Properties

Label 275.3.c.f.76.7
Level $275$
Weight $3$
Character 275.76
Analytic conductor $7.493$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(76,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.76"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-8,-28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 30x^{6} + 280x^{4} + 890x^{2} + 895 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 76.7
Root \(3.15955i\) of defining polynomial
Character \(\chi\) \(=\) 275.76
Dual form 275.3.c.f.76.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.15955i q^{2} +3.03112 q^{3} -5.98274 q^{4} +9.57697i q^{6} +5.67155i q^{7} -6.26455i q^{8} +0.187686 q^{9} +(10.8573 + 1.76614i) q^{11} -18.1344 q^{12} +17.2349i q^{13} -17.9195 q^{14} -4.13780 q^{16} -3.43437i q^{17} +0.593004i q^{18} -18.5738i q^{19} +17.1911i q^{21} +(-5.58019 + 34.3041i) q^{22} -15.7918 q^{23} -18.9886i q^{24} -54.4546 q^{26} -26.7112 q^{27} -33.9314i q^{28} +52.6031i q^{29} +27.5484 q^{31} -38.1318i q^{32} +(32.9097 + 5.35337i) q^{33} +10.8510 q^{34} -1.12288 q^{36} +40.1425 q^{37} +58.6848 q^{38} +52.2411i q^{39} -74.8398i q^{41} -54.3162 q^{42} +9.72983i q^{43} +(-64.9563 - 10.5663i) q^{44} -49.8949i q^{46} -18.2212 q^{47} -12.5422 q^{48} +16.8335 q^{49} -10.4100i q^{51} -103.112i q^{52} +75.2040 q^{53} -84.3952i q^{54} +35.5297 q^{56} -56.2994i q^{57} -166.202 q^{58} +1.75672 q^{59} -48.5900i q^{61} +87.0404i q^{62} +1.06447i q^{63} +103.928 q^{64} +(-16.9142 + 103.980i) q^{66} +35.4901 q^{67} +20.5469i q^{68} -47.8668 q^{69} +110.499 q^{71} -1.17577i q^{72} -50.7154i q^{73} +126.832i q^{74} +111.122i q^{76} +(-10.0167 + 61.5777i) q^{77} -165.058 q^{78} +12.7481i q^{79} -82.6540 q^{81} +236.460 q^{82} +112.062i q^{83} -102.850i q^{84} -30.7419 q^{86} +159.446i q^{87} +(11.0640 - 68.0161i) q^{88} +66.3600 q^{89} -97.7488 q^{91} +94.4781 q^{92} +83.5024 q^{93} -57.5709i q^{94} -115.582i q^{96} -65.1302 q^{97} +53.1863i q^{98} +(2.03776 + 0.331479i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{3} - 28 q^{4} - 4 q^{9} + 8 q^{11} + 48 q^{12} + 88 q^{16} - 80 q^{22} - 8 q^{23} - 100 q^{26} + 16 q^{27} + 36 q^{31} + 152 q^{33} + 80 q^{34} - 216 q^{36} + 88 q^{37} + 160 q^{38} - 280 q^{42}+ \cdots - 184 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.15955i 1.57977i 0.613253 + 0.789887i \(0.289861\pi\)
−0.613253 + 0.789887i \(0.710139\pi\)
\(3\) 3.03112 1.01037 0.505187 0.863010i \(-0.331424\pi\)
0.505187 + 0.863010i \(0.331424\pi\)
\(4\) −5.98274 −1.49568
\(5\) 0 0
\(6\) 9.57697i 1.59616i
\(7\) 5.67155i 0.810221i 0.914268 + 0.405111i \(0.132767\pi\)
−0.914268 + 0.405111i \(0.867233\pi\)
\(8\) 6.26455i 0.783069i
\(9\) 0.187686 0.0208540
\(10\) 0 0
\(11\) 10.8573 + 1.76614i 0.987026 + 0.160558i
\(12\) −18.1344 −1.51120
\(13\) 17.2349i 1.32576i 0.748724 + 0.662882i \(0.230667\pi\)
−0.748724 + 0.662882i \(0.769333\pi\)
\(14\) −17.9195 −1.27997
\(15\) 0 0
\(16\) −4.13780 −0.258612
\(17\) 3.43437i 0.202022i −0.994885 0.101011i \(-0.967792\pi\)
0.994885 0.101011i \(-0.0322077\pi\)
\(18\) 0.593004i 0.0329446i
\(19\) 18.5738i 0.977569i −0.872405 0.488784i \(-0.837441\pi\)
0.872405 0.488784i \(-0.162559\pi\)
\(20\) 0 0
\(21\) 17.1911i 0.818626i
\(22\) −5.58019 + 34.3041i −0.253645 + 1.55928i
\(23\) −15.7918 −0.686599 −0.343300 0.939226i \(-0.611545\pi\)
−0.343300 + 0.939226i \(0.611545\pi\)
\(24\) 18.9886i 0.791192i
\(25\) 0 0
\(26\) −54.4546 −2.09441
\(27\) −26.7112 −0.989303
\(28\) 33.9314i 1.21184i
\(29\) 52.6031i 1.81390i 0.421238 + 0.906950i \(0.361596\pi\)
−0.421238 + 0.906950i \(0.638404\pi\)
\(30\) 0 0
\(31\) 27.5484 0.888657 0.444328 0.895864i \(-0.353442\pi\)
0.444328 + 0.895864i \(0.353442\pi\)
\(32\) 38.1318i 1.19162i
\(33\) 32.9097 + 5.35337i 0.997265 + 0.162223i
\(34\) 10.8510 0.319148
\(35\) 0 0
\(36\) −1.12288 −0.0311910
\(37\) 40.1425 1.08493 0.542467 0.840077i \(-0.317490\pi\)
0.542467 + 0.840077i \(0.317490\pi\)
\(38\) 58.6848 1.54434
\(39\) 52.2411i 1.33952i
\(40\) 0 0
\(41\) 74.8398i 1.82536i −0.408675 0.912680i \(-0.634009\pi\)
0.408675 0.912680i \(-0.365991\pi\)
\(42\) −54.3162 −1.29324
\(43\) 9.72983i 0.226275i 0.993579 + 0.113138i \(0.0360901\pi\)
−0.993579 + 0.113138i \(0.963910\pi\)
\(44\) −64.9563 10.5663i −1.47628 0.240144i
\(45\) 0 0
\(46\) 49.8949i 1.08467i
\(47\) −18.2212 −0.387686 −0.193843 0.981033i \(-0.562095\pi\)
−0.193843 + 0.981033i \(0.562095\pi\)
\(48\) −12.5422 −0.261295
\(49\) 16.8335 0.343541
\(50\) 0 0
\(51\) 10.4100i 0.204117i
\(52\) 103.112i 1.98292i
\(53\) 75.2040 1.41894 0.709471 0.704734i \(-0.248934\pi\)
0.709471 + 0.704734i \(0.248934\pi\)
\(54\) 84.3952i 1.56287i
\(55\) 0 0
\(56\) 35.5297 0.634459
\(57\) 56.2994i 0.987709i
\(58\) −166.202 −2.86555
\(59\) 1.75672 0.0297750 0.0148875 0.999889i \(-0.495261\pi\)
0.0148875 + 0.999889i \(0.495261\pi\)
\(60\) 0 0
\(61\) 48.5900i 0.796557i −0.917265 0.398278i \(-0.869608\pi\)
0.917265 0.398278i \(-0.130392\pi\)
\(62\) 87.0404i 1.40388i
\(63\) 1.06447i 0.0168964i
\(64\) 103.928 1.62387
\(65\) 0 0
\(66\) −16.9142 + 103.980i −0.256276 + 1.57545i
