Properties

Label 275.3.c.f.76.4
Level $275$
Weight $3$
Character 275.76
Analytic conductor $7.493$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(76,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.76"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-8,-28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 30x^{6} + 280x^{4} + 890x^{2} + 895 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 76.4
Root \(-1.46104i\) of defining polynomial
Character \(\chi\) \(=\) 275.76
Dual form 275.3.c.f.76.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.46104i q^{2} -0.114554 q^{3} +1.86536 q^{4} +0.167368i q^{6} -4.56066i q^{7} -8.56953i q^{8} -8.98688 q^{9} +(5.89241 - 9.28868i) q^{11} -0.213685 q^{12} +16.5645i q^{13} -6.66330 q^{14} -5.05897 q^{16} -17.2939i q^{17} +13.1302i q^{18} -35.8838i q^{19} +0.522441i q^{21} +(-13.5711 - 8.60904i) q^{22} +29.3902 q^{23} +0.981674i q^{24} +24.2014 q^{26} +2.06047 q^{27} -8.50728i q^{28} +8.51985i q^{29} -26.3476 q^{31} -26.8868i q^{32} +(-0.674999 + 1.06406i) q^{33} -25.2670 q^{34} -16.7638 q^{36} -44.4227 q^{37} -52.4276 q^{38} -1.89753i q^{39} +52.2243i q^{41} +0.763308 q^{42} -6.77375i q^{43} +(10.9915 - 17.3268i) q^{44} -42.9402i q^{46} -15.0434 q^{47} +0.579525 q^{48} +28.2004 q^{49} +1.98108i q^{51} +30.8989i q^{52} +33.1498 q^{53} -3.01043i q^{54} -39.0827 q^{56} +4.11063i q^{57} +12.4478 q^{58} +51.5447 q^{59} +23.1889i q^{61} +38.4948i q^{62} +40.9861i q^{63} -59.5185 q^{64} +(1.55463 + 0.986200i) q^{66} +113.668 q^{67} -32.2593i q^{68} -3.36676 q^{69} +8.00364 q^{71} +77.0133i q^{72} -32.5342i q^{73} +64.9034i q^{74} -66.9363i q^{76} +(-42.3625 - 26.8732i) q^{77} -2.77237 q^{78} +52.0160i q^{79} +80.6459 q^{81} +76.3018 q^{82} +43.3699i q^{83} +0.974543i q^{84} -9.89672 q^{86} -0.975983i q^{87} +(-79.5996 - 50.4951i) q^{88} +73.8028 q^{89} +75.5451 q^{91} +54.8233 q^{92} +3.01822 q^{93} +21.9790i q^{94} +3.07999i q^{96} -22.0298 q^{97} -41.2019i q^{98} +(-52.9543 + 83.4762i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{3} - 28 q^{4} - 4 q^{9} + 8 q^{11} + 48 q^{12} + 88 q^{16} - 80 q^{22} - 8 q^{23} - 100 q^{26} + 16 q^{27} + 36 q^{31} + 152 q^{33} + 80 q^{34} - 216 q^{36} + 88 q^{37} + 160 q^{38} - 280 q^{42}+ \cdots - 184 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.46104i 0.730520i −0.930906 0.365260i \(-0.880980\pi\)
0.930906 0.365260i \(-0.119020\pi\)
\(3\) −0.114554 −0.0381847 −0.0190923 0.999818i \(-0.506078\pi\)
−0.0190923 + 0.999818i \(0.506078\pi\)
\(4\) 1.86536 0.466341
\(5\) 0 0
\(6\) 0.167368i 0.0278947i
\(7\) 4.56066i 0.651522i −0.945452 0.325761i \(-0.894379\pi\)
0.945452 0.325761i \(-0.105621\pi\)
\(8\) 8.56953i 1.07119i
\(9\) −8.98688 −0.998542
\(10\) 0 0
\(11\) 5.89241 9.28868i 0.535673 0.844425i
\(12\) −0.213685 −0.0178071
\(13\) 16.5645i 1.27420i 0.770783 + 0.637098i \(0.219865\pi\)
−0.770783 + 0.637098i \(0.780135\pi\)
\(14\) −6.66330 −0.475950
\(15\) 0 0
\(16\) −5.05897 −0.316185
\(17\) 17.2939i 1.01729i −0.860978 0.508643i \(-0.830147\pi\)
0.860978 0.508643i \(-0.169853\pi\)
\(18\) 13.1302i 0.729455i
\(19\) 35.8838i 1.88862i −0.329057 0.944310i \(-0.606731\pi\)
0.329057 0.944310i \(-0.393269\pi\)
\(20\) 0 0
\(21\) 0.522441i 0.0248782i
\(22\) −13.5711 8.60904i −0.616869 0.391320i
\(23\) 29.3902 1.27783 0.638917 0.769276i \(-0.279383\pi\)
0.638917 + 0.769276i \(0.279383\pi\)
\(24\) 0.981674i 0.0409031i
\(25\) 0 0
\(26\) 24.2014 0.930825
\(27\) 2.06047 0.0763137
\(28\) 8.50728i 0.303831i
\(29\) 8.51985i 0.293788i 0.989152 + 0.146894i \(0.0469276\pi\)
−0.989152 + 0.146894i \(0.953072\pi\)
\(30\) 0 0
\(31\) −26.3476 −0.849921 −0.424961 0.905212i \(-0.639712\pi\)
−0.424961 + 0.905212i \(0.639712\pi\)
\(32\) 26.8868i 0.840211i
\(33\) −0.674999 + 1.06406i −0.0204545 + 0.0322441i
\(34\) −25.2670 −0.743147
\(35\) 0 0
\(36\) −16.7638 −0.465661
\(37\) −44.4227 −1.20061 −0.600307 0.799769i \(-0.704955\pi\)
−0.600307 + 0.799769i \(0.704955\pi\)
\(38\) −52.4276 −1.37967
\(39\) 1.89753i 0.0486547i
\(40\) 0 0
\(41\) 52.2243i 1.27376i 0.770961 + 0.636882i \(0.219776\pi\)
−0.770961 + 0.636882i \(0.780224\pi\)
\(42\) 0.763308 0.0181740
\(43\) 6.77375i 0.157529i −0.996893 0.0787646i \(-0.974902\pi\)
0.996893 0.0787646i \(-0.0250975\pi\)
\(44\) 10.9915 17.3268i 0.249806 0.393790i
\(45\) 0 0
\(46\) 42.9402i 0.933482i
\(47\) −15.0434 −0.320072 −0.160036 0.987111i \(-0.551161\pi\)
−0.160036 + 0.987111i \(0.551161\pi\)
\(48\) 0.579525 0.0120734
\(49\) 28.2004 0.575519
\(50\) 0 0
\(51\) 1.98108i 0.0388447i
\(52\) 30.8989i 0.594209i
\(53\) 33.1498 0.625468 0.312734 0.949841i \(-0.398755\pi\)
0.312734 + 0.949841i \(0.398755\pi\)
\(54\) 3.01043i 0.0557486i
\(55\) 0 0
\(56\) −39.0827 −0.697905
\(57\) 4.11063i 0.0721163i
\(58\) 12.4478 0.214618
\(59\) 51.5447 0.873639 0.436819 0.899549i \(-0.356105\pi\)
0.436819 + 0.899549i \(0.356105\pi\)
\(60\) 0 0
\(61\) 23.1889i 0.380146i 0.981770 + 0.190073i \(0.0608725\pi\)
−0.981770 + 0.190073i \(0.939127\pi\)
\(62\) 38.4948i 0.620884i
\(63\) 40.9861i 0.650572i
\(64\) −59.5185 −0.929976
\(65\) 0 0
\(66\) 1.55463 + 0.986200i 0.0235550 + 0.0149424i
