076i 1.60402i −0.597313 0.802008i \(-0.703765\pi\)
0.597313 0.802008i \(-0.296235\pi\)
\(468\) 19.3527 0.0413520
\(469\) 201.284i 0.429176i
\(470\) 0 0
\(471\) −321.042 −0.681618
\(472\) −11.0051 −0.0233159
\(473\) −105.640 + 17.1842i −0.223340 + 0.0363302i
\(474\) 122.088 0.257570
\(475\) 0 0
\(476\) −116.533 −0.244817
\(477\) 14.1147i 0.0295907i
\(478\) 685.539i 1.43418i
\(479\) 11.2596i 0.0235064i −0.999931 0.0117532i \(-0.996259\pi\)
0.999931 0.0117532i \(-0.00374124\pi\)
\(480\) 0 0
\(481\) 691.854i 1.43837i
\(482\) 489.984i 1.01657i
\(483\) 271.479 0.562068
\(484\) 686.588 229.443i 1.41857 0.474056i
\(485\) 0 0
\(486\) 32.0170i 0.0658786i
\(487\) 734.846i 1.50892i 0.656344 + 0.754462i \(0.272102\pi\)
−0.656344 + 0.754462i \(0.727898\pi\)
\(488\) 304.394i 0.623759i
\(489\) 434.156 0.887845
\(490\) 0 0
\(491\) 347.360i 0.707455i −0.935349 0.353727i \(-0.884914\pi\)
0.935349 0.353727i \(-0.115086\pi\)
\(492\) 1357.17 2.75848
\(493\) 180.658i 0.366447i
\(494\) 1011.43i 2.04743i
\(495\) 0 0
\(496\) −113.990 −0.229818
\(497\) 626.698 1.26096
\(498\) 1073.22i 2.15506i
\(499\) −875.439 −1.75439 −0.877193 0.480138i \(-0.840587\pi\)
−0.877193 + 0.480138i \(0.840587\pi\)
\(500\) 0 0
\(501\) 107.900i 0.215369i
\(502\) −368.211 −0.733488
\(503\) 505.554 1.00508 0.502539 0.864554i \(-0.332399\pi\)
0.502539 + 0.864554i \(0.332399\pi\)
\(504\) −6.66844 −0.0132310
\(505\) 0 0
\(506\) 88.1211 + 541.723i 0.174152 + 1.07060i
\(507\) 388.113i 0.765509i
\(508\) −1260.48 −2.48126
\(509\) 778.269 1.52902 0.764508 0.644614i \(-0.222982\pi\)
0.764508 + 0.644614i \(0.222982\pi\)
\(510\) 0 0
\(511\) 287.635 0.562887
\(512\) 261.468 0.510679
\(513\) −496.128 −0.967111
\(514\) 270.781i 0.526811i
\(515\) 0 0
\(516\) 176.445i 0.341947i
\(517\) −32.1812 197.833i −0.0622460 0.382656i
\(518\) 719.336i 1.38868i
\(519\) 594.241i 1.14497i
\(520\) 0 0
\(521\) −273.723 −0.525380 −0.262690 0.964880i \(-0.584610\pi\)
−0.262690 + 0.964880i \(0.584610\pi\)
\(522\) 31.1938i 0.0597583i
\(523\) 628.316 1.20137 0.600685 0.799486i \(-0.294895\pi\)
0.600685 + 0.799486i \(0.294895\pi\)
\(524\) 788.071i 1.50395i
\(525\) 0 0
\(526\) 1260.23 2.39587
\(527\) −94.6112 −0.179528
\(528\) 22.1512 + 136.174i 0.0419529 + 0.257905i
\(529\) 279.620 0.528582
\(530\) 0 0
\(531\) 0.329713 0.000620928
\(532\) 630.235i 1.18465i
\(533\) 1289.86i 2.42000i
\(534\) 635.528i 1.19013i
\(535\) 0 0
\(536\) 222.329i 0.414794i
\(537\) 197.576i 0.367925i
\(538\) 749.474 1.39307
\(539\) −182.766 + 29.7303i −0.339084 + 0.0551582i