\(67\) 35.4901 0.529702 0.264851 0.964289i \(-0.414677\pi\)
0.264851 + 0.964289i \(0.414677\pi\)
\(68\) 20.5469i 0.302161i
\(69\) −47.8668 −0.693721
\(70\) 0 0
\(71\) 110.499 1.55632 0.778159 0.628067i \(-0.216154\pi\)
0.778159 + 0.628067i \(0.216154\pi\)
\(72\) 1.17577i 0.0163301i
\(73\) 50.7154i 0.694732i −0.937730 0.347366i \(-0.887076\pi\)
0.937730 0.347366i \(-0.112924\pi\)
\(74\) 126.832i 1.71395i
\(75\) 0 0
\(76\) 111.122i 1.46213i
\(77\) −10.0167 + 61.5777i −0.130087 + 0.799710i
\(78\) −165.058 −2.11613
\(79\) 12.7481i 0.161368i 0.996740 + 0.0806842i \(0.0257105\pi\)
−0.996740 + 0.0806842i \(0.974289\pi\)
\(80\) 0 0
\(81\) −82.6540 −1.02042
\(82\) 236.460 2.88366
\(83\) 112.062i 1.35015i 0.737749 + 0.675075i \(0.235889\pi\)
−0.737749 + 0.675075i \(0.764111\pi\)
\(84\) 102.850i 1.22441i
\(85\) 0 0
\(86\) −30.7419 −0.357463
\(87\) 159.446i 1.83272i
\(88\) 11.0640 68.0161i 0.125728 0.772910i
\(89\) 66.3600 0.745618 0.372809 0.927908i \(-0.378395\pi\)
0.372809 + 0.927908i \(0.378395\pi\)
\(90\) 0 0
\(91\) −97.7488 −1.07416
\(92\) 94.4781 1.02694
\(93\) 83.5024 0.897875
\(94\) 57.5709i 0.612456i
\(95\) 0 0
\(96\) 115.582i 1.20398i
\(97\) −65.1302 −0.671445 −0.335723 0.941961i \(-0.608980\pi\)
−0.335723 + 0.941961i \(0.608980\pi\)
\(98\) 53.1863i 0.542717i
\(99\) 2.03776 + 0.331479i 0.0205835 + 0.00334828i
\(100\) 0 0
\(101\) 172.019i 1.70316i 0.524229 + 0.851578i \(0.324354\pi\)
−0.524229 + 0.851578i \(0.675646\pi\)
\(102\) 32.8908 0.322459
\(103\) −28.3278 −0.275027 −0.137514 0.990500i \(-0.543911\pi\)
−0.137514 + 0.990500i \(0.543911\pi\)
\(104\) 107.969 1.03816
\(105\) 0 0
\(106\) 237.610i 2.24161i
\(107\) 63.2464i 0.591088i −0.955329 0.295544i \(-0.904499\pi\)
0.955329 0.295544i \(-0.0955009\pi\)
\(108\) 159.806 1.47968
\(109\) 128.641i 1.18020i −0.807331 0.590098i \(-0.799089\pi\)
0.807331 0.590098i \(-0.200911\pi\)
\(110\) 0 0
\(111\) 121.677 1.09619
\(112\) 23.4677i 0.209533i
\(113\) 35.4694 0.313889 0.156944 0.987607i \(-0.449836\pi\)
0.156944 + 0.987607i \(0.449836\pi\)
\(114\) 177.881 1.56036
\(115\) 0 0
\(116\) 314.711i 2.71302i
\(117\) 3.23476i 0.0276475i
\(118\) 5.55045i 0.0470377i
\(119\) 19.4782 0.163682
\(120\) 0 0
\(121\) 114.762 + 38.3509i 0.948442 + 0.316949i
\(122\) 153.522 1.25838
\(123\) 226.848i 1.84430i
\(124\) −164.815 −1.32915
\(125\) 0 0
\(126\) −3.36325 −0.0266925
\(127\) 210.686i 1.65895i −0.558547 0.829473i \(-0.688641\pi\)
0.558547 0.829473i \(-0.311359\pi\)
\(128\) 175.838i 1.37374i
\(129\) 29.4923i 0.228622i
\(130\) 0 0
\(131\) 131.724i 1.00553i 0.864424 + 0.502764i \(0.167684\pi\)
−0.864424 + 0.502764i \(0.832316\pi\)
\(132\) −196.890 32.0278i −1.49159 0.242635i
\(133\) 105.342 0.792047
\(134\) 112.133i 0.836810i
\(135\) 0 0
\(136\) −21.5148 −0.158197
\(137\) −167.934 −1.22580 −0.612898 0.790162i \(-0.709996\pi\)
−0.612898 + 0.790162i \(0.709996\pi\)
\(138\) 151.237i 1.09592i
\(139\) 90.6142i 0.651901i −0.945387 0.325950i \(-0.894316\pi\)
0.945387 0.325950i \(-0.105684\pi\)
\(140\) 0 0
\(141\) −55.2308 −0.391708
\(142\) 349.125i 2.45863i
\(143\) −30.4392 + 187.125i −0.212862 + 1.30856i
\(144\) −0.776608 −0.00539311
\(145\) 0 0
\(146\) 160.238 1.09752
\(147\) 51.0244 0.347105
\(148\) −240.162 −1.62272
\(149\) 72.8977i 0.489246i 0.969618 + 0.244623i \(0.0786642\pi\)
−0.969618 + 0.244623i \(0.921336\pi\)
\(150\) 0 0
\(151\) 237.180i 1.57073i −0.619035 0.785364i \(-0.712476\pi\)
0.619035 0.785364i \(-0.287524\pi\)
\(152\) −116.357 −0.765504
\(153\) 0.644584i 0.00421296i
\(154\) −194.558 31.6483i −1.26336 0.205509i
\(155\) 0 0
\(156\) 312.545i 2.00349i
\(157\) −105.915 −0.674620 −0.337310 0.941394i \(-0.609517\pi\)
−0.337310 + 0.941394i \(0.609517\pi\)
\(158\) −40.2783 −0.254926
\(159\) 227.952 1.43366
\(160\) 0 0
\(161\) 89.5639i 0.556297i
\(162\) 261.149i 1.61203i
\(163\) −143.233 −0.878730 −0.439365 0.898309i \(-0.644797\pi\)
−0.439365 + 0.898309i \(0.644797\pi\)
\(164\) 447.747i 2.73016i
\(165\) 0 0
\(166\) −354.067 −2.13293
\(167\) 35.5974i 0.213158i 0.994304 + 0.106579i \(0.0339897\pi\)
−0.994304 + 0.106579i \(0.966010\pi\)
\(168\) 107.695 0.641041
\(169\) −128.043 −0.757650
\(170\) 0 0
\(171\) 3.48605i 0.0203862i
\(172\) 58.2110i 0.338436i
\(173\) 196.047i 1.13322i −0.823987 0.566609i \(-0.808255\pi\)
0.823987 0.566609i \(-0.191745\pi\)
\(174\) −503.778 −2.89528
\(175\) 0 0
\(176\) −44.9253 7.30791i −0.255257 0.0415222i
\(177\) 5.32484 0.0300838
\(178\) 209.668i 1.17791i
\(179\) −65.1824 −0.364148 −0.182074 0.983285i \(-0.558281\pi\)
−0.182074 + 0.983285i \(0.558281\pi\)
\(180\) 0 0
\(181\) −157.016 −0.867493 −0.433746 0.901035i \(-0.642809\pi\)
−0.433746 + 0.901035i \(0.642809\pi\)
\(182\) 308.842i 1.69693i
\(183\) 147.282i 0.804820i
\(184\) 98.9285i 0.537655i
\(185\) 0 0
\(186\) 263.830i 1.41844i
\(187\) 6.06556 37.2879i 0.0324361 0.199401i
\(188\) 109.013 0.579856
\(189\) 151.494i 0.801554i
\(190\) 0 0
\(191\) 161.967 0.847995 0.423997 0.905663i \(-0.360627\pi\)
0.423997 + 0.905663i \(0.360627\pi\)
\(192\) 315.018 1.64072
\(193\) 0.742915i 0.00384930i −0.999998 0.00192465i \(-0.999387\pi\)
0.999998 0.00192465i \(-0.000612635\pi\)