\(67\) 113.668 1.69653 0.848265 0.529572i \(-0.177647\pi\)
0.848265 + 0.529572i \(0.177647\pi\)
\(68\) 32.2593i 0.474402i
\(69\) −3.36676 −0.0487936
\(70\) 0 0
\(71\) 8.00364 0.112727 0.0563637 0.998410i \(-0.482049\pi\)
0.0563637 + 0.998410i \(0.482049\pi\)
\(72\) 77.0133i 1.06963i
\(73\) 32.5342i 0.445674i −0.974856 0.222837i \(-0.928468\pi\)
0.974856 0.222837i \(-0.0715318\pi\)
\(74\) 64.9034i 0.877073i
\(75\) 0 0
\(76\) 66.9363i 0.880741i
\(77\) −42.3625 26.8732i −0.550162 0.349003i
\(78\) −2.77237 −0.0355432
\(79\) 52.0160i 0.658431i 0.944255 + 0.329215i \(0.106784\pi\)
−0.944255 + 0.329215i \(0.893216\pi\)
\(80\) 0 0
\(81\) 80.6459 0.995628
\(82\) 76.3018 0.930510
\(83\) 43.3699i 0.522529i 0.965267 + 0.261264i \(0.0841394\pi\)
−0.965267 + 0.261264i \(0.915861\pi\)
\(84\) 0.974543i 0.0116017i
\(85\) 0 0
\(86\) −9.89672 −0.115078
\(87\) 0.975983i 0.0112182i
\(88\) −79.5996 50.4951i −0.904541 0.573808i
\(89\) 73.8028 0.829245 0.414623 0.909993i \(-0.363914\pi\)
0.414623 + 0.909993i \(0.363914\pi\)
\(90\) 0 0
\(91\) 75.5451 0.830166
\(92\) 54.8233 0.595906
\(93\) 3.01822 0.0324540
\(94\) 21.9790i 0.233819i
\(95\) 0 0
\(96\) 3.07999i 0.0320832i
\(97\) −22.0298 −0.227111 −0.113556 0.993532i \(-0.536224\pi\)
−0.113556 + 0.993532i \(0.536224\pi\)
\(98\) 41.2019i 0.420428i
\(99\) −52.9543 + 83.4762i −0.534892 + 0.843194i
\(100\) 0 0
\(101\) 163.013i 1.61399i 0.590561 + 0.806993i \(0.298906\pi\)
−0.590561 + 0.806993i \(0.701094\pi\)
\(102\) 2.89444 0.0283768
\(103\) −42.6423 −0.414003 −0.207001 0.978341i \(-0.566370\pi\)
−0.207001 + 0.978341i \(0.566370\pi\)
\(104\) 141.950 1.36491
\(105\) 0 0
\(106\) 48.4332i 0.456917i
\(107\) 131.098i 1.22522i 0.790387 + 0.612608i \(0.209879\pi\)
−0.790387 + 0.612608i \(0.790121\pi\)
\(108\) 3.84352 0.0355882
\(109\) 54.5201i 0.500184i 0.968222 + 0.250092i \(0.0804609\pi\)
−0.968222 + 0.250092i \(0.919539\pi\)
\(110\) 0 0
\(111\) 5.08880 0.0458451
\(112\) 23.0722i 0.206002i
\(113\) 117.985 1.04412 0.522058 0.852910i \(-0.325164\pi\)
0.522058 + 0.852910i \(0.325164\pi\)
\(114\) 6.00579 0.0526824
\(115\) 0 0
\(116\) 15.8926i 0.137005i
\(117\) 148.863i 1.27234i
\(118\) 75.3088i 0.638210i
\(119\) −78.8713 −0.662784
\(120\) 0 0
\(121\) −51.5591 109.465i −0.426108 0.904672i
\(122\) 33.8799 0.277704
\(123\) 5.98251i 0.0486383i
\(124\) −49.1478 −0.396353
\(125\) 0 0
\(126\) 59.8822 0.475256
\(127\) 113.764i 0.895782i 0.894088 + 0.447891i \(0.147825\pi\)
−0.894088 + 0.447891i \(0.852175\pi\)
\(128\) 20.5882i 0.160845i
\(129\) 0.775961i 0.00601520i
\(130\) 0 0
\(131\) 115.599i 0.882435i −0.897400 0.441218i \(-0.854547\pi\)
0.897400 0.441218i \(-0.145453\pi\)
\(132\) −1.25912 + 1.98485i −0.00953877 + 0.0150367i
\(133\) −163.654 −1.23048
\(134\) 166.073i 1.23935i
\(135\) 0 0
\(136\) −148.200 −1.08971
\(137\) 216.355 1.57924 0.789618 0.613598i \(-0.210279\pi\)
0.789618 + 0.613598i \(0.210279\pi\)
\(138\) 4.91897i 0.0356447i
\(139\) 5.08013i 0.0365477i −0.999833 0.0182738i \(-0.994183\pi\)
0.999833 0.0182738i \(-0.00581707\pi\)
\(140\) 0 0
\(141\) 1.72328 0.0122219
\(142\) 11.6936i 0.0823495i
\(143\) 153.863 + 97.6050i 1.07596 + 0.682552i
\(144\) 45.4643 0.315724
\(145\) 0 0
\(146\) −47.5338 −0.325574
\(147\) −3.23047 −0.0219760
\(148\) −82.8646 −0.559896
\(149\) 187.947i 1.26139i −0.776030 0.630696i \(-0.782769\pi\)
0.776030 0.630696i \(-0.217231\pi\)
\(150\) 0 0
\(151\) 136.741i 0.905571i 0.891620 + 0.452785i \(0.149570\pi\)
−0.891620 + 0.452785i \(0.850430\pi\)
\(152\) −307.507 −2.02307
\(153\) 155.418i 1.01580i
\(154\) −39.2629 + 61.8932i −0.254954 + 0.401904i
\(155\) 0 0
\(156\) 3.53959i 0.0226897i
\(157\) −256.057 −1.63094 −0.815470 0.578800i \(-0.803521\pi\)
−0.815470 + 0.578800i \(0.803521\pi\)
\(158\) 75.9975 0.480997
\(159\) −3.79744 −0.0238833
\(160\) 0 0
\(161\) 134.038i 0.832537i
\(162\) 117.827i 0.727326i
\(163\) 25.1370 0.154215 0.0771075 0.997023i \(-0.475432\pi\)
0.0771075 + 0.997023i \(0.475432\pi\)
\(164\) 97.4174i 0.594008i
\(165\) 0 0
\(166\) 63.3651 0.381718
\(167\) 4.21038i 0.0252119i 0.999921 + 0.0126059i \(0.00401270\pi\)
−0.999921 + 0.0126059i \(0.995987\pi\)
\(168\) 4.47708 0.0266493
\(169\) −105.384 −0.623573
\(170\) 0 0
\(171\) 322.483i 1.88587i
\(172\) 12.6355i 0.0734623i
\(173\) 168.015i 0.971185i 0.874185 + 0.485592i \(0.161396\pi\)
−0.874185 + 0.485592i \(0.838604\pi\)
\(174\) −1.42595 −0.00819511
\(175\) 0 0
\(176\) −29.8095 + 46.9911i −0.169372 + 0.266995i
\(177\) −5.90465 −0.0333596
\(178\) 107.829i 0.605780i
\(179\) −34.5542 −0.193040 −0.0965200 0.995331i \(-0.530771\pi\)
−0.0965200 + 0.995331i \(0.530771\pi\)
\(180\) 0 0
\(181\) −107.349 −0.593091 −0.296545 0.955019i \(-0.595835\pi\)
−0.296545 + 0.955019i \(0.595835\pi\)
\(182\) 110.374i 0.606453i
\(183\) 2.65638i 0.0145158i
\(184\) 251.860i 1.36880i
\(185\) 0 0
\(186\) 4.40974i 0.0237083i
\(187\) −160.637 101.902i −0.859022 0.544933i
\(188\) −28.0614 −0.149263
\(189\) 9.39709i 0.0497200i
\(190\) 0 0
\(191\) −75.4470 −0.395011 −0.197505 0.980302i \(-0.563284\pi\)
−0.197505 + 0.980302i \(0.563284\pi\)
\(192\) 6.81808 0.0355108
\(193\) 167.064i 0.865617i −0.901486 0.432809i \(-0.857523\pi\)