\(540\) 0 0
\(541\) 543.648i 1.00490i 0.864608 + 0.502448i \(0.167567\pi\)
−0.864608 + 0.502448i \(0.832433\pi\)
\(542\) 107.544i 0.198421i
\(543\) 475.935i 0.876492i
\(544\) 130.959 0.240733
\(545\) 0 0
\(546\) 936.137i 1.71454i
\(547\) 421.038 0.769722 0.384861 0.922975i \(-0.374249\pi\)
0.384861 + 0.922975i \(0.374249\pi\)
\(548\) 1004.71i 1.83340i
\(549\) 9.11967i 0.0166114i
\(550\) 0 0
\(551\) 977.040 1.77321
\(552\) 299.864 0.543232
\(553\) 72.3016i 0.130744i
\(554\) −640.296 −1.15577
\(555\) 0 0
\(556\) 542.121i 0.975038i
\(557\) −940.508 −1.68852 −0.844262 0.535930i \(-0.819961\pi\)
−0.844262 + 0.535930i \(0.819961\pi\)
\(558\) −16.3363 −0.0292765
\(559\) 167.693 0.299987
\(560\) 0 0
\(561\) 18.3854 + 113.024i 0.0327726 + 0.201469i
\(562\) 319.008i 0.567629i
\(563\) −285.806 −0.507649 −0.253824 0.967250i \(-0.581688\pi\)
−0.253824 + 0.967250i \(0.581688\pi\)
\(564\) −330.431 −0.585871
\(565\) 0 0
\(566\) 512.203 0.904952
\(567\) −468.776 −0.826765
\(568\) 692.224 1.21870
\(569\) 307.137i 0.539783i −0.962891 0.269892i \(-0.913012\pi\)
0.962891 0.269892i \(-0.0869879\pi\)
\(570\) 0 0
\(571\) 390.713i 0.684261i −0.939652 0.342130i \(-0.888852\pi\)
0.939652 0.342130i \(-0.111148\pi\)
\(572\) −1119.52 + 182.110i −1.95720 + 0.318374i
\(573\) 490.941i 0.856791i
\(574\) 1341.09i 2.33640i
\(575\) 0 0
\(576\) 19.5059 0.0338643
\(577\) 119.491i 0.207090i 0.994625 + 0.103545i \(0.0330186\pi\)
−0.994625 + 0.103545i \(0.966981\pi\)
\(578\) −875.843 −1.51530
\(579\) 2.25186i 0.00388923i
\(580\) 0 0
\(581\) −635.568 −1.09392
\(582\) −623.749 −1.07173
\(583\) −132.820 816.511i −0.227822 1.40053i
\(584\) 317.710 0.544023
\(585\) 0 0
\(586\) −1177.79 −2.00988
\(587\) 340.259i 0.579658i 0.957078 + 0.289829i \(0.0935984\pi\)
−0.957078 + 0.289829i \(0.906402\pi\)
\(588\) 305.266i 0.519159i
\(589\) 511.678i 0.868723i
\(590\) 0 0
\(591\) 130.625i 0.221023i
\(592\) 166.102i 0.280577i
\(593\) 752.004 1.26813 0.634067 0.773278i \(-0.281384\pi\)
0.634067 + 0.773278i \(0.281384\pi\)
\(594\) −149.053 916.303i −0.250932 1.54260i
\(595\) 0 0
\(596\) 436.128i 0.731758i
\(597\) 612.083i 1.02527i
\(598\) 859.935i 1.43802i
\(599\) −274.841 −0.458833 −0.229416 0.973328i \(-0.573682\pi\)
−0.229416 + 0.973328i \(0.573682\pi\)
\(600\) 0 0
\(601\) 397.025i 0.660608i 0.943875 + 0.330304i \(0.107151\pi\)
−0.943875 + 0.330304i \(0.892849\pi\)
\(602\) −174.354 −0.289625
\(603\) 6.66100i 0.0110464i
\(604\) 1418.98i 2.34931i
\(605\) 0 0
\(606\) −1647.42 −2.71851