\(194\) 205.782i 1.06073i
\(195\) 0 0
\(196\) −100.711 −0.513829
\(197\) 43.0945i 0.218754i 0.994000 + 0.109377i \(0.0348855\pi\)
−0.994000 + 0.109377i \(0.965114\pi\)
\(198\) −1.04732 + 6.43841i −0.00528952 + 0.0325172i
\(199\) −201.933 −1.01474 −0.507370 0.861729i \(-0.669382\pi\)
−0.507370 + 0.861729i \(0.669382\pi\)
\(200\) 0 0
\(201\) 107.575 0.535197
\(202\) −543.501 −2.69060
\(203\) −298.341 −1.46966
\(204\) 62.2802i 0.305295i
\(205\) 0 0
\(206\) 89.5031i 0.434481i
\(207\) −2.96390 −0.0143184
\(208\) 71.3147i 0.342859i
\(209\) 32.8038 201.661i 0.156956 0.964886i
\(210\) 0 0
\(211\) 53.4705i 0.253415i −0.991940 0.126707i \(-0.959559\pi\)
0.991940 0.126707i \(-0.0404409\pi\)
\(212\) −449.926 −2.12229
\(213\) 334.934 1.57246
\(214\) 199.830 0.933785
\(215\) 0 0
\(216\) 167.334i 0.774693i
\(217\) 156.242i 0.720009i
\(218\) 406.449 1.86444
\(219\) 153.725i 0.701939i
\(220\) 0 0
\(221\) 59.1911 0.267833
\(222\) 384.444i 1.73173i
\(223\) 282.600 1.26726 0.633632 0.773635i \(-0.281563\pi\)
0.633632 + 0.773635i \(0.281563\pi\)
\(224\) 216.266 0.965475
\(225\) 0 0
\(226\) 112.067i 0.495873i
\(227\) 111.251i 0.490092i 0.969511 + 0.245046i \(0.0788031\pi\)
−0.969511 + 0.245046i \(0.921197\pi\)
\(228\) 336.825i 1.47730i
\(229\) −53.3814 −0.233107 −0.116553 0.993184i \(-0.537185\pi\)
−0.116553 + 0.993184i \(0.537185\pi\)
\(230\) 0 0
\(231\) −30.3619 + 186.649i −0.131437 + 0.808006i
\(232\) 329.535 1.42041
\(233\) 42.7082i 0.183297i 0.995791 + 0.0916485i \(0.0292136\pi\)
−0.995791 + 0.0916485i \(0.970786\pi\)
\(234\) −10.2204 −0.0436768
\(235\) 0 0
\(236\) −10.5100 −0.0445340
\(237\) 38.6411i 0.163042i
\(238\) 61.5423i 0.258581i
\(239\) 216.974i 0.907840i −0.891042 0.453920i \(-0.850025\pi\)
0.891042 0.453920i \(-0.149975\pi\)
\(240\) 0 0
\(241\) 155.081i 0.643488i 0.946827 + 0.321744i \(0.104269\pi\)
−0.946827 + 0.321744i \(0.895731\pi\)
\(242\) −121.171 + 362.594i −0.500708 + 1.49832i
\(243\) −10.1334 −0.0417013
\(244\) 290.701i 1.19140i
\(245\) 0 0
\(246\) 716.738 2.91357
\(247\) 320.118 1.29603
\(248\) 172.578i 0.695880i
\(249\) 339.675i 1.36416i
\(250\) 0 0
\(251\) −116.539 −0.464300 −0.232150 0.972680i \(-0.574576\pi\)
−0.232150 + 0.972680i \(0.574576\pi\)
\(252\) 6.36846i 0.0252717i
\(253\) −171.456 27.8904i −0.677692 0.110239i
\(254\) 665.673 2.62076
\(255\) 0 0
\(256\) −139.857 −0.546317
\(257\) 85.7024 0.333472 0.166736 0.986002i \(-0.446677\pi\)
0.166736 + 0.986002i \(0.446677\pi\)
\(258\) −93.1822 −0.361171
\(259\) 227.670i 0.879037i
\(260\) 0 0
\(261\) 9.87288i 0.0378271i
\(262\) −416.189 −1.58851
\(263\) 398.864i 1.51659i −0.651911 0.758296i \(-0.726032\pi\)
0.651911 0.758296i \(-0.273968\pi\)
\(264\) 33.5365 206.165i 0.127032 0.780928i
\(265\) 0 0
\(266\) 332.834i 1.25125i
\(267\) 201.145 0.753353
\(268\) −212.328 −0.792268
\(269\) −237.209 −0.881819 −0.440910 0.897552i \(-0.645344\pi\)
−0.440910 + 0.897552i \(0.645344\pi\)
\(270\) 0 0
\(271\) 34.0378i 0.125601i 0.998026 + 0.0628003i \(0.0200031\pi\)
−0.998026 + 0.0628003i \(0.979997\pi\)
\(272\) 14.2107i 0.0522453i
\(273\) −296.288 −1.08530
\(274\) 530.595i 1.93648i
\(275\) 0 0
\(276\) 286.374 1.03759
\(277\) 202.654i 0.731604i −0.930693 0.365802i \(-0.880795\pi\)
0.930693 0.365802i \(-0.119205\pi\)
\(278\) 286.300 1.02986
\(279\) 5.17045 0.0185321
\(280\) 0 0
\(281\) 100.966i 0.359311i 0.983730 + 0.179655i \(0.0574982\pi\)
−0.983730 + 0.179655i \(0.942502\pi\)
\(282\) 174.504i 0.618809i
\(283\) 162.113i 0.572836i −0.958105 0.286418i \(-0.907535\pi\)
0.958105 0.286418i \(-0.0924646\pi\)
\(284\) −661.084 −2.32776
\(285\) 0 0
\(286\) −591.229 96.1741i −2.06723 0.336273i
\(287\) 424.458 1.47895
\(288\) 7.15681i 0.0248500i
\(289\) 277.205 0.959187
\(290\) 0 0
\(291\) −197.417 −0.678410
\(292\) 303.417i 1.03910i
\(293\) 372.772i 1.27226i 0.771582 + 0.636130i \(0.219466\pi\)
−0.771582 + 0.636130i \(0.780534\pi\)
\(294\) 161.214i 0.548347i
\(295\) 0 0
\(296\) 251.475i 0.849578i
\(297\) −290.011 47.1756i −0.976468 0.158840i
\(298\) −230.324 −0.772898
\(299\) 272.170i 0.910268i
\(300\) 0 0
\(301\) −55.1832 −0.183333
\(302\) 749.381 2.48139
\(303\) 521.409i 1.72082i
\(304\) 76.8547i 0.252811i
\(305\) 0 0
\(306\) 2.03659 0.00665553
\(307\) 445.994i 1.45275i −0.687300 0.726374i \(-0.741204\pi\)
0.687300 0.726374i \(-0.258796\pi\)
\(308\) 59.9274 368.403i 0.194570 1.19611i
\(309\) −85.8650 −0.277880
\(310\) 0 0
\(311\) −249.222 −0.801357 −0.400679 0.916219i \(-0.631226\pi\)
−0.400679 + 0.916219i \(0.631226\pi\)
\(312\) 327.267 1.04893
\(313\) −463.222 −1.47994 −0.739971 0.672638i \(-0.765161\pi\)
−0.739971 + 0.672638i \(0.765161\pi\)
\(314\) 334.644i 1.06575i
\(315\) 0 0
\(316\) 76.2686i 0.241356i
\(317\) −167.548 −0.528542 −0.264271 0.964448i \(-0.585131\pi\)
−0.264271 + 0.964448i \(0.585131\pi\)
\(318\) 720.226i 2.26486i
\(319\) −92.9042 + 571.127i −0.291236 + 1.79037i
\(320\) 0 0
\(321\) 191.707i 0.597220i
\(322\) 282.981 0.878824
\(323\) −63.7893 −0.197490
\(324\) 494.497 1.52623
\(325\) 0 0
\(326\) 452.551i 1.38819i
\(327\) 389.928i 1.19244i
\(328\) −468.838 −1.42938