0.901486 0.432809i \(-0.142477\pi\)
\(194\) 32.1864i 0.165909i
\(195\) 0 0
\(196\) 52.6040 0.268388
\(197\) 362.777i 1.84151i −0.390145 0.920754i \(-0.627575\pi\)
0.390145 0.920754i \(-0.372425\pi\)
\(198\) 121.962 + 77.3684i 0.615970 + 0.390749i
\(199\) 337.735 1.69716 0.848580 0.529068i \(-0.177458\pi\)
0.848580 + 0.529068i \(0.177458\pi\)
\(200\) 0 0
\(201\) −13.0211 −0.0647814
\(202\) 238.168 1.17905
\(203\) 38.8561 0.191409
\(204\) 3.69543i 0.0181149i
\(205\) 0 0
\(206\) 62.3021i 0.302437i
\(207\) −264.126 −1.27597
\(208\) 83.7994i 0.402882i
\(209\) −333.313 211.442i −1.59480 1.01168i
\(210\) 0 0
\(211\) 317.915i 1.50670i −0.657617 0.753352i \(-0.728436\pi\)
0.657617 0.753352i \(-0.271564\pi\)
\(212\) 61.8364 0.291681
\(213\) −0.916849 −0.00430446
\(214\) 191.539 0.895044
\(215\) 0 0
\(216\) 17.6572i 0.0817465i
\(217\) 120.162i 0.553743i
\(218\) 79.6560 0.365395
\(219\) 3.72692i 0.0170179i
\(220\) 0 0
\(221\) 286.465 1.29622
\(222\) 7.43494i 0.0334907i
\(223\) −292.643 −1.31230 −0.656151 0.754630i \(-0.727817\pi\)
−0.656151 + 0.754630i \(0.727817\pi\)
\(224\) −122.621 −0.547416
\(225\) 0 0
\(226\) 172.381i 0.762747i
\(227\) 9.54908i 0.0420664i −0.999779 0.0210332i \(-0.993304\pi\)
0.999779 0.0210332i \(-0.00669557\pi\)
\(228\) 7.66782i 0.0336308i
\(229\) −355.912 −1.55420 −0.777100 0.629377i \(-0.783310\pi\)
−0.777100 + 0.629377i \(0.783310\pi\)
\(230\) 0 0
\(231\) 4.85279 + 3.07844i 0.0210077 + 0.0133266i
\(232\) 73.0111 0.314703
\(233\) 270.961i 1.16292i 0.813573 + 0.581462i \(0.197519\pi\)
−0.813573 + 0.581462i \(0.802481\pi\)
\(234\) −217.495 −0.929467
\(235\) 0 0
\(236\) 96.1496 0.407413
\(237\) 5.95864i 0.0251420i
\(238\) 115.234i 0.484177i
\(239\) 79.1374i 0.331119i 0.986200 + 0.165560i \(0.0529430\pi\)
−0.986200 + 0.165560i \(0.947057\pi\)
\(240\) 0 0
\(241\) 146.567i 0.608164i −0.952646 0.304082i \(-0.901650\pi\)
0.952646 0.304082i \(-0.0983496\pi\)
\(242\) −159.933 + 75.3299i −0.660881 + 0.311281i
\(243\) −27.7825 −0.114331
\(244\) 43.2558i 0.177278i
\(245\) 0 0
\(246\) −8.74068 −0.0355312
\(247\) 594.398 2.40647
\(248\) 225.786i 0.910428i
\(249\) 4.96819i 0.0199526i
\(250\) 0 0
\(251\) 52.7485 0.210154 0.105077 0.994464i \(-0.466491\pi\)
0.105077 + 0.994464i \(0.466491\pi\)
\(252\) 76.4539i 0.303388i
\(253\) 173.179 272.996i 0.684501 1.07903i
\(254\) 166.214 0.654386
\(255\) 0 0
\(256\) −268.154 −1.04748
\(257\) −41.8668 −0.162906 −0.0814529 0.996677i \(-0.525956\pi\)
−0.0814529 + 0.996677i \(0.525956\pi\)
\(258\) 1.13371 0.00439422
\(259\) 202.597i 0.782227i
\(260\) 0 0
\(261\) 76.5668i 0.293360i
\(262\) −168.895 −0.644636
\(263\) 289.448i 1.10056i −0.834979 0.550282i \(-0.814520\pi\)
0.834979 0.550282i \(-0.185480\pi\)
\(264\) 9.11845 + 5.78442i 0.0345396 + 0.0219107i
\(265\) 0 0
\(266\) 239.104i 0.898888i
\(267\) −8.45441 −0.0316645
\(268\) 212.031 0.791161
\(269\) 297.640 1.10647 0.553234 0.833026i \(-0.313393\pi\)
0.553234 + 0.833026i \(0.313393\pi\)
\(270\) 0 0
\(271\) 277.488i 1.02394i 0.859003 + 0.511970i \(0.171084\pi\)
−0.859003 + 0.511970i \(0.828916\pi\)
\(272\) 87.4890i 0.321651i
\(273\) −8.65400 −0.0316996
\(274\) 316.104i 1.15366i
\(275\) 0 0
\(276\) −6.28023 −0.0227545
\(277\) 22.6740i 0.0818556i −0.999162 0.0409278i \(-0.986969\pi\)
0.999162 0.0409278i \(-0.0130314\pi\)
\(278\) −7.42227 −0.0266988
\(279\) 236.782 0.848682
\(280\) 0 0
\(281\) 182.887i 0.650845i −0.945569 0.325422i \(-0.894494\pi\)
0.945569 0.325422i \(-0.105506\pi\)
\(282\) 2.51778i 0.00892831i
\(283\) 367.233i 1.29764i −0.760941 0.648821i \(-0.775262\pi\)
0.760941 0.648821i \(-0.224738\pi\)
\(284\) 14.9297 0.0525694
\(285\) 0 0
\(286\) 142.605 224.799i 0.498618 0.786012i
\(287\) 238.177 0.829886
\(288\) 241.628i 0.838986i
\(289\) −10.0774 −0.0348699
\(290\) 0 0
\(291\) 2.52360 0.00867218
\(292\) 60.6881i 0.207836i
\(293\) 10.3180i 0.0352150i 0.999845 + 0.0176075i \(0.00560493\pi\)
−0.999845 + 0.0176075i \(0.994395\pi\)
\(294\) 4.71985i 0.0160539i
\(295\) 0 0
\(296\) 380.682i 1.28609i
\(297\) 12.1411 19.1390i 0.0408792 0.0644412i
\(298\) −274.599 −0.921472
\(299\) 486.834i 1.62821i
\(300\) 0 0
\(301\) −30.8928 −0.102634
\(302\) 199.784 0.661537
\(303\) 18.6737i 0.0616295i
\(304\) 181.535i 0.597154i
\(305\) 0 0
\(306\) 227.071 0.742064
\(307\) 459.671i 1.49730i 0.662966 + 0.748649i \(0.269297\pi\)
−0.662966 + 0.748649i \(0.730703\pi\)
\(308\) −79.0214 50.1283i −0.256563 0.162754i
\(309\) 4.88484 0.0158086
\(310\) 0 0
\(311\) 101.131 0.325181 0.162590 0.986694i \(-0.448015\pi\)
0.162590 + 0.986694i \(0.448015\pi\)
\(312\) −16.2610 −0.0521185
\(313\) −288.760 −0.922556 −0.461278 0.887256i \(-0.652609\pi\)
−0.461278 + 0.887256i \(0.652609\pi\)
\(314\) 374.110i 1.19143i
\(315\) 0 0
\(316\) 97.0288i 0.307053i
\(317\) −242.929 −0.766338 −0.383169 0.923678i \(-0.625167\pi\)
−0.383169 + 0.923678i \(0.625167\pi\)
\(318\) 5.54821i 0.0174472i
\(319\) 79.1381 + 50.2024i 0.248082 + 0.157374i
\(320\) 0 0
\(321\) 15.0178i 0.0467845i
\(322\) −195.835 −0.608185
\(323\) −620.569 −1.92127
\(324\) 150.434 0.464302
\(325\) 0 0
\(326\) 36.7262i 0.112657i
\(327\) 6.24550i 0.0190994i
\(328\) 447.538 1.36445