\(607\) 351.597 0.579238 0.289619 0.957142i \(-0.406471\pi\)
0.289619 + 0.957142i \(0.406471\pi\)
\(608\) 708.252i 1.16489i
\(609\) 904.308 1.48491
\(610\) 0 0
\(611\) 314.042i 0.513980i
\(612\) 3.85637 0.00630127
\(613\) −547.965 −0.893907 −0.446953 0.894557i \(-0.647491\pi\)
−0.446953 + 0.894557i \(0.647491\pi\)
\(614\) −1409.14 −2.29501
\(615\) 0 0
\(616\) 385.757 62.7503i 0.626228 0.101867i
\(617\) 1124.68i 1.82282i 0.411505 + 0.911408i \(0.365003\pi\)
−0.411505 + 0.911408i \(0.634997\pi\)
\(618\) 271.295 0.438988
\(619\) −82.7193 −0.133634 −0.0668169 0.997765i \(-0.521284\pi\)
−0.0668169 + 0.997765i \(0.521284\pi\)
\(620\) 0 0
\(621\) 421.817 0.679254
\(622\) −787.429 −1.26596
\(623\) −376.364 −0.604116
\(624\) 216.163i 0.346416i
\(625\) 0 0
\(626\) 1463.57i 2.33797i
\(627\) −611.259 + 99.4324i −0.974895 + 0.158584i
\(628\) 633.663i 1.00902i
\(629\) 137.864i 0.219180i
\(630\) 0 0
\(631\) 317.879 0.503771 0.251885 0.967757i \(-0.418949\pi\)
0.251885 + 0.967757i \(0.418949\pi\)
\(632\) 79.8612i 0.126363i
\(633\) 162.076 0.256043
\(634\) 529.375i 0.834976i
\(635\) 0 0
\(636\) −1363.78 −2.14431
\(637\) 290.125 0.455454
\(638\) 293.535 + 1804.50i 0.460086 + 2.82838i
\(639\) −20.7391 −0.0324555
\(640\) 0 0
\(641\) 432.182 0.674230 0.337115 0.941463i \(-0.390549\pi\)
0.337115 + 0.941463i \(0.390549\pi\)
\(642\) 605.709i 0.943472i
\(643\) 229.511i 0.356937i 0.983946 + 0.178469i \(0.0571143\pi\)
−0.983946 + 0.178469i \(0.942886\pi\)
\(644\) 535.837i 0.832045i
\(645\) 0 0
\(646\) 201.545i 0.311989i
\(647\) 768.342i 1.18755i 0.804633 + 0.593773i \(0.202362\pi\)
−0.804633 + 0.593773i \(0.797638\pi\)
\(648\) −517.790 −0.799059
\(649\) −19.0733 + 3.10261i −0.0293887 + 0.00478060i
\(650\) 0 0
\(651\) 473.588i 0.727478i
\(652\) 856.926i 1.31430i
\(653\) 624.977i 0.957085i 0.878064 + 0.478543i \(0.158835\pi\)
−0.878064 + 0.478543i \(0.841165\pi\)
\(654\) −1231.99 −1.88378
\(655\) 0 0
\(656\) 309.672i 0.472061i
\(657\) −9.51859 −0.0144880
\(658\) 326.516i 0.496225i
\(659\) 1104.04i 1.67533i −0.546185 0.837665i \(-0.683920\pi\)
0.546185 0.837665i \(-0.316080\pi\)
\(660\) 0 0
\(661\) 246.985 0.373653 0.186827 0.982393i \(-0.440180\pi\)
0.186827 + 0.982393i \(0.440180\pi\)
\(662\) 28.3729 0.0428594
\(663\) 179.415i 0.270611i
\(664\) −702.021 −1.05726
\(665\) 0 0
\(666\) 23.8047i 0.0357427i
\(667\) −830.697 −1.24542
\(668\) 212.970 0.318817
\(669\) −856.594 −1.28041
\(670\) 0 0
\(671\) 85.8165 + 527.555i 0.127893 + 0.786223i
\(672\) 655.529i 0.975490i