\(329\) 103.343i 0.314112i
\(330\) 0 0
\(331\) 8.98005 0.0271301 0.0135650 0.999908i \(-0.495682\pi\)
0.0135650 + 0.999908i \(0.495682\pi\)
\(332\) 670.440i 2.01940i
\(333\) 7.53420 0.0226252
\(334\) −112.472 −0.336742
\(335\) 0 0
\(336\) 71.1335i 0.211707i
\(337\) 263.901i 0.783090i 0.920159 + 0.391545i \(0.128059\pi\)
−0.920159 + 0.391545i \(0.871941\pi\)
\(338\) 404.557i 1.19692i
\(339\) 107.512 0.317145
\(340\) 0 0
\(341\) 299.101 + 48.6541i 0.877128 + 0.142681i
\(342\) 11.0143 0.0322056
\(343\) 373.378i 1.08857i
\(344\) 60.9530 0.177189
\(345\) 0 0
\(346\) 619.419 1.79023
\(347\) 611.749i 1.76297i 0.472216 + 0.881483i \(0.343454\pi\)
−0.472216 + 0.881483i \(0.656546\pi\)
\(348\) 953.925i 2.74117i
\(349\) 282.223i 0.808662i 0.914613 + 0.404331i \(0.132496\pi\)
−0.914613 + 0.404331i \(0.867504\pi\)
\(350\) 0 0
\(351\) 460.365i 1.31158i
\(352\) 67.3459 414.008i 0.191324 1.17616i
\(353\) 173.629 0.491868 0.245934 0.969287i \(-0.420905\pi\)
0.245934 + 0.969287i \(0.420905\pi\)
\(354\) 16.8241i 0.0475256i
\(355\) 0 0
\(356\) −397.015 −1.11521
\(357\) 59.0407 0.165380
\(358\) 205.947i 0.575271i
\(359\) 285.384i 0.794941i 0.917615 + 0.397471i \(0.130112\pi\)
−0.917615 + 0.397471i \(0.869888\pi\)
\(360\) 0 0
\(361\) 16.0139 0.0443597
\(362\) 496.100i 1.37044i
\(363\) 347.856 + 116.246i 0.958281 + 0.320237i
\(364\) 584.805 1.60661
\(365\) 0 0
\(366\) 465.344 1.27143
\(367\) 324.275 0.883582 0.441791 0.897118i \(-0.354343\pi\)
0.441791 + 0.897118i \(0.354343\pi\)
\(368\) 65.3432 0.177563
\(369\) 14.0464i 0.0380661i
\(370\) 0 0
\(371\) 426.523i 1.14966i
\(372\) −499.573 −1.34294
\(373\) 128.367i 0.344148i −0.985084 0.172074i \(-0.944953\pi\)
0.985084 0.172074i \(-0.0550469\pi\)
\(374\) 117.813 + 19.1644i 0.315008 + 0.0512418i
\(375\) 0 0
\(376\) 114.148i 0.303585i
\(377\) −906.611 −2.40480
\(378\) 478.652 1.26627
\(379\) 684.510 1.80610 0.903048 0.429540i \(-0.141324\pi\)
0.903048 + 0.429540i \(0.141324\pi\)
\(380\) 0 0
\(381\) 638.615i 1.67615i
\(382\) 511.742i 1.33964i
\(383\) −338.766 −0.884506 −0.442253 0.896890i \(-0.645821\pi\)
−0.442253 + 0.896890i \(0.645821\pi\)
\(384\) 532.987i 1.38799i
\(385\) 0 0
\(386\) 2.34727 0.00608102
\(387\) 1.82616i 0.00471875i
\(388\) 389.657 1.00427
\(389\) −552.950 −1.42146 −0.710732 0.703463i \(-0.751636\pi\)
−0.710732 + 0.703463i \(0.751636\pi\)
\(390\) 0 0
\(391\) 54.2348i 0.138708i
\(392\) 105.454i 0.269017i
\(393\) 399.272i 1.01596i
\(394\) −136.159 −0.345581
\(395\) 0 0
\(396\) −12.1914 1.98315i −0.0307864 0.00500796i
\(397\) −111.881 −0.281815 −0.140908 0.990023i \(-0.545002\pi\)
−0.140908 + 0.990023i \(0.545002\pi\)
\(398\) 638.017i 1.60306i
\(399\) 319.305 0.800263
\(400\) 0 0
\(401\) −284.972 −0.710654 −0.355327 0.934742i \(-0.615630\pi\)
−0.355327 + 0.934742i \(0.615630\pi\)
\(402\) 339.887i 0.845490i
\(403\) 474.794i 1.17815i
\(404\) 1029.14i 2.54738i
\(405\) 0 0
\(406\) 942.623i 2.32173i
\(407\) 435.839 + 70.8972i 1.07086 + 0.174195i
\(408\) −65.2139 −0.159838
\(409\) 122.119i 0.298580i −0.988793 0.149290i \(-0.952301\pi\)
0.988793 0.149290i \(-0.0476989\pi\)
\(410\) 0 0
\(411\) −509.028 −1.23851
\(412\) 169.478 0.411354
\(413\) 9.96334i 0.0241243i
\(414\) 9.36458i 0.0226198i
\(415\) 0 0
\(416\) 657.199 1.57980
\(417\) 274.663i 0.658663i
\(418\) 637.158 + 103.645i 1.52430 + 0.247955i
\(419\) 407.625 0.972852 0.486426 0.873722i \(-0.338300\pi\)
0.486426 + 0.873722i \(0.338300\pi\)
\(420\) 0 0
\(421\) −348.212 −0.827107 −0.413554 0.910480i \(-0.635713\pi\)
−0.413554 + 0.910480i \(0.635713\pi\)
\(422\) 168.943 0.400338
\(423\) −3.41988 −0.00808481
\(424\) 471.119i 1.11113i
\(425\) 0 0
\(426\) 1058.24i 2.48413i
\(427\) 275.580 0.645387
\(428\) 378.387i 0.884081i
\(429\) −92.2649 + 567.197i −0.215070 + 1.32214i
\(430\) 0 0
\(431\) 453.606i 1.05245i 0.850346 + 0.526225i \(0.176393\pi\)
−0.850346 + 0.526225i \(0.823607\pi\)
\(432\) 110.525 0.255846
\(433\) −760.149 −1.75554 −0.877771 0.479081i \(-0.840970\pi\)
−0.877771 + 0.479081i \(0.840970\pi\)
\(434\) −493.654 −1.13745
\(435\) 0 0
\(436\) 769.628i 1.76520i
\(437\) 293.313i 0.671198i
\(438\) 485.700 1.10890
\(439\) 343.308i 0.782023i −0.920386 0.391011i \(-0.872125\pi\)
0.920386 0.391011i \(-0.127875\pi\)
\(440\) 0 0
\(441\) 3.15942 0.00716422
\(442\) 187.017i 0.423115i
\(443\) −47.4703 −0.107156 −0.0535782 0.998564i \(-0.517063\pi\)
−0.0535782 + 0.998564i \(0.517063\pi\)
\(444\) −727.961 −1.63955
\(445\) 0 0
\(446\) 892.887i 2.00199i
\(447\) 220.962i 0.494321i
\(448\) 589.433i 1.31570i
\(449\) −339.087 −0.755205 −0.377602 0.925968i \(-0.623251\pi\)
−0.377602 + 0.925968i \(0.623251\pi\)
\(450\) 0 0
\(451\) 132.177 812.557i 0.293076 1.80168i
\(452\) −212.204 −0.469478
\(453\) 718.921i 1.58702i
\(454\) −351.503 −0.774235
\(455\) 0 0
\(456\) −352.691 −0.773445
\(457\) 276.791i 0.605669i −0.953043 0.302835i \(-0.902067\pi\)
0.953043 0.302835i \(-0.0979330\pi\)
\(458\) 168.661i 0.368256i
\(459\) 91.7360i 0.199861i
\(460\) 0 0
\(461\) 156.898i 0.340342i 0.985415 + 0.170171i \(0.0544321\pi\)
−0.985415 + 0.170171i \(0.945568\pi\)
\(462\) −589.727 95.9298i −1.27647 0.207640i