\(329\) 68.6078i 0.208534i
\(330\) 0 0
\(331\) −241.395 −0.729291 −0.364646 0.931146i \(-0.618810\pi\)
−0.364646 + 0.931146i \(0.618810\pi\)
\(332\) 80.9006i 0.243676i
\(333\) 399.222 1.19886
\(334\) 6.15154 0.0184178
\(335\) 0 0
\(336\) 2.64301i 0.00786611i
\(337\) 527.662i 1.56576i 0.622171 + 0.782881i \(0.286251\pi\)
−0.622171 + 0.782881i \(0.713749\pi\)
\(338\) 153.970i 0.455532i
\(339\) −13.5157 −0.0398692
\(340\) 0 0
\(341\) −155.251 + 244.734i −0.455280 + 0.717695i
\(342\) 471.161 1.37766
\(343\) 352.085i 1.02649i
\(344\) −58.0479 −0.168744
\(345\) 0 0
\(346\) 245.476 0.709470
\(347\) 214.531i 0.618244i 0.951022 + 0.309122i \(0.100035\pi\)
−0.951022 + 0.309122i \(0.899965\pi\)
\(348\) 1.82056i 0.00523150i
\(349\) 76.4945i 0.219182i 0.993977 + 0.109591i \(0.0349541\pi\)
−0.993977 + 0.109591i \(0.965046\pi\)
\(350\) 0 0
\(351\) 34.1307i 0.0972385i
\(352\) −249.743 158.428i −0.709496 0.450079i
\(353\) 176.689 0.500535 0.250268 0.968177i \(-0.419481\pi\)
0.250268 + 0.968177i \(0.419481\pi\)
\(354\) 8.62693i 0.0243699i
\(355\) 0 0
\(356\) 137.669 0.386711
\(357\) 9.03503 0.0253082
\(358\) 50.4850i 0.141020i
\(359\) 357.810i 0.996686i −0.866980 0.498343i \(-0.833942\pi\)
0.866980 0.498343i \(-0.166058\pi\)
\(360\) 0 0
\(361\) −926.646 −2.56689
\(362\) 156.842i 0.433265i
\(363\) 5.90630 + 12.5397i 0.0162708 + 0.0345446i
\(364\) 140.919 0.387140
\(365\) 0 0
\(366\) −3.88108 −0.0106041
\(367\) 314.687 0.857458 0.428729 0.903433i \(-0.358962\pi\)
0.428729 + 0.903433i \(0.358962\pi\)
\(368\) −148.684 −0.404032
\(369\) 469.334i 1.27191i
\(370\) 0 0
\(371\) 151.185i 0.407506i
\(372\) 5.63007 0.0151346
\(373\) 420.645i 1.12773i 0.825865 + 0.563867i \(0.190687\pi\)
−0.825865 + 0.563867i \(0.809313\pi\)
\(374\) −148.883 + 234.697i −0.398084 + 0.627532i
\(375\) 0 0
\(376\) 128.915i 0.342859i
\(377\) −141.127 −0.374343
\(378\) −13.7295 −0.0363215
\(379\) 401.667 1.05981 0.529904 0.848058i \(-0.322228\pi\)
0.529904 + 0.848058i \(0.322228\pi\)
\(380\) 0 0
\(381\) 13.0322i 0.0342051i
\(382\) 110.231i 0.288563i
\(383\) −60.0864 −0.156884 −0.0784418 0.996919i \(-0.524994\pi\)
−0.0784418 + 0.996919i \(0.524994\pi\)
\(384\) 2.35846i 0.00614182i
\(385\) 0 0
\(386\) −244.087 −0.632350
\(387\) 60.8749i 0.157299i
\(388\) −41.0936 −0.105911
\(389\) 411.464 1.05775 0.528874 0.848700i \(-0.322614\pi\)
0.528874 + 0.848700i \(0.322614\pi\)
\(390\) 0 0
\(391\) 508.269i 1.29992i
\(392\) 241.664i 0.616491i
\(393\) 13.2423i 0.0336955i
\(394\) −530.031 −1.34526
\(395\) 0 0
\(396\) −98.7791 + 155.713i −0.249442 + 0.393216i
\(397\) 237.517 0.598279 0.299140 0.954209i \(-0.403300\pi\)
0.299140 + 0.954209i \(0.403300\pi\)
\(398\) 493.444i 1.23981i
\(399\) 18.7472 0.0469854
\(400\) 0 0
\(401\) 101.501 0.253120 0.126560 0.991959i \(-0.459606\pi\)
0.126560 + 0.991959i \(0.459606\pi\)
\(402\) 19.0243i 0.0473241i
\(403\) 436.435i 1.08297i
\(404\) 304.078i 0.752667i
\(405\) 0 0
\(406\) 56.7703i 0.139828i
\(407\) −261.757 + 412.629i −0.643137 + 1.01383i
\(408\) 16.9769 0.0416101
\(409\) 694.176i 1.69725i −0.528993 0.848626i \(-0.677430\pi\)
0.528993 0.848626i \(-0.322570\pi\)
\(410\) 0 0
\(411\) −24.7844 −0.0603026
\(412\) −79.5433 −0.193066
\(413\) 235.078i 0.569195i
\(414\) 385.898i 0.932121i
\(415\) 0 0
\(416\) 445.367 1.07059
\(417\) 0.581949i 0.00139556i
\(418\) −308.925 + 486.983i −0.739055 + 1.16503i
\(419\) −416.354 −0.993686 −0.496843 0.867841i \(-0.665507\pi\)
−0.496843 + 0.867841i \(0.665507\pi\)
\(420\) 0 0
\(421\) 539.341 1.28110 0.640548 0.767918i \(-0.278707\pi\)
0.640548 + 0.767918i \(0.278707\pi\)
\(422\) −464.486 −1.10068
\(423\) 135.193 0.319606
\(424\) 284.078i 0.669995i
\(425\) 0 0
\(426\) 1.33955i 0.00314449i
\(427\) 105.757 0.247674
\(428\) 244.546i 0.571368i
\(429\) −17.6256 11.1810i −0.0410853 0.0260630i
\(430\) 0 0
\(431\) 343.493i 0.796967i −0.917176 0.398483i \(-0.869537\pi\)
0.917176 0.398483i \(-0.130463\pi\)
\(432\) −10.4238 −0.0241293
\(433\) −18.0353 −0.0416520 −0.0208260 0.999783i \(-0.506630\pi\)
−0.0208260 + 0.999783i \(0.506630\pi\)
\(434\) 175.562 0.404520
\(435\) 0 0
\(436\) 101.700i 0.233256i
\(437\) 1054.63i 2.41334i
\(438\) 5.44518 0.0124319
\(439\) 693.839i 1.58050i 0.612786 + 0.790249i \(0.290049\pi\)
−0.612786 + 0.790249i \(0.709951\pi\)
\(440\) 0 0
\(441\) −253.434 −0.574680
\(442\) 418.536i 0.946914i
\(443\) 359.314 0.811092 0.405546 0.914075i \(-0.367081\pi\)
0.405546 + 0.914075i \(0.367081\pi\)
\(444\) 9.49247 0.0213794
\(445\) 0 0
\(446\) 427.564i 0.958663i
\(447\) 21.5301i 0.0481658i
\(448\) 271.443i 0.605900i
\(449\) −567.882 −1.26477 −0.632385 0.774654i \(-0.717924\pi\)
−0.632385 + 0.774654i \(0.717924\pi\)
\(450\) 0 0
\(451\) 485.095 + 307.727i 1.07560 + 0.682322i
\(452\) 220.085 0.486914
\(453\) 15.6643i 0.0345789i
\(454\) −13.9516 −0.0307303
\(455\) 0 0
\(456\) 35.2262 0.0772504
\(457\) 797.218i 1.74446i −0.489096 0.872230i \(-0.662673\pi\)
0.489096 0.872230i \(-0.337327\pi\)
\(458\) 520.001i 1.13537i
\(459\) 35.6335i 0.0776328i
\(460\) 0 0
\(461\) 87.9144i 0.190704i 0.995444 + 0.0953518i \(0.0303976\pi\)
−0.995444 + 0.0953518i \(0.969602\pi\)
\(462\) 4.49772 7.09012i 0.00973532 0.0153466i