\(673\) 715.709 1.06346 0.531730 0.846914i \(-0.321542\pi\)
0.531730 + 0.846914i \(0.321542\pi\)
\(674\) 833.808 1.23710
\(675\) 0 0
\(676\) 766.047 1.13321
\(677\) 946.798 1.39852 0.699260 0.714867i \(-0.253513\pi\)
0.699260 + 0.714867i \(0.253513\pi\)
\(678\) −339.689 −0.501017
\(679\) 369.389i 0.544019i
\(680\) 0 0
\(681\) 337.215i 0.495176i
\(682\) 945.023 153.725i 1.38566 0.225403i
\(683\) 67.4542i 0.0987616i 0.998780 + 0.0493808i \(0.0157248\pi\)
−0.998780 + 0.0493808i \(0.984275\pi\)
\(684\) 20.8561i 0.0304914i
\(685\) 0 0
\(686\) −1179.71 −1.71969
\(687\) 161.805i 0.235525i
\(688\) 40.2601 0.0585176
\(689\) 1296.13i 1.88118i
\(690\) 0 0
\(691\) −396.379 −0.573632 −0.286816 0.957986i \(-0.592597\pi\)
−0.286816 + 0.957986i \(0.592597\pi\)
\(692\) 1172.90 1.69494
\(693\) −11.5573 + 1.88000i −0.0166772 + 0.00271284i
\(694\) 1932.85 2.78509
\(695\) 0 0
\(696\) 998.860 1.43514
\(697\) 257.027i 0.368762i
\(698\) 891.697i 1.27750i
\(699\) 129.454i 0.185198i
\(700\) 0 0
\(701\) 884.194i 1.26133i −0.776054 0.630666i \(-0.782782\pi\)
0.776054 0.630666i \(-0.217218\pi\)
\(702\) 1454.55i 2.07200i
\(703\) 745.600 1.06060
\(704\) −1128.38 + 183.551i −1.60281 + 0.260726i
\(705\) 0 0
\(706\) 548.590i 0.777040i
\(707\) 975.613i 1.37993i
\(708\) 31.8571i 0.0449959i
\(709\) 902.302 1.27264 0.636320 0.771425i \(-0.280456\pi\)
0.636320 + 0.771425i \(0.280456\pi\)
\(710\) 0 0
\(711\) 2.39265i 0.00336518i
\(712\) −415.716 −0.583871
\(713\) 435.038i 0.610151i
\(714\) 186.542i 0.261263i
\(715\) 0 0
\(716\) 389.969 0.544650
\(717\) −657.673 −0.917257
\(718\) 901.684i 1.25583i
\(719\) −1021.01 −1.42004 −0.710021 0.704180i \(-0.751315\pi\)
−0.710021 + 0.704180i \(0.751315\pi\)
\(720\) 0 0
\(721\) 160.663i 0.222833i
\(722\) 50.5966 0.0700784
\(723\) −470.068 −0.650163
\(724\) −939.387 −1.29750
\(725\) 0 0
\(726\) −367.285 1099.07i −0.505902 1.51387i
\(727\) 637.169i 0.876436i −0.898869 0.438218i \(-0.855610\pi\)
0.898869 0.438218i \(-0.144390\pi\)
\(728\) −612.352 −0.841143
\(729\) −713.170 −0.978285
\(730\) 0 0
\(731\) 33.4158 0.0457125
\(732\) 881.150 1.20376
\(733\) −261.937 −0.357349 −0.178674 0.983908i \(-0.557181\pi\)
−0.178674 + 0.983908i \(0.557181\pi\)
\(734\) 1024.56i 1.39586i
\(735\) 0 0
\(736\) 602.169i 0.818164i
\(737\) 62.6803 + 385.326i 0.0850478 + 0.522830i
\(738\) 44.3802i 0.0601358i
\(739\) 734.865i 0.994404i 0.867635 + 0.497202i \(0.165639\pi\)
−0.867635 + 0.497202i \(0.834361\pi\)
\(740\) 0 0
\(741\) 970.317 1.30947
\(742\) 1347.62i 1.81620i