\(463\) −407.669 −0.880494 −0.440247 0.897877i \(-0.645109\pi\)
−0.440247 + 0.897877i \(0.645109\pi\)
\(464\) 217.661i 0.469097i
\(465\) 0 0
\(466\) −134.939 −0.289568
\(467\) −749.076 −1.60402 −0.802008 0.597313i \(-0.796235\pi\)
−0.802008 + 0.597313i \(0.796235\pi\)
\(468\) 19.3527i 0.0413520i
\(469\) 201.284i 0.429176i
\(470\) 0 0
\(471\) −321.042 −0.681618
\(472\) 11.0051i 0.0233159i
\(473\) −17.1842 + 105.640i −0.0363302 + 0.223340i
\(474\) −122.088 −0.257570
\(475\) 0 0
\(476\) −116.533 −0.244817
\(477\) 14.1147 0.0295907
\(478\) 685.539 1.43418
\(479\) 11.2596i 0.0235064i −0.999931 0.0117532i \(-0.996259\pi\)
0.999931 0.0117532i \(-0.00374124\pi\)
\(480\) 0 0
\(481\) 691.854i 1.43837i
\(482\) −489.984 −1.01657
\(483\) 271.479i 0.562068i
\(484\) −686.588 229.443i −1.41857 0.474056i
\(485\) 0 0
\(486\) 32.0170i 0.0658786i
\(487\) 734.846 1.50892 0.754462 0.656344i \(-0.227898\pi\)
0.754462 + 0.656344i \(0.227898\pi\)
\(488\) −304.394 −0.623759
\(489\) −434.156 −0.887845
\(490\) 0 0
\(491\) 347.360i 0.707455i 0.935349 + 0.353727i \(0.115086\pi\)
−0.935349 + 0.353727i \(0.884914\pi\)
\(492\) 1357.17i 2.75848i
\(493\) 180.658 0.366447
\(494\) 1011.43i 2.04743i
\(495\) 0 0
\(496\) −113.990 −0.229818
\(497\) 626.698i 1.26096i
\(498\) −1073.22 −2.15506
\(499\) 875.439 1.75439 0.877193 0.480138i \(-0.159413\pi\)
0.877193 + 0.480138i \(0.159413\pi\)
\(500\) 0 0
\(501\) 107.900i 0.215369i
\(502\) 368.211i 0.733488i
\(503\) 505.554i 1.00508i −0.864554 0.502539i \(-0.832399\pi\)
0.864554 0.502539i \(-0.167601\pi\)
\(504\) 6.66844 0.0132310
\(505\) 0 0
\(506\) 88.1211 541.723i 0.174152 1.07060i
\(507\) −388.113 −0.765509
\(508\) 1260.48i 2.48126i
\(509\) −778.269 −1.52902 −0.764508 0.644614i \(-0.777018\pi\)
−0.764508 + 0.644614i \(0.777018\pi\)
\(510\) 0 0
\(511\) 287.635 0.562887
\(512\) 261.468i 0.510679i
\(513\) 496.128i 0.967111i
\(514\) 270.781i 0.526811i
\(515\) 0 0
\(516\) 176.445i 0.341947i
\(517\) −197.833 32.1812i −0.382656 0.0622460i
\(518\) −719.336 −1.38868
\(519\) 594.241i 1.14497i
\(520\) 0 0
\(521\) −273.723 −0.525380 −0.262690 0.964880i \(-0.584610\pi\)
−0.262690 + 0.964880i \(0.584610\pi\)
\(522\) −31.1938 −0.0597583
\(523\) 628.316i 1.20137i −0.799486 0.600685i \(-0.794895\pi\)
0.799486 0.600685i \(-0.205105\pi\)
\(524\) 788.071i 1.50395i
\(525\) 0 0
\(526\) 1260.23 2.39587
\(527\) 94.6112i 0.179528i
\(528\) −136.174 22.1512i −0.257905 0.0419529i
\(529\) −279.620 −0.528582
\(530\) 0 0
\(531\) 0.329713 0.000620928
\(532\) −630.235 −1.18465
\(533\) 1289.86 2.42000
\(534\) 635.528i 1.19013i
\(535\) 0 0
\(536\) 222.329i 0.414794i
\(537\) −197.576 −0.367925
\(538\) 749.474i 1.39307i
\(539\) 182.766 + 29.7303i 0.339084 + 0.0551582i
\(540\) 0 0
\(541\) 543.648i 1.00490i −0.864608 0.502448i \(-0.832433\pi\)
0.864608 0.502448i \(-0.167567\pi\)
\(542\) −107.544 −0.198421
\(543\) −475.935 −0.876492
\(544\) −130.959 −0.240733
\(545\) 0 0
\(546\) 936.137i 1.71454i
\(547\) 421.038i 0.769722i 0.922975 + 0.384861i \(0.125751\pi\)
−0.922975 + 0.384861i \(0.874249\pi\)
\(548\) 1004.71 1.83340
\(549\) 9.11967i 0.0166114i
\(550\) 0 0
\(551\) 977.040 1.77321
\(552\) 299.864i 0.543232i
\(553\) −72.3016 −0.130744
\(554\) 640.296 1.15577
\(555\) 0 0
\(556\) 542.121i 0.975038i
\(557\) 940.508i 1.68852i −0.535930 0.844262i \(-0.680039\pi\)
0.535930 0.844262i \(-0.319961\pi\)
\(558\) 16.3363i 0.0292765i
\(559\) −167.693 −0.299987
\(560\) 0 0
\(561\) 18.3854 113.024i 0.0327726 0.201469i
\(562\) −319.008 −0.567629
\(563\) 285.806i 0.507649i 0.967250 + 0.253824i \(0.0816885\pi\)
−0.967250 + 0.253824i \(0.918312\pi\)
\(564\) 330.431 0.585871
\(565\) 0 0
\(566\) 512.203 0.904952
\(567\) 468.776i 0.826765i
\(568\) 692.224i 1.21870i
\(569\) 307.137i 0.539783i −0.962891 0.269892i \(-0.913012\pi\)
0.962891 0.269892i \(-0.0869879\pi\)
\(570\) 0 0
\(571\) 390.713i 0.684261i 0.939652 + 0.342130i \(0.111148\pi\)
−0.939652 + 0.342130i \(0.888852\pi\)
\(572\) 182.110 1119.52i 0.318374 1.95720i
\(573\) 490.941 0.856791
\(574\) 1341.09i 2.33640i
\(575\) 0 0
\(576\) 19.5059 0.0338643
\(577\) 119.491 0.207090 0.103545 0.994625i \(-0.466981\pi\)
0.103545 + 0.994625i \(0.466981\pi\)
\(578\) 875.843i 1.51530i
\(579\) 2.25186i 0.00388923i
\(580\) 0 0
\(581\) −635.568 −1.09392
\(582\) 623.749i 1.07173i
\(583\) 816.511 + 132.820i 1.40053 + 0.227822i
\(584\) −317.710 −0.544023
\(585\) 0 0
\(586\) −1177.79 −2.00988
\(587\) 340.259 0.579658 0.289829 0.957078i \(-0.406402\pi\)
0.289829 + 0.957078i \(0.406402\pi\)
\(588\) −305.266 −0.519159
\(589\) 511.678i 0.868723i
\(590\) 0 0
\(591\) 130.625i 0.221023i
\(592\) −166.102 −0.280577
\(593\) 752.004i 1.26813i −0.773278 0.634067i \(-0.781384\pi\)
0.773278 0.634067i \(-0.218616\pi\)
\(594\) 149.053 916.303i 0.250932 1.54260i
\(595\) 0 0
\(596\) 436.128i 0.731758i
\(597\) −612.083 −1.02527
\(598\) 859.935 1.43802
\(599\) 274.841 0.458833 0.229416 0.973328i \(-0.426318\pi\)
0.229416 + 0.973328i \(0.426318\pi\)
\(600\) 0 0
\(601\) 397.025i 0.660608i −0.943875 0.330304i \(-0.892849\pi\)
0.943875 0.330304i \(-0.107151\pi\)