\(463\) 50.9282 0.109996 0.0549981 0.998486i \(-0.482485\pi\)
0.0549981 + 0.998486i \(0.482485\pi\)
\(464\) 43.1016i 0.0928914i
\(465\) 0 0
\(466\) 395.885 0.849539
\(467\) 463.064 0.991572 0.495786 0.868445i \(-0.334880\pi\)
0.495786 + 0.868445i \(0.334880\pi\)
\(468\) 277.684i 0.593343i
\(469\) 518.398i 1.10533i
\(470\) 0 0
\(471\) 29.3324 0.0622769
\(472\) 441.714i 0.935834i
\(473\) −62.9192 39.9137i −0.133022 0.0843841i
\(474\) −8.70581 −0.0183667
\(475\) 0 0
\(476\) −147.124 −0.309083
\(477\) −297.913 −0.624556
\(478\) 115.623 0.241889
\(479\) 182.184i 0.380343i 0.981751 + 0.190171i \(0.0609044\pi\)
−0.981751 + 0.190171i \(0.939096\pi\)
\(480\) 0 0
\(481\) 735.842i 1.52982i
\(482\) −214.141 −0.444276
\(483\) 15.3546i 0.0317901i
\(484\) −96.1765 204.193i −0.198712 0.421886i
\(485\) 0 0
\(486\) 40.5914i 0.0835213i
\(487\) −366.810 −0.753203 −0.376602 0.926375i \(-0.622907\pi\)
−0.376602 + 0.926375i \(0.622907\pi\)
\(488\) 198.718 0.407209
\(489\) −2.87955 −0.00588865
\(490\) 0 0
\(491\) 42.0181i 0.0855766i 0.999084 + 0.0427883i \(0.0136241\pi\)
−0.999084 + 0.0427883i \(0.986376\pi\)
\(492\) 11.1596i 0.0226820i
\(493\) 147.341 0.298866
\(494\) 868.439i 1.75797i
\(495\) 0 0
\(496\) 133.291 0.268733
\(497\) 36.5018i 0.0734444i
\(498\) −7.25873 −0.0145758
\(499\) −229.963 −0.460848 −0.230424 0.973090i \(-0.574011\pi\)
−0.230424 + 0.973090i \(0.574011\pi\)
\(500\) 0 0
\(501\) 0.482316i 0.000962707i
\(502\) 77.0677i 0.153521i
\(503\) 9.38400i 0.0186561i −0.999956 0.00932803i \(-0.997031\pi\)
0.999956 0.00932803i \(-0.00296925\pi\)
\(504\) 351.231 0.696887
\(505\) 0 0
\(506\) −398.858 253.021i −0.788256 0.500042i
\(507\) 12.0721 0.0238109
\(508\) 212.212i 0.417740i
\(509\) −584.355 −1.14804 −0.574022 0.818840i \(-0.694618\pi\)
−0.574022 + 0.818840i \(0.694618\pi\)
\(510\) 0 0
\(511\) −148.377 −0.290367
\(512\) 309.431i 0.604357i
\(513\) 73.9374i 0.144128i
\(514\) 61.1691i 0.119006i
\(515\) 0 0
\(516\) 1.44745i 0.00280513i
\(517\) −88.6418 + 139.733i −0.171454 + 0.270277i
\(518\) 296.002 0.571432
\(519\) 19.2468i 0.0370844i
\(520\) 0 0
\(521\) 121.060 0.232361 0.116180 0.993228i \(-0.462935\pi\)
0.116180 + 0.993228i \(0.462935\pi\)
\(522\) −111.867 −0.214305
\(523\) 446.636i 0.853988i 0.904254 + 0.426994i \(0.140428\pi\)
−0.904254 + 0.426994i \(0.859572\pi\)
\(524\) 215.634i 0.411516i
\(525\) 0 0
\(526\) −422.896 −0.803984
\(527\) 455.651i 0.864613i
\(528\) 3.41480 5.38302i 0.00646742 0.0101951i
\(529\) 334.782 0.632858
\(530\) 0 0
\(531\) −463.226 −0.872365
\(532\) −305.273 −0.573822
\(533\) −865.072 −1.62302
\(534\) 12.3522i 0.0231315i
\(535\) 0 0
\(536\) 974.077i 1.81731i
\(537\) 3.95832 0.00737117
\(538\) 434.864i 0.808297i
\(539\) 166.168 261.945i 0.308290 0.485983i
\(540\) 0 0
\(541\) 472.750i 0.873846i 0.899499 + 0.436923i \(0.143932\pi\)
−0.899499 + 0.436923i \(0.856068\pi\)
\(542\) 405.421 0.748009
\(543\) 12.2973 0.0226470
\(544\) −464.976 −0.854735
\(545\) 0 0
\(546\) 12.6438i 0.0231572i
\(547\) 24.2342i 0.0443039i −0.999755 0.0221520i \(-0.992948\pi\)
0.999755 0.0221520i \(-0.00705176\pi\)
\(548\) 403.582 0.736463
\(549\) 208.396i 0.379592i
\(550\) 0 0
\(551\) 305.724 0.554854
\(552\) 28.8516i 0.0522673i
\(553\) 237.227 0.428982
\(554\) −33.1276 −0.0597972
\(555\) 0 0
\(556\) 9.47629i 0.0170437i
\(557\) 597.483i 1.07268i −0.844002 0.536340i \(-0.819807\pi\)
0.844002 0.536340i \(-0.180193\pi\)
\(558\) 345.948i 0.619979i
\(559\) 112.204 0.200723
\(560\) 0 0
\(561\) 18.4016 + 11.6733i 0.0328015 + 0.0208081i
\(562\) −267.206 −0.475455
\(563\) 963.269i 1.71096i 0.517838 + 0.855479i \(0.326737\pi\)
−0.517838 + 0.855479i \(0.673263\pi\)
\(564\) 3.21455 0.00569955
\(565\) 0 0
\(566\) −536.541 −0.947953
\(567\) 367.798i 0.648674i
\(568\) 68.5874i 0.120753i
\(569\) 136.737i 0.240310i 0.992755 + 0.120155i \(0.0383392\pi\)
−0.992755 + 0.120155i \(0.961661\pi\)
\(570\) 0 0
\(571\) 829.845i 1.45332i 0.686998 + 0.726659i \(0.258928\pi\)
−0.686998 + 0.726659i \(0.741072\pi\)
\(572\) 287.010 + 182.069i 0.501765 + 0.318302i
\(573\) 8.64276 0.0150833
\(574\) 347.986i 0.606248i
\(575\) 0 0
\(576\) 534.885 0.928620
\(577\) −636.305 −1.10278 −0.551391 0.834247i \(-0.685903\pi\)
−0.551391 + 0.834247i \(0.685903\pi\)
\(578\) 14.7235i 0.0254732i
\(579\) 19.1379i 0.0330533i
\(580\) 0 0
\(581\) 197.795 0.340439
\(582\) 3.68708i 0.00633520i
\(583\) 195.332 307.918i 0.335046 0.528161i
\(584\) −278.803 −0.477402
\(585\) 0 0
\(586\) 15.0750 0.0257253
\(587\) 455.242 0.775540 0.387770 0.921756i \(-0.373246\pi\)
0.387770 + 0.921756i \(0.373246\pi\)
\(588\) −6.02600 −0.0102483
\(589\) 945.450i 1.60518i
\(590\) 0 0
\(591\) 41.5576i 0.0703173i
\(592\) 224.733 0.379617
\(593\) 219.359i 0.369914i −0.982747 0.184957i \(-0.940785\pi\)
0.982747 0.184957i \(-0.0592146\pi\)
\(594\) −27.9629 17.7387i −0.0470756 0.0298631i
\(595\) 0 0
\(596\) 350.590i 0.588239i
\(597\) −38.6889 −0.0648055
\(598\) 711.284 1.18944
\(599\) −260.846 −0.435470 −0.217735 0.976008i \(-0.569867\pi\)
−0.217735 + 0.976008i \(0.569867\pi\)
\(600\) 0 0
\(601\) 314.178i 0.522759i 0.965236 + 0.261379i \(0.0841773\pi\)