\(743\) −161.161 −0.216905 −0.108453 0.994102i \(-0.534590\pi\)
−0.108453 + 0.994102i \(0.534590\pi\)
\(744\) 523.105i 0.703098i
\(745\) 0 0
\(746\) 405.583 0.543676
\(747\) 21.0326 0.0281561
\(748\) −223.084 + 36.2886i −0.298241 + 0.0485142i
\(749\) −358.705 −0.478912
\(750\) 0 0
\(751\) 1141.77 1.52033 0.760167 0.649728i \(-0.225117\pi\)
0.760167 + 0.649728i \(0.225117\pi\)
\(752\) 75.3958i 0.100260i
\(753\) 353.244i 0.469116i
\(754\) 2864.48i 3.79904i
\(755\) 0 0
\(756\) 906.348i 1.19887i
\(757\) 119.677i 0.158094i −0.996871 0.0790469i \(-0.974812\pi\)
0.996871 0.0790469i \(-0.0251877\pi\)
\(758\) −2162.74 −2.85322
\(759\) 519.704 84.5392i 0.684721 0.111382i
\(760\) 0 0
\(761\) 157.280i 0.206676i −0.994646 0.103338i \(-0.967048\pi\)
0.994646 0.103338i \(-0.0329523\pi\)
\(762\) 2017.73i 2.64794i
\(763\) 729.596i 0.956221i
\(764\) 969.006 1.26833
\(765\) 0 0
\(766\) 1070.35i 1.39732i
\(767\) 30.2770 0.0394746
\(768\) 423.924i 0.551984i
\(769\) 1498.58i 1.94874i −0.224947 0.974371i \(-0.572221\pi\)
0.224947 0.974371i \(-0.427779\pi\)
\(770\) 0 0
\(771\) 259.774 0.336931
\(772\) 4.44466 0.00575734
\(773\) 1528.87i 1.97784i −0.148450 0.988920i \(-0.547428\pi\)
0.148450 0.988920i \(-0.452572\pi\)
\(774\) 5.76982 0.00745455
\(775\) 0 0
\(776\) 408.012i 0.525788i
\(777\) 690.096 0.888155
\(778\) 1747.07 2.24559
\(779\) 1390.06 1.78441
\(780\) 0 0
\(781\) 1199.72 195.155i 1.53613 0.249879i
\(782\) 171.357i 0.219127i
\(783\) 1405.09 1.79450
\(784\) 69.6537 0.0888440
\(785\) 0 0
\(786\) −1261.52 −1.60498
\(787\) 930.613 1.18248 0.591241 0.806495i \(-0.298638\pi\)
0.591241 + 0.806495i \(0.298638\pi\)
\(788\) 257.823 0.327187
\(789\) 1209.00i 1.53232i
\(790\) 0 0
\(791\) 201.167i 0.254319i
\(792\) −12.7657 + 2.07657i −0.0161183 + 0.00262193i
\(793\) 837.445i 1.05605i
\(794\) 353.492i 0.445204i
\(795\) 0 0
\(796\) 1208.11 1.51773
\(797\) 332.628i 0.417350i 0.977985 + 0.208675i \(0.0669151\pi\)
−0.977985 + 0.208675i \(0.933085\pi\)
\(798\) −1008.86 −1.26423
\(799\) 62.5784i 0.0783210i
\(800\) 0 0
\(801\) 12.4549 0.0155491
\(802\) −900.383 −1.12267
\(803\) 550.632 89.5703i 0.685719 0.111545i
\(804\) 643.591 0.800486
\(805\) 0 0
\(806\) −1500.13 −1.86121
\(807\) 719.010i 0.890966i
\(808\) 1077.62i 1.33369i
\(809\) 870.764i 1.07635i 0.842834 + 0.538173i \(0.180885\pi\)
−0.842834 + 0.538173i \(0.819115\pi\)
\(810\) 0 0
\(811\) 1369.14i 1.68821i 0.536180 + 0.844103i \(0.319867\pi\)
−0.536180 + 0.844103i \(0.680133\pi\)
\(812\) 1784.90i 2.19815i
\(813\) −103.173 −0.126904