\(602\) 174.354i 0.289625i
\(603\) 6.66100 0.0110464
\(604\) 1418.98i 2.34931i
\(605\) 0 0
\(606\) −1647.42 −2.71851
\(607\) 351.597i 0.579238i 0.957142 + 0.289619i \(0.0935286\pi\)
−0.957142 + 0.289619i \(0.906471\pi\)
\(608\) −708.252 −1.16489
\(609\) −904.308 −1.48491
\(610\) 0 0
\(611\) 314.042i 0.513980i
\(612\) 3.85637i 0.00630127i
\(613\) 547.965i 0.893907i 0.894557 + 0.446953i \(0.147491\pi\)
−0.894557 + 0.446953i \(0.852509\pi\)
\(614\) 1409.14 2.29501
\(615\) 0 0
\(616\) 385.757 + 62.7503i 0.626228 + 0.101867i
\(617\) 1124.68 1.82282 0.911408 0.411505i \(-0.134997\pi\)
0.911408 + 0.411505i \(0.134997\pi\)
\(618\) 271.295i 0.438988i
\(619\) 82.7193 0.133634 0.0668169 0.997765i \(-0.478716\pi\)
0.0668169 + 0.997765i \(0.478716\pi\)
\(620\) 0 0
\(621\) 421.817 0.679254
\(622\) 787.429i 1.26596i
\(623\) 376.364i 0.604116i
\(624\) 216.163i 0.346416i
\(625\) 0 0
\(626\) 1463.57i 2.33797i
\(627\) 99.4324 611.259i 0.158584 0.974895i
\(628\) 633.663 1.00902
\(629\) 137.864i 0.219180i
\(630\) 0 0
\(631\) 317.879 0.503771 0.251885 0.967757i \(-0.418949\pi\)
0.251885 + 0.967757i \(0.418949\pi\)
\(632\) 79.8612 0.126363
\(633\) 162.076i 0.256043i
\(634\) 529.375i 0.834976i
\(635\) 0 0
\(636\) −1363.78 −2.14431
\(637\) 290.125i 0.455454i
\(638\) −1804.50 293.535i −2.82838 0.460086i
\(639\) 20.7391 0.0324555
\(640\) 0 0
\(641\) 432.182 0.674230 0.337115 0.941463i \(-0.390549\pi\)
0.337115 + 0.941463i \(0.390549\pi\)
\(642\) 605.709 0.943472
\(643\) −229.511 −0.356937 −0.178469 0.983946i \(-0.557114\pi\)
−0.178469 + 0.983946i \(0.557114\pi\)
\(644\) 535.837i 0.832045i
\(645\) 0 0
\(646\) 201.545i 0.311989i
\(647\) 768.342 1.18755 0.593773 0.804633i \(-0.297638\pi\)
0.593773 + 0.804633i \(0.297638\pi\)
\(648\) 517.790i 0.799059i
\(649\) 19.0733 + 3.10261i 0.0293887 + 0.00478060i
\(650\) 0 0
\(651\) 473.588i 0.727478i
\(652\) 856.926 1.31430
\(653\) −624.977 −0.957085 −0.478543 0.878064i \(-0.658835\pi\)
−0.478543 + 0.878064i \(0.658835\pi\)
\(654\) 1231.99 1.88378
\(655\) 0 0
\(656\) 309.672i 0.472061i
\(657\) 9.51859i 0.0144880i
\(658\) 326.516 0.496225
\(659\) 1104.04i 1.67533i −0.546185 0.837665i \(-0.683920\pi\)
0.546185 0.837665i \(-0.316080\pi\)
\(660\) 0 0
\(661\) 246.985 0.373653 0.186827 0.982393i \(-0.440180\pi\)
0.186827 + 0.982393i \(0.440180\pi\)
\(662\) 28.3729i 0.0428594i
\(663\) 179.415 0.270611
\(664\) 702.021 1.05726
\(665\) 0 0
\(666\) 23.8047i 0.0357427i
\(667\) 830.697i 1.24542i
\(668\) 212.970i 0.318817i
\(669\) 856.594 1.28041
\(670\) 0 0
\(671\) 85.8165 527.555i 0.127893 0.786223i
\(672\) 655.529 0.975490
\(673\) 715.709i 1.06346i −0.846914 0.531730i \(-0.821542\pi\)
0.846914 0.531730i \(-0.178458\pi\)
\(674\) −833.808 −1.23710
\(675\) 0 0
\(676\) 766.047 1.13321
\(677\) 946.798i 1.39852i 0.714867 + 0.699260i \(0.246487\pi\)
−0.714867 + 0.699260i \(0.753513\pi\)
\(678\) 339.689i 0.501017i
\(679\) 369.389i 0.544019i
\(680\) 0 0
\(681\) 337.215i 0.495176i
\(682\) −153.725 + 945.023i −0.225403 + 1.38566i
\(683\) −67.4542 −0.0987616 −0.0493808 0.998780i \(-0.515725\pi\)
−0.0493808 + 0.998780i \(0.515725\pi\)
\(684\) 20.8561i 0.0304914i
\(685\) 0 0
\(686\) −1179.71 −1.71969
\(687\) −161.805 −0.235525
\(688\) 40.2601i 0.0585176i
\(689\) 1296.13i 1.88118i
\(690\) 0 0
\(691\) −396.379 −0.573632 −0.286816 0.957986i \(-0.592597\pi\)
−0.286816 + 0.957986i \(0.592597\pi\)
\(692\) 1172.90i 1.69494i
\(693\) −1.88000 + 11.5573i −0.00271284 + 0.0166772i
\(694\) −1932.85 −2.78509
\(695\) 0 0
\(696\) 998.860 1.43514
\(697\) −257.027 −0.368762
\(698\) −891.697 −1.27750
\(699\) 129.454i 0.185198i
\(700\) 0 0
\(701\) 884.194i 1.26133i 0.776054 + 0.630666i \(0.217218\pi\)
−0.776054 + 0.630666i \(0.782782\pi\)
\(702\) 1454.55 2.07200
\(703\) 745.600i 1.06060i
\(704\) 1128.38 + 183.551i 1.60281 + 0.260726i
\(705\) 0 0
\(706\) 548.590i 0.777040i
\(707\) −975.613 −1.37993
\(708\) −31.8571 −0.0449959
\(709\) −902.302 −1.27264 −0.636320 0.771425i \(-0.719544\pi\)
−0.636320 + 0.771425i \(0.719544\pi\)
\(710\) 0 0
\(711\) 2.39265i 0.00336518i
\(712\) 415.716i 0.583871i
\(713\) −435.038 −0.610151
\(714\) 186.542i 0.261263i
\(715\) 0 0
\(716\) 389.969 0.544650
\(717\) 657.673i 0.917257i
\(718\) −901.684 −1.25583
\(719\) 1021.01 1.42004 0.710021 0.704180i \(-0.248685\pi\)
0.710021 + 0.704180i \(0.248685\pi\)
\(720\) 0 0
\(721\) 160.663i 0.222833i
\(722\) 50.5966i 0.0700784i
\(723\) 470.068i 0.650163i
\(724\) 939.387 1.29750
\(725\) 0 0
\(726\) −367.285 + 1099.07i −0.505902 + 1.51387i
\(727\) −637.169 −0.876436 −0.438218 0.898869i \(-0.644390\pi\)
−0.438218 + 0.898869i \(0.644390\pi\)
\(728\) 612.352i 0.841143i
\(729\) 713.170 0.978285
\(730\) 0 0
\(731\) 33.4158 0.0457125
\(732\) 881.150i 1.20376i
\(733\) 261.937i 0.357349i 0.983908 + 0.178674i \(0.0571809\pi\)
−0.983908 + 0.178674i \(0.942819\pi\)
\(734\) 1024.56i 1.39586i
\(735\) 0 0
\(736\) 602.169i 0.818164i
\(737\) 385.326 + 62.6803i 0.522830 + 0.0850478i
\(738\) 44.3802 0.0601358
\(739\) 734.865i 0.994404i 0.867635 + 0.497202i \(0.165639\pi\)
−0.867635 + 0.497202i \(0.834361\pi\)
\(740\) 0 0