−0.965236 + 0.261379i \(0.915823\pi\)
\(602\) 45.1355i 0.0749760i
\(603\) −1021.52 −1.69406
\(604\) 255.072i 0.422305i
\(605\) 0 0
\(606\) −27.2831 −0.0450216
\(607\) 423.627i 0.697903i 0.937141 + 0.348951i \(0.113462\pi\)
−0.937141 + 0.348951i \(0.886538\pi\)
\(608\) −964.799 −1.58684
\(609\) −4.45112 −0.00730890
\(610\) 0 0
\(611\) 249.187i 0.407835i
\(612\) 289.911i 0.473710i
\(613\) 144.866i 0.236323i 0.992994 + 0.118162i \(0.0377001\pi\)
−0.992994 + 0.118162i \(0.962300\pi\)
\(614\) 671.597 1.09381
\(615\) 0 0
\(616\) −230.291 + 363.026i −0.373849 + 0.589328i
\(617\) −988.195 −1.60161 −0.800806 0.598923i \(-0.795595\pi\)
−0.800806 + 0.598923i \(0.795595\pi\)
\(618\) 7.13695i 0.0115485i
\(619\) 822.930 1.32945 0.664725 0.747088i \(-0.268549\pi\)
0.664725 + 0.747088i \(0.268549\pi\)
\(620\) 0 0
\(621\) 60.5575 0.0975161
\(622\) 147.757i 0.237551i
\(623\) 336.589i 0.540272i
\(624\) 9.59956i 0.0153839i
\(625\) 0 0
\(626\) 421.890i 0.673946i
\(627\) 38.1823 + 24.2215i 0.0608969 + 0.0386308i
\(628\) −477.640 −0.760574
\(629\) 768.240i 1.22137i
\(630\) 0 0
\(631\) −854.486 −1.35418 −0.677089 0.735902i \(-0.736759\pi\)
−0.677089 + 0.735902i \(0.736759\pi\)
\(632\) 445.753 0.705305
\(633\) 36.4184i 0.0575330i
\(634\) 354.929i 0.559825i
\(635\) 0 0
\(636\) −7.08361 −0.0111377
\(637\) 467.127i 0.733323i
\(638\) 73.3477 115.624i 0.114965 0.181229i
\(639\) −71.9277 −0.112563
\(640\) 0 0
\(641\) −70.2095 −0.109531 −0.0547656 0.998499i \(-0.517441\pi\)
−0.0547656 + 0.998499i \(0.517441\pi\)
\(642\) −21.9416 −0.0341770
\(643\) 560.759 0.872097 0.436049 0.899923i \(-0.356378\pi\)
0.436049 + 0.899923i \(0.356378\pi\)
\(644\) 250.030i 0.388246i
\(645\) 0 0
\(646\) 906.676i 1.40352i
\(647\) −73.2119 −0.113156 −0.0565780 0.998398i \(-0.518019\pi\)
−0.0565780 + 0.998398i \(0.518019\pi\)
\(648\) 691.097i 1.06651i
\(649\) 303.722 478.782i 0.467985 0.737723i
\(650\) 0 0
\(651\) 13.7651i 0.0211445i
\(652\) 46.8897 0.0719167
\(653\) 52.7951 0.0808500 0.0404250 0.999183i \(-0.487129\pi\)
0.0404250 + 0.999183i \(0.487129\pi\)
\(654\) −9.12492 −0.0139525
\(655\) 0 0
\(656\) 264.201i 0.402746i
\(657\) 292.381i 0.445024i
\(658\) 100.239 0.152338
\(659\) 466.110i 0.707299i −0.935378 0.353649i \(-0.884941\pi\)
0.935378 0.353649i \(-0.115059\pi\)
\(660\) 0 0
\(661\) 759.575 1.14913 0.574565 0.818459i \(-0.305171\pi\)
0.574565 + 0.818459i \(0.305171\pi\)
\(662\) 352.688i 0.532762i
\(663\) −32.8157 −0.0494957
\(664\) 371.659 0.559728
\(665\) 0 0
\(666\) 583.279i 0.875794i
\(667\) 250.400i 0.375412i
\(668\) 7.85389i 0.0117573i
\(669\) 33.5235 0.0501098
\(670\) 0 0
\(671\) 215.394 + 136.639i 0.321005 + 0.203634i
\(672\) 14.0468 0.0209029
\(673\) 608.412i 0.904030i −0.892010 0.452015i \(-0.850705\pi\)
0.892010 0.452015i \(-0.149295\pi\)
\(674\) 770.935 1.14382
\(675\) 0 0
\(676\) −196.579 −0.290798
\(677\) 557.900i 0.824077i 0.911166 + 0.412038i \(0.135183\pi\)
−0.911166 + 0.412038i \(0.864817\pi\)
\(678\) 19.7469i 0.0291253i
\(679\) 100.470i 0.147968i
\(680\) 0 0
\(681\) 1.09388i 0.00160629i
\(682\) 357.566 + 226.827i 0.524290 + 0.332591i
\(683\) 785.901 1.15066 0.575330 0.817921i \(-0.304874\pi\)
0.575330 + 0.817921i \(0.304874\pi\)
\(684\) 601.548i 0.879457i
\(685\) 0 0
\(686\) −514.409 −0.749868
\(687\) 40.7711 0.0593466
\(688\) 34.2682i 0.0498084i
\(689\) 549.111i 0.796968i
\(690\) 0 0
\(691\) 480.448 0.695293 0.347647 0.937626i \(-0.386981\pi\)
0.347647 + 0.937626i \(0.386981\pi\)
\(692\) 313.409i 0.452903i
\(693\) 380.706 + 241.506i 0.549360 + 0.348494i
\(694\) 313.438 0.451640
\(695\) 0 0
\(696\) −8.36371 −0.0120168
\(697\) 903.160 1.29578
\(698\) 111.762 0.160117
\(699\) 31.0397i 0.0444059i
\(700\) 0 0
\(701\) 284.947i 0.406486i 0.979128 + 0.203243i \(0.0651481\pi\)
−0.979128 + 0.203243i \(0.934852\pi\)
\(702\) 49.8663 0.0710346
\(703\) 1594.06i 2.26750i
\(704\) −350.707 + 552.848i −0.498163 + 0.785296i
\(705\) 0 0
\(706\) 258.150i 0.365651i
\(707\) 743.444 1.05155
\(708\) −11.0143 −0.0155570
\(709\) −313.418 −0.442057 −0.221028 0.975267i \(-0.570941\pi\)
−0.221028 + 0.975267i \(0.570941\pi\)
\(710\) 0 0
\(711\) 467.462i 0.657471i
\(712\) 632.455i 0.888280i
\(713\) −774.359 −1.08606
\(714\) 13.2005i 0.0184881i
\(715\) 0 0
\(716\) −64.4561 −0.0900224
\(717\) 9.06551i 0.0126437i
\(718\) −522.775 −0.728099
\(719\) −1198.70 −1.66718 −0.833590 0.552384i \(-0.813718\pi\)
−0.833590 + 0.552384i \(0.813718\pi\)
\(720\) 0 0
\(721\) 194.477i 0.269732i
\(722\) 1353.87i 1.87516i
\(723\) 16.7899i 0.0232225i
\(724\) −200.246 −0.276583
\(725\) 0 0
\(726\) 18.3210 8.62934i 0.0252355 0.0118861i
\(727\) −152.540 −0.209821 −0.104910 0.994482i \(-0.533456\pi\)
−0.104910 + 0.994482i \(0.533456\pi\)
\(728\) 647.386i 0.889267i
\(729\) −722.630 −0.991262
\(730\) 0 0
\(731\) −117.144 −0.160252
\(732\) 4.95512i 0.00676929i
\(733\) 1107.11i 1.51039i 0.655501 + 0.755194i \(0.272457\pi\)
−0.655501 + 0.755194i \(0.727543\pi\)
\(734\) 459.770i 0.626390i
\(735\) 0 0
\(736\) 790.206i 1.07365i
\(737\) 669.775 1055.82i 0.908786 1.43259i
\(738\) −685.715 −0.929153
\(739\) 438.677i 0.593609i 0.954938 + 0.296805i \(0.0959210\pi\)
−0.954938 + 0.296805i \(0.904079\pi\)