\(814\) 224.003 + 1377.05i 0.275188 + 1.69171i
\(815\) 0 0
\(816\) 43.0744i 0.0527873i
\(817\) 180.720i 0.221199i
\(818\) 385.842i 0.471689i
\(819\) 18.3461 0.0224006
\(820\) 0 0
\(821\) 759.486i 0.925075i −0.886600 0.462537i \(-0.846939\pi\)
0.886600 0.462537i \(-0.153061\pi\)
\(822\) −1608.30 −1.95657
\(823\) 252.673i 0.307015i 0.988148 + 0.153507i \(0.0490569\pi\)
−0.988148 + 0.153507i \(0.950943\pi\)
\(824\) 177.461i 0.215366i
\(825\) 0 0
\(826\) −31.4797 −0.0381110
\(827\) −172.995 −0.209184 −0.104592 0.994515i \(-0.533354\pi\)
−0.104592 + 0.994515i \(0.533354\pi\)
\(828\) 17.7322i 0.0214157i
\(829\) −1145.40 −1.38167 −0.690834 0.723013i \(-0.742756\pi\)
−0.690834 + 0.723013i \(0.742756\pi\)
\(830\) 0 0
\(831\) 614.270i 0.739193i
\(832\) 1791.19 2.15287
\(833\) 57.8125 0.0694027
\(834\) −867.809 −1.04054
\(835\) 0 0
\(836\) −196.257 1206.49i −0.234757 1.44317i
\(837\) 735.849i 0.879151i
\(838\) −1287.91 −1.53689
\(839\) 41.7126 0.0497170 0.0248585 0.999691i \(-0.492086\pi\)
0.0248585 + 0.999691i \(0.492086\pi\)
\(840\) 0 0
\(841\) −1926.09 −2.29023
\(842\) −1100.19 −1.30664
\(843\) −306.041 −0.363038
\(844\) 319.900i 0.379029i
\(845\) 0 0
\(846\) 10.8053i 0.0127722i
\(847\) 650.876 217.509i 0.768448 0.256799i
\(848\) 311.179i 0.366956i
\(849\) 491.383i 0.578778i
\(850\) 0 0
\(851\) −633.922 −0.744915
\(852\) 2003.82i 2.35191i
\(853\) 725.094 0.850052 0.425026 0.905181i \(-0.360265\pi\)
0.425026 + 0.905181i \(0.360265\pi\)
\(854\) 870.709i 1.01957i
\(855\) 0 0
\(856\) −396.211 −0.462863
\(857\) 302.221 0.352650 0.176325 0.984332i \(-0.443579\pi\)
0.176325 + 0.984332i \(0.443579\pi\)
\(858\) 291.515 + 1792.09i 0.339761 + 2.08868i
\(859\) 207.101 0.241096 0.120548 0.992708i \(-0.461535\pi\)
0.120548 + 0.992708i \(0.461535\pi\)
\(860\) 0 0
\(861\) 1286.58 1.49429
\(862\) 1433.19i 1.66263i
\(863\) 482.444i 0.559032i 0.960141 + 0.279516i \(0.0901739\pi\)
−0.960141 + 0.279516i \(0.909826\pi\)
\(864\) 1018.54i 1.17887i
\(865\) 0 0
\(866\) 2401.73i 2.77336i
\(867\) 840.242i 0.969137i
\(868\) 934.755 1.07691
\(869\) 22.5149 + 138.410i 0.0259090 + 0.159275i
\(870\) 0 0
\(871\) 611.669i 0.702260i
\(872\) 805.881i 0.924176i
\(873\) 12.2240i 0.0140023i
\(874\) 926.738 1.06034
\(875\) 0 0
\(876\) 919.694i 1.04988i
\(877\) −377.864 −0.430860 −0.215430 0.976519i \(-0.569115\pi\)
−0.215430 + 0.976519i \(0.569115\pi\)
\(878\) 1084.70i 1.23542i
\(879\) 1129.92i 1.28546i
\(880\) 0 0
\(881\) −1459.75 −1.65693 −0.828463 0.560045i \(-0.810784\pi\)
−0.828463 + 0.560045i \(0.810784\pi\)