\(741\) 970.317 1.30947
\(742\) −1347.62 −1.81620
\(743\) 161.161i 0.216905i 0.994102 + 0.108453i \(0.0345896\pi\)
−0.994102 + 0.108453i \(0.965410\pi\)
\(744\) 523.105i 0.703098i
\(745\) 0 0
\(746\) 405.583 0.543676
\(747\) 21.0326i 0.0281561i
\(748\) −36.2886 + 223.084i −0.0485142 + 0.298241i
\(749\) 358.705 0.478912
\(750\) 0 0
\(751\) 1141.77 1.52033 0.760167 0.649728i \(-0.225117\pi\)
0.760167 + 0.649728i \(0.225117\pi\)
\(752\) 75.3958 0.100260
\(753\) −353.244 −0.469116
\(754\) 2864.48i 3.79904i
\(755\) 0 0
\(756\) 906.348i 1.19887i
\(757\) −119.677 −0.158094 −0.0790469 0.996871i \(-0.525188\pi\)
−0.0790469 + 0.996871i \(0.525188\pi\)
\(758\) 2162.74i 2.85322i
\(759\) −519.704 84.5392i −0.684721 0.111382i
\(760\) 0 0
\(761\) 157.280i 0.206676i 0.994646 + 0.103338i \(0.0329523\pi\)
−0.994646 + 0.103338i \(0.967048\pi\)
\(762\) 2017.73 2.64794
\(763\) 729.596 0.956221
\(764\) −969.006 −1.26833
\(765\) 0 0
\(766\) 1070.35i 1.39732i
\(767\) 30.2770i 0.0394746i
\(768\) −423.924 −0.551984
\(769\) 1498.58i 1.94874i −0.224947 0.974371i \(-0.572221\pi\)
0.224947 0.974371i \(-0.427779\pi\)
\(770\) 0 0
\(771\) 259.774 0.336931
\(772\) 4.44466i 0.00575734i
\(773\) 1528.87 1.97784 0.988920 0.148450i \(-0.0474283\pi\)
0.988920 + 0.148450i \(0.0474283\pi\)
\(774\) −5.76982 −0.00745455
\(775\) 0 0
\(776\) 408.012i 0.525788i
\(777\) 690.096i 0.888155i
\(778\) 1747.07i 2.24559i
\(779\) −1390.06 −1.78441
\(780\) 0 0
\(781\) 1199.72 + 195.155i 1.53613 + 0.249879i
\(782\) −171.357 −0.219127
\(783\) 1405.09i 1.79450i
\(784\) −69.6537 −0.0888440
\(785\) 0 0
\(786\) −1261.52 −1.60498
\(787\) 930.613i 1.18248i 0.806495 + 0.591241i \(0.201362\pi\)
−0.806495 + 0.591241i \(0.798638\pi\)
\(788\) 257.823i 0.327187i
\(789\) 1209.00i 1.53232i
\(790\) 0 0
\(791\) 201.167i 0.254319i
\(792\) 2.07657 12.7657i 0.00262193 0.0161183i
\(793\) 837.445 1.05605
\(794\) 353.492i 0.445204i
\(795\) 0 0
\(796\) 1208.11 1.51773
\(797\) 332.628 0.417350 0.208675 0.977985i \(-0.433085\pi\)
0.208675 + 0.977985i \(0.433085\pi\)
\(798\) 1008.86i 1.26423i
\(799\) 62.5784i 0.0783210i
\(800\) 0 0
\(801\) 12.4549 0.0155491
\(802\) 900.383i 1.12267i
\(803\) 89.5703 550.632i 0.111545 0.685719i
\(804\) −643.591 −0.800486
\(805\) 0 0
\(806\) −1500.13 −1.86121
\(807\) −719.010 −0.890966
\(808\) 1077.62 1.33369
\(809\) 870.764i 1.07635i 0.842834 + 0.538173i \(0.180885\pi\)
−0.842834 + 0.538173i \(0.819115\pi\)
\(810\) 0 0
\(811\) 1369.14i 1.68821i −0.536180 0.844103i \(-0.680133\pi\)
0.536180 0.844103i \(-0.319867\pi\)
\(812\) 1784.90 2.19815
\(813\) 103.173i 0.126904i
\(814\) −224.003 + 1377.05i −0.275188 + 1.69171i
\(815\) 0 0
\(816\) 43.0744i 0.0527873i
\(817\) 180.720 0.221199
\(818\) 385.842 0.471689
\(819\) −18.3461 −0.0224006
\(820\) 0 0
\(821\) 759.486i 0.925075i 0.886600 + 0.462537i \(0.153061\pi\)
−0.886600 + 0.462537i \(0.846939\pi\)
\(822\) 1608.30i 1.95657i
\(823\) −252.673 −0.307015 −0.153507 0.988148i \(-0.549057\pi\)
−0.153507 + 0.988148i \(0.549057\pi\)
\(824\) 177.461i 0.215366i
\(825\) 0 0
\(826\) −31.4797 −0.0381110
\(827\) 172.995i 0.209184i −0.994515 0.104592i \(-0.966646\pi\)
0.994515 0.104592i \(-0.0333536\pi\)
\(828\) 17.7322 0.0214157
\(829\) 1145.40 1.38167 0.690834 0.723013i \(-0.257244\pi\)
0.690834 + 0.723013i \(0.257244\pi\)
\(830\) 0 0
\(831\) 614.270i 0.739193i
\(832\) 1791.19i 2.15287i
\(833\) 57.8125i 0.0694027i
\(834\) 867.809 1.04054
\(835\) 0 0
\(836\) −196.257 + 1206.49i −0.234757 + 1.44317i
\(837\) −735.849 −0.879151
\(838\) 1287.91i 1.53689i
\(839\) −41.7126 −0.0497170 −0.0248585 0.999691i \(-0.507914\pi\)
−0.0248585 + 0.999691i \(0.507914\pi\)
\(840\) 0 0
\(841\) −1926.09 −2.29023
\(842\) 1100.19i 1.30664i
\(843\) 306.041i 0.363038i
\(844\) 319.900i 0.379029i
\(845\) 0 0
\(846\) 10.8053i 0.0127722i
\(847\) −217.509 + 650.876i −0.256799 + 0.768448i
\(848\) −311.179 −0.366956
\(849\) 491.383i 0.578778i
\(850\) 0 0
\(851\) −633.922 −0.744915
\(852\) −2003.82 −2.35191
\(853\) 725.094i 0.850052i −0.905181 0.425026i \(-0.860265\pi\)
0.905181 0.425026i \(-0.139735\pi\)
\(854\) 870.709i 1.01957i
\(855\) 0 0
\(856\) −396.211 −0.462863
\(857\) 302.221i 0.352650i 0.984332 + 0.176325i \(0.0564210\pi\)
−0.984332 + 0.176325i \(0.943579\pi\)
\(858\) −1792.09 291.515i −2.08868 0.339761i
\(859\) −207.101 −0.241096 −0.120548 0.992708i \(-0.538465\pi\)
−0.120548 + 0.992708i \(0.538465\pi\)
\(860\) 0 0
\(861\) 1286.58 1.49429
\(862\) −1433.19 −1.66263
\(863\) −482.444 −0.559032 −0.279516 0.960141i \(-0.590174\pi\)
−0.279516 + 0.960141i \(0.590174\pi\)
\(864\) 1018.54i 1.17887i
\(865\) 0 0
\(866\) 2401.73i 2.77336i
\(867\) 840.242 0.969137
\(868\) 934.755i 1.07691i
\(869\) −22.5149 + 138.410i −0.0259090 + 0.159275i
\(870\) 0 0
\(871\) 611.669i 0.702260i
\(872\) −805.881 −0.924176
\(873\) −12.2240 −0.0140023
\(874\) −926.738 −1.06034
\(875\) 0 0
\(876\) 919.694i 1.04988i
\(877\) 377.864i 0.430860i −0.976519 0.215430i \(-0.930885\pi\)
0.976519 0.215430i \(-0.0691153\pi\)
\(878\) 1084.70 1.23542
\(879\) 1129.92i 1.28546i
\(880\) 0 0
\(881\) −1459.75 −1.65693 −0.828463 0.560045i \(-0.810784\pi\)