\(740\) 0 0
\(741\) −68.0907 −0.0918903
\(742\) −220.887 −0.297691
\(743\) 764.284i 1.02865i −0.857597 0.514323i \(-0.828043\pi\)
0.857597 0.514323i \(-0.171957\pi\)
\(744\) 25.8647i 0.0347644i
\(745\) 0 0
\(746\) 614.579 0.823832
\(747\) 389.760i 0.521767i
\(748\) −299.646 190.085i −0.400597 0.254124i
\(749\) 597.893 0.798255
\(750\) 0 0
\(751\) 1224.32 1.63025 0.815126 0.579283i \(-0.196668\pi\)
0.815126 + 0.579283i \(0.196668\pi\)
\(752\) 76.1041 0.101202
\(753\) −6.04256 −0.00802464
\(754\) 206.193i 0.273465i
\(755\) 0 0
\(756\) 17.5290i 0.0231865i
\(757\) 1346.79 1.77911 0.889555 0.456828i \(-0.151014\pi\)
0.889555 + 0.456828i \(0.151014\pi\)
\(758\) 586.852i 0.774211i
\(759\) −19.8383 + 31.2728i −0.0261374 + 0.0412026i
\(760\) 0 0
\(761\) 642.215i 0.843909i −0.906617 0.421954i \(-0.861344\pi\)
0.906617 0.421954i \(-0.138656\pi\)
\(762\) −19.0405 −0.0249875
\(763\) 248.647 0.325881
\(764\) −140.736 −0.184210
\(765\) 0 0
\(766\) 87.7886i 0.114607i
\(767\) 853.814i 1.11319i
\(768\) 30.7181 0.0399976
\(769\) 786.000i 1.02211i 0.859549 + 0.511053i \(0.170744\pi\)
−0.859549 + 0.511053i \(0.829256\pi\)
\(770\) 0 0
\(771\) 4.79601 0.00622051
\(772\) 311.635i 0.403673i
\(773\) 1311.57 1.69672 0.848360 0.529419i \(-0.177590\pi\)
0.848360 + 0.529419i \(0.177590\pi\)
\(774\) 88.9406 0.114910
\(775\) 0 0
\(776\) 188.785i 0.243280i
\(777\) 23.2083i 0.0298691i
\(778\) 601.166i 0.772706i
\(779\) 1874.01 2.40566
\(780\) 0 0
\(781\) 47.1607 74.3432i 0.0603850 0.0951898i
\(782\) −742.601 −0.949618
\(783\) 17.5549i 0.0224200i
\(784\) −142.665 −0.181971
\(785\) 0 0
\(786\) 19.3476 0.0246152
\(787\) 658.660i 0.836925i 0.908234 + 0.418462i \(0.137431\pi\)
−0.908234 + 0.418462i \(0.862569\pi\)
\(788\) 676.711i 0.858770i
\(789\) 33.1575i 0.0420247i
\(790\) 0 0
\(791\) 538.089i 0.680265i
\(792\) 715.352 + 453.794i 0.903222 + 0.572972i
\(793\) −384.114 −0.484381
\(794\) 347.022i 0.437055i
\(795\) 0 0
\(796\) 629.998 0.791455
\(797\) −1499.40 −1.88130 −0.940651 0.339376i \(-0.889784\pi\)
−0.940651 + 0.339376i \(0.889784\pi\)
\(798\) 27.3904i 0.0343238i
\(799\) 260.158i 0.325605i
\(800\) 0 0
\(801\) −663.257 −0.828036
\(802\) 148.297i 0.184909i
\(803\) −302.200 191.705i −0.376339 0.238736i
\(804\) −24.2890 −0.0302102
\(805\) 0 0
\(806\) −637.649 −0.791128
\(807\) −34.0959 −0.0422501
\(808\) 1396.94 1.72889
\(809\) 1400.12i 1.73068i −0.501186 0.865340i \(-0.667103\pi\)
0.501186 0.865340i \(-0.332897\pi\)
\(810\) 0 0
\(811\) 611.795i 0.754371i 0.926138 + 0.377186i \(0.123108\pi\)
−0.926138 + 0.377186i \(0.876892\pi\)
\(812\) 72.4807 0.0892620
\(813\) 31.7873i 0.0390988i
\(814\) 602.867 + 382.437i 0.740622 + 0.469824i
\(815\) 0 0
\(816\) 10.0222i 0.0122821i
\(817\) −243.068 −0.297513
\(818\) −1014.22 −1.23988
\(819\) −678.915 −0.828956
\(820\) 0 0
\(821\) 1249.80i 1.52230i 0.648579 + 0.761148i \(0.275364\pi\)
−0.648579 + 0.761148i \(0.724636\pi\)
\(822\) 36.2110i 0.0440523i
\(823\) −899.845 −1.09337 −0.546686 0.837338i \(-0.684111\pi\)
−0.546686 + 0.837338i \(0.684111\pi\)
\(824\) 365.424i 0.443476i
\(825\) 0 0
\(826\) −343.458 −0.415808
\(827\) 1331.57i 1.61012i −0.593193 0.805060i \(-0.702133\pi\)
0.593193 0.805060i \(-0.297867\pi\)
\(828\) −492.691 −0.595037
\(829\) −578.195 −0.697461 −0.348730 0.937223i \(-0.613387\pi\)
−0.348730 + 0.937223i \(0.613387\pi\)
\(830\) 0 0
\(831\) 2.59740i 0.00312563i
\(832\) 985.896i 1.18497i
\(833\) 487.694i 0.585467i
\(834\) 0.850251 0.00101949
\(835\) 0 0
\(836\) −621.750 394.416i −0.743720 0.471789i
\(837\) −54.2883 −0.0648606
\(838\) 608.310i 0.725907i
\(839\) 779.704 0.929325 0.464663 0.885488i \(-0.346176\pi\)
0.464663 + 0.885488i \(0.346176\pi\)
\(840\) 0 0
\(841\) 768.412 0.913689
\(842\) 787.999i 0.935866i
\(843\) 20.9505i 0.0248523i
\(844\) 593.026i 0.702638i
\(845\) 0 0
\(846\) 197.523i 0.233478i
\(847\) −499.234 + 235.143i −0.589414 + 0.277619i
\(848\) −167.704 −0.197764
\(849\) 42.0680i 0.0495500i
\(850\) 0 0
\(851\) −1305.59 −1.53419
\(852\) −1.71026 −0.00200734
\(853\) 1330.04i 1.55925i 0.626250 + 0.779623i \(0.284589\pi\)
−0.626250 + 0.779623i \(0.715411\pi\)
\(854\) 154.515i 0.180931i
\(855\) 0 0
\(856\) 1123.45 1.31244
\(857\) 223.662i 0.260983i −0.991449 0.130491i \(-0.958345\pi\)
0.991449 0.130491i \(-0.0416555\pi\)
\(858\) −16.3359 + 25.7517i −0.0190396 + 0.0300136i
\(859\) −1512.14 −1.76035 −0.880174 0.474651i \(-0.842574\pi\)
−0.880174 + 0.474651i \(0.842574\pi\)
\(860\) 0 0
\(861\) −27.2842 −0.0316889
\(862\) −501.857 −0.582200
\(863\) 815.242 0.944661 0.472330 0.881422i \(-0.343413\pi\)
0.472330 + 0.881422i \(0.343413\pi\)
\(864\) 55.3993i 0.0641196i
\(865\) 0 0
\(866\) 26.3503i 0.0304276i
\(867\) 1.15441 0.00133150
\(868\) 224.146i 0.258233i
\(869\) 483.160 + 306.500i 0.555996 + 0.352704i
\(870\) 0 0
\(871\) 1882.85i 2.16171i
\(872\) 467.211 0.535793
\(873\) 197.979 0.226780
\(874\) −1540.86 −1.76299
\(875\) 0 0
\(876\) 6.95207i 0.00793615i
\(877\) 138.555i 0.157987i 0.996875 + 0.0789935i \(0.0251706\pi\)
−0.996875 + 0.0789935i \(0.974829\pi\)
\(878\) 1013.73 1.15459
\(879\) 1.18197i 0.00134467i
\(880\) 0 0