\(882\) 9.98233 0.0113178
\(883\) 353.252i 0.400059i −0.979790 0.200029i \(-0.935896\pi\)
0.979790 0.200029i \(-0.0641037\pi\)
\(884\) 354.125 0.400594
\(885\) 0 0
\(886\) 149.985i 0.169283i
\(887\) 174.064 0.196239 0.0981194 0.995175i \(-0.468717\pi\)
0.0981194 + 0.995175i \(0.468717\pi\)
\(888\) 762.251 0.858391
\(889\) −1194.92 −1.34411
\(890\) 0 0
\(891\) −897.398 + 145.978i −1.00718 + 0.163836i
\(892\) 1690.72i 1.89543i
\(893\) −338.438 −0.378990
\(894\) 698.138 0.780915
\(895\) 0 0
\(896\) −997.275 −1.11303
\(897\) −824.981 −0.919711
\(898\) 1071.36 1.19305
\(899\) 1449.13i 1.61193i
\(900\) 0 0
\(901\) 258.278i 0.286657i
\(902\) 417.620 + 2567.31i 0.462993 + 2.84624i
\(903\) 167.267i 0.185235i
\(904\) 222.200i 0.245797i
\(905\) 0 0
\(906\) 2271.46 2.50713
\(907\) 1341.78i 1.47936i 0.672960 + 0.739679i \(0.265023\pi\)
−0.672960 + 0.739679i \(0.734977\pi\)
\(908\) 665.586 0.733024
\(909\) 32.2855i 0.0355176i
\(910\) 0 0
\(911\) 81.8460 0.0898419 0.0449210 0.998991i \(-0.485696\pi\)
0.0449210 + 0.998991i \(0.485696\pi\)
\(912\) 232.956 0.255434
\(913\) −1216.70 + 197.918i −1.33263 + 0.216777i
\(914\) −874.534 −0.956821
\(915\) 0 0
\(916\) 319.367 0.348654
\(917\) 747.080i 0.814700i
\(918\) 289.844i 0.315734i
\(919\) 146.259i 0.159150i 0.996829 + 0.0795752i \(0.0253564\pi\)
−0.996829 + 0.0795752i \(0.974644\pi\)
\(920\) 0 0
\(921\) 1351.86i 1.46782i
\(922\) 495.726i 0.537664i
\(923\) −1904.44 −2.06331
\(924\) −181.647 1116.67i −0.196588 1.20852i
\(925\) 0 0
\(926\) 1288.05i 1.39098i
\(927\) 5.31674i 0.00573543i
\(928\) 2005.85i 2.16148i
\(929\) 624.735 0.672481 0.336240 0.941776i \(-0.390845\pi\)
0.336240 + 0.941776i \(0.390845\pi\)
\(930\) 0 0
\(931\) 312.662i 0.335835i
\(932\) −255.512 −0.274154
\(933\) 755.422i 0.809670i
\(934\) 2366.74i 2.53398i
\(935\) 0 0
\(936\) 20.2643 0.0216499
\(937\) −1737.04 −1.85383 −0.926915 0.375273i \(-0.877549\pi\)
−0.926915 + 0.375273i \(0.877549\pi\)
\(938\) 635.965i 0.678001i
\(939\) 1404.08 1.49529
\(940\) 0 0
\(941\) 1214.68i 1.29084i 0.763830 + 0.645418i \(0.223317\pi\)
−0.763830 + 0.645418i \(0.776683\pi\)
\(942\) −1014.35 −1.07680
\(943\) −1181.85 −1.25329
\(944\) 7.26897 0.00770018
\(945\) 0 0
\(946\) −333.773 + 54.2943i −0.352826 + 0.0573935i
\(947\) 1465.25i 1.54725i −0.633641 0.773627i \(-0.718440\pi\)
0.633641 0.773627i \(-0.281560\pi\)
\(948\) 231.179 0.243860
\(949\) −874.077 −0.921051
\(950\) 0 0
\(951\) −507.857 −0.534025
\(952\) −122.022 −0.128175
\(953\) 464.526 0.487435 0.243717 0.969846i \(-0.421633\pi\)