−0.828463 + 0.560045i \(0.810784\pi\)
\(882\) 9.98233i 0.0113178i
\(883\) 353.252 0.400059 0.200029 0.979790i \(-0.435896\pi\)
0.200029 + 0.979790i \(0.435896\pi\)
\(884\) −354.125 −0.400594
\(885\) 0 0
\(886\) 149.985i 0.169283i
\(887\) 174.064i 0.196239i 0.995175 + 0.0981194i \(0.0312827\pi\)
−0.995175 + 0.0981194i \(0.968717\pi\)
\(888\) 762.251i 0.858391i
\(889\) 1194.92 1.34411
\(890\) 0 0
\(891\) −897.398 145.978i −1.00718 0.163836i
\(892\) −1690.72 −1.89543
\(893\) 338.438i 0.378990i
\(894\) −698.138 −0.780915
\(895\) 0 0
\(896\) −997.275 −1.11303
\(897\) 824.981i 0.919711i
\(898\) 1071.36i 1.19305i
\(899\) 1449.13i 1.61193i
\(900\) 0 0
\(901\) 258.278i 0.286657i
\(902\) 2567.31 + 417.620i 2.84624 + 0.462993i
\(903\) −167.267 −0.185235
\(904\) 222.200i 0.245797i
\(905\) 0 0
\(906\) 2271.46 2.50713
\(907\) 1341.78 1.47936 0.739679 0.672960i \(-0.234977\pi\)
0.739679 + 0.672960i \(0.234977\pi\)
\(908\) 665.586i 0.733024i
\(909\) 32.2855i 0.0355176i
\(910\) 0 0
\(911\) 81.8460 0.0898419 0.0449210 0.998991i \(-0.485696\pi\)
0.0449210 + 0.998991i \(0.485696\pi\)
\(912\) 232.956i 0.255434i
\(913\) −197.918 + 1216.70i −0.216777 + 1.33263i
\(914\) 874.534 0.956821
\(915\) 0 0
\(916\) 319.367 0.348654
\(917\) −747.080 −0.814700
\(918\) −289.844 −0.315734
\(919\) 146.259i 0.159150i 0.996829 + 0.0795752i \(0.0253564\pi\)
−0.996829 + 0.0795752i \(0.974644\pi\)
\(920\) 0 0
\(921\) 1351.86i 1.46782i
\(922\) −495.726 −0.537664
\(923\) 1904.44i 2.06331i
\(924\) 181.647 1116.67i 0.196588 1.20852i
\(925\) 0 0
\(926\) 1288.05i 1.39098i
\(927\) −5.31674 −0.00573543
\(928\) 2005.85 2.16148
\(929\) −624.735 −0.672481 −0.336240 0.941776i \(-0.609155\pi\)
−0.336240 + 0.941776i \(0.609155\pi\)
\(930\) 0 0
\(931\) 312.662i 0.335835i
\(932\) 255.512i 0.274154i
\(933\) −755.422 −0.809670
\(934\) 2366.74i 2.53398i
\(935\) 0 0
\(936\) 20.2643 0.0216499
\(937\) 1737.04i 1.85383i −0.375273 0.926915i \(-0.622451\pi\)
0.375273 0.926915i \(-0.377549\pi\)
\(938\) −635.965 −0.678001
\(939\) −1404.08 −1.49529
\(940\) 0 0
\(941\) 1214.68i 1.29084i −0.763830 0.645418i \(-0.776683\pi\)
0.763830 0.645418i \(-0.223317\pi\)
\(942\) 1014.35i 1.07680i
\(943\) 1181.85i 1.25329i
\(944\) −7.26897 −0.00770018
\(945\) 0 0
\(946\) −333.773 54.2943i −0.352826 0.0573935i
\(947\) −1465.25 −1.54725 −0.773627 0.633641i \(-0.781560\pi\)
−0.773627 + 0.633641i \(0.781560\pi\)
\(948\) 231.179i 0.243860i
\(949\) 874.077 0.921051
\(950\) 0 0
\(951\) −507.857 −0.534025
\(952\) 122.022i 0.128175i
\(953\) 464.526i 0.487435i −0.969846 0.243717i \(-0.921633\pi\)
0.969846 0.243717i \(-0.0783670\pi\)
\(954\) 44.5962i 0.0467465i
\(955\) 0 0
\(956\) 1298.10i 1.35784i
\(957\) −281.604 + 1731.15i −0.294257 + 1.80894i
\(958\) 35.5751 0.0371348
\(959\) 952.446i 0.993166i
\(960\) 0 0
\(961\) −202.088 −0.210289
\(962\) −2185.95 −2.27229
\(963\) 11.8705i 0.0123266i
\(964\) 927.807i 0.962455i
\(965\) 0 0
\(966\) 857.750 0.887940
\(967\) 667.349i 0.690123i −0.938580 0.345062i \(-0.887858\pi\)
0.938580 0.345062i \(-0.112142\pi\)
\(968\) 240.251 718.930i 0.248193 0.742696i
\(969\) −193.353 −0.199539
\(970\) 0 0
\(971\) 980.665 1.00995 0.504977 0.863133i \(-0.331501\pi\)
0.504977 + 0.863133i \(0.331501\pi\)
\(972\) 60.6256 0.0623720
\(973\) 513.923 0.528184
\(974\) 2321.78i 2.38376i
\(975\) 0 0
\(976\) 201.056i 0.206000i
\(977\) −342.678 −0.350745 −0.175372 0.984502i \(-0.556113\pi\)
−0.175372 + 0.984502i \(0.556113\pi\)
\(978\) 1371.74i 1.40259i
\(979\) 720.490 + 117.201i 0.735945 + 0.119715i
\(980\) 0 0
\(981\) 24.1442i 0.0246118i
\(982\) −1097.50 −1.11762
\(983\) 447.215 0.454949 0.227475 0.973784i \(-0.426953\pi\)
0.227475 + 0.973784i \(0.426953\pi\)
\(984\) −1421.10 −1.44421
\(985\) 0 0
\(986\) 570.799i 0.578903i
\(987\) 313.244i 0.317370i
\(988\) −1915.18 −1.93844
\(989\) 153.651i 0.155360i
\(990\) 0 0
\(991\) 135.932 0.137166 0.0685831 0.997645i \(-0.478152\pi\)
0.0685831 + 0.997645i \(0.478152\pi\)
\(992\) 1050.47i 1.05894i
\(993\) 27.2196 0.0274115
\(994\) −1980.08 −1.99203
\(995\) 0 0
\(996\) 2032.19i 2.04035i
\(997\) 303.075i 0.303987i 0.988381 + 0.151993i \(0.0485693\pi\)
−0.988381 + 0.151993i \(0.951431\pi\)
\(998\) 2765.99i 2.77153i
\(999\) −1072.25 −1.07333
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.c.f.76.7 8
5.2 odd 4 275.3.d.c.274.3 16
5.3 odd 4 275.3.d.c.274.14 16
5.4 even 2 55.3.c.a.21.2 8
11.10 odd 2 inner 275.3.c.f.76.2 8
15.14 odd 2 495.3.b.a.406.7 8
20.19 odd 2 880.3.j.a.241.8 8
55.32 even 4 275.3.d.c.274.13 16
55.43 even 4 275.3.d.c.274.4 16
55.54 odd 2 55.3.c.a.21.7 yes 8
165.164 even 2 495.3.b.a.406.2 8
220.219 even 2 880.3.j.a.241.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.c.a.21.2 8 5.4 even 2
55.3.c.a.21.7 yes 8 55.54 odd 2
275.3.c.f.76.2 8 11.10 odd 2 inner
275.3.c.f.76.7 8 1.1 even 1 trivial
275.3.d.c.274.3 16 5.2 odd 4
275.3.d.c.274.4 16 55.43 even 4
275.3.d.c.274.13 16 55.32 even 4
275.3.d.c.274.14 16 5.3 odd 4
495.3.b.a.406.2 8 165.164 even 2
495.3.b.a.406.7 8 15.14 odd 2
880.3.j.a.241.7 8 220.219 even 2
880.3.j.a.241.8 8 20.19 odd 2