\(881\) 415.019 0.471077 0.235538 0.971865i \(-0.424315\pi\)
0.235538 + 0.971865i \(0.424315\pi\)
\(882\) 370.277i 0.419815i
\(883\) 285.257 0.323055 0.161527 0.986868i \(-0.448358\pi\)
0.161527 + 0.986868i \(0.448358\pi\)
\(884\) 534.361 0.604480
\(885\) 0 0
\(886\) 524.972i 0.592519i
\(887\) 405.942i 0.457657i −0.973467 0.228829i \(-0.926510\pi\)
0.973467 0.228829i \(-0.0734895\pi\)
\(888\) 43.6086i 0.0491088i
\(889\) 518.840 0.583622
\(890\) 0 0
\(891\) 475.198 749.093i 0.533331 0.840733i
\(892\) −545.886 −0.611980
\(893\) 539.814i 0.604495i
\(894\) 31.4564 0.0351861
\(895\) 0 0
\(896\) −93.8956 −0.104794
\(897\) 55.7688i 0.0621726i
\(898\) 829.697i 0.923939i
\(899\) 224.477i 0.249697i
\(900\) 0 0
\(901\) 573.288i 0.636279i
\(902\) 449.601 708.743i 0.498449 0.785746i
\(903\) 3.53889 0.00391903
\(904\) 1011.08i 1.11845i
\(905\) 0 0
\(906\) −22.8861 −0.0252606
\(907\) −1577.64 −1.73940 −0.869700 0.493581i \(-0.835688\pi\)
−0.869700 + 0.493581i \(0.835688\pi\)
\(908\) 17.8125i 0.0196173i
\(909\) 1464.97i 1.61163i
\(910\) 0 0
\(911\) −574.512 −0.630639 −0.315319 0.948986i \(-0.602112\pi\)
−0.315319 + 0.948986i \(0.602112\pi\)
\(912\) 20.7955i 0.0228021i
\(913\) 402.849 + 255.553i 0.441236 + 0.279905i
\(914\) −1164.77 −1.27436
\(915\) 0 0
\(916\) −663.905 −0.724787
\(917\) −527.207 −0.574926
\(918\) −52.0619 −0.0567123
\(919\) 354.240i 0.385462i 0.981252 + 0.192731i \(0.0617345\pi\)
−0.981252 + 0.192731i \(0.938266\pi\)
\(920\) 0 0
\(921\) 52.6571i 0.0571739i
\(922\) 128.446 0.139313
\(923\) 132.577i 0.143637i
\(924\) 9.05222 + 5.74240i 0.00979677 + 0.00621472i
\(925\) 0 0
\(926\) 74.4082i 0.0803544i
\(927\) 383.221 0.413399
\(928\) 229.071 0.246844
\(929\) −230.873 −0.248518 −0.124259 0.992250i \(-0.539655\pi\)
−0.124259 + 0.992250i \(0.539655\pi\)
\(930\) 0 0
\(931\) 1011.94i 1.08694i
\(932\) 505.442i 0.542319i
\(933\) −11.5850 −0.0124169
\(934\) 676.555i 0.724363i
\(935\) 0 0
\(936\) −1275.69 −1.36292
\(937\) 414.814i 0.442704i 0.975194 + 0.221352i \(0.0710470\pi\)
−0.975194 + 0.221352i \(0.928953\pi\)
\(938\) −757.400 −0.807463
\(939\) 33.0786 0.0352275
\(940\) 0 0
\(941\) 1428.08i 1.51762i 0.651315 + 0.758808i \(0.274218\pi\)
−0.651315 + 0.758808i \(0.725782\pi\)
\(942\) 42.8558i 0.0454945i
\(943\) 1534.88i 1.62766i
\(944\) −260.763 −0.276232
\(945\) 0 0
\(946\) −58.3155 + 91.9275i −0.0616443 + 0.0971749i
\(947\) −976.020 −1.03064 −0.515322 0.856997i \(-0.672328\pi\)
−0.515322 + 0.856997i \(0.672328\pi\)
\(948\) 11.1150i 0.0117247i
\(949\) 538.914 0.567876
\(950\) 0 0
\(951\) 27.8285 0.0292624
\(952\) 675.890i 0.709968i
\(953\) 1273.90i 1.33673i −0.743834 0.668364i \(-0.766995\pi\)
0.743834 0.668364i \(-0.233005\pi\)
\(954\) 435.263i 0.456250i
\(955\) 0 0
\(956\) 147.620i 0.154414i
\(957\) −9.06559 5.75089i −0.00947293 0.00600929i
\(958\) 266.178 0.277848
\(959\) 986.723i 1.02891i
\(960\) 0 0
\(961\) −266.806 −0.277634
\(962\) −1075.09 −1.11756
\(963\) 1178.16i 1.22343i
\(964\) 273.402i 0.283612i
\(965\) 0 0
\(966\) 22.4337 0.0232233
\(967\) 1586.32i 1.64045i −0.572038 0.820227i \(-0.693847\pi\)
0.572038 0.820227i \(-0.306153\pi\)
\(968\) −938.066 + 441.837i −0.969077 + 0.456443i
\(969\) 71.0887 0.0733629
\(970\) 0 0
\(971\) 662.523 0.682310 0.341155 0.940007i \(-0.389182\pi\)
0.341155 + 0.940007i \(0.389182\pi\)
\(972\) −51.8245 −0.0533174
\(973\) −23.1687 −0.0238116
\(974\) 535.924i 0.550230i
\(975\) 0 0
\(976\) 117.312i 0.120197i
\(977\) 1552.47 1.58902 0.794508 0.607254i \(-0.207729\pi\)
0.794508 + 0.607254i \(0.207729\pi\)
\(978\) 4.20713i 0.00430177i
\(979\) 434.876 685.531i 0.444204 0.700236i
\(980\) 0 0
\(981\) 489.965i 0.499455i
\(982\) 61.3901 0.0625154
\(983\) −862.208 −0.877119 −0.438560 0.898702i \(-0.644511\pi\)
−0.438560 + 0.898702i \(0.644511\pi\)
\(984\) −51.2673 −0.0521009
\(985\) 0 0
\(986\) 215.271i 0.218328i
\(987\) 7.85930i 0.00796281i
\(988\) 1108.77 1.12224
\(989\) 199.082i 0.201296i
\(990\) 0 0
\(991\) −1075.74 −1.08551 −0.542755 0.839891i \(-0.682619\pi\)
−0.542755 + 0.839891i \(0.682619\pi\)
\(992\) 708.401i 0.714113i
\(993\) 27.6528 0.0278477
\(994\) −53.3306 −0.0536526
\(995\) 0 0
\(996\) 9.26749i 0.00930470i
\(997\) 872.880i 0.875507i −0.899095 0.437753i \(-0.855774\pi\)
0.899095 0.437753i \(-0.144226\pi\)
\(998\) 335.985i 0.336658i
\(999\) −91.5317 −0.0916233
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.c.f.76.4 8
5.2 odd 4 275.3.d.c.274.10 16
5.3 odd 4 275.3.d.c.274.7 16
5.4 even 2 55.3.c.a.21.5 yes 8
11.10 odd 2 inner 275.3.c.f.76.5 8
15.14 odd 2 495.3.b.a.406.4 8
20.19 odd 2 880.3.j.a.241.5 8
55.32 even 4 275.3.d.c.274.8 16
55.43 even 4 275.3.d.c.274.9 16
55.54 odd 2 55.3.c.a.21.4 8
165.164 even 2 495.3.b.a.406.5 8
220.219 even 2 880.3.j.a.241.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.c.a.21.4 8 55.54 odd 2
55.3.c.a.21.5 yes 8 5.4 even 2
275.3.c.f.76.4 8 1.1 even 1 trivial
275.3.c.f.76.5 8 11.10 odd 2 inner
275.3.d.c.274.7 16 5.3 odd 4
275.3.d.c.274.8 16 55.32 even 4
275.3.d.c.274.9 16 55.43 even 4
275.3.d.c.274.10 16 5.2 odd 4
495.3.b.a.406.4 8 15.14 odd 2
495.3.b.a.406.5 8 165.164 even 2
880.3.j.a.241.5 8 20.19 odd 2
880.3.j.a.241.6 8 220.219 even 2