0.243717 + 0.969846i \(0.421633\pi\)
\(954\) 44.5962i 0.0467465i
\(955\) 0 0
\(956\) 1298.10i 1.35784i
\(957\) 1731.15 281.604i 1.80894 0.294257i
\(958\) 35.5751i 0.0371348i
\(959\) 952.446i 0.993166i
\(960\) 0 0
\(961\) −202.088 −0.210289
\(962\) 2185.95i 2.27229i
\(963\) 11.8705 0.0123266
\(964\) 927.807i 0.962455i
\(965\) 0 0
\(966\) 857.750 0.887940
\(967\) −667.349 −0.690123 −0.345062 0.938580i \(-0.612142\pi\)
−0.345062 + 0.938580i \(0.612142\pi\)
\(968\) 718.930 240.251i 0.742696 0.248193i
\(969\) 193.353 0.199539
\(970\) 0 0
\(971\) 980.665 1.00995 0.504977 0.863133i \(-0.331501\pi\)
0.504977 + 0.863133i \(0.331501\pi\)
\(972\) 60.6256i 0.0623720i
\(973\) 513.923i 0.528184i
\(974\) 2321.78i 2.38376i
\(975\) 0 0
\(976\) 201.056i 0.206000i
\(977\) 342.678i 0.350745i −0.984502 0.175372i \(-0.943887\pi\)
0.984502 0.175372i \(-0.0561129\pi\)
\(978\) 1371.74 1.40259
\(979\) −720.490 + 117.201i −0.735945 + 0.119715i
\(980\) 0 0
\(981\) 24.1442i 0.0246118i
\(982\) 1097.50i 1.11762i
\(983\) 447.215i 0.454949i −0.973784 0.227475i \(-0.926953\pi\)
0.973784 0.227475i \(-0.0730469\pi\)
\(984\) 1421.10 1.44421
\(985\) 0 0
\(986\) 570.799i 0.578903i
\(987\) −313.244 −0.317370
\(988\) 1915.18i 1.93844i
\(989\) 153.651i 0.155360i
\(990\) 0 0
\(991\) 135.932 0.137166 0.0685831 0.997645i \(-0.478152\pi\)
0.0685831 + 0.997645i \(0.478152\pi\)
\(992\) −1050.47 −1.05894
\(993\) 27.2196i 0.0274115i
\(994\) 1980.08 1.99203
\(995\) 0 0
\(996\) 2032.19i 2.04035i
\(997\) 303.075 0.303987 0.151993 0.988381i \(-0.451431\pi\)
0.151993 + 0.988381i \(0.451431\pi\)
\(998\) −2765.99 −2.77153
\(999\) 1072.25 1.07333
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.d.c.274.13 16
5.2 odd 4 55.3.c.a.21.7 yes 8
5.3 odd 4 275.3.c.f.76.2 8
5.4 even 2 inner 275.3.d.c.274.4 16
11.10 odd 2 inner 275.3.d.c.274.3 16
15.2 even 4 495.3.b.a.406.2 8
20.7 even 4 880.3.j.a.241.7 8
55.32 even 4 55.3.c.a.21.2 8
55.43 even 4 275.3.c.f.76.7 8
55.54 odd 2 inner 275.3.d.c.274.14 16
165.32 odd 4 495.3.b.a.406.7 8
220.87 odd 4 880.3.j.a.241.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.c.a.21.2 8 55.32 even 4
55.3.c.a.21.7 yes 8 5.2 odd 4
275.3.c.f.76.2 8 5.3 odd 4
275.3.c.f.76.7 8 55.43 even 4
275.3.d.c.274.3 16 11.10 odd 2 inner
275.3.d.c.274.4 16 5.4 even 2 inner
275.3.d.c.274.13 16 1.1 even 1 trivial
275.3.d.c.274.14 16 55.54 odd 2 inner
495.3.b.a.406.2 8 15.2 even 4
495.3.b.a.406.7 8 165.32 odd 4
880.3.j.a.241.7 8 20.7 even 4
880.3.j.a.241.8 8 220.87 odd 4