Properties

Label 275.2.z.c.224.1
Level $275$
Weight $2$
Character 275.224
Analytic conductor $2.196$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,2,Mod(49,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.z (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 224.1
Character \(\chi\) \(=\) 275.224
Dual form 275.2.z.c.124.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50618 + 2.07308i) q^{2} +(1.70486 + 0.553942i) q^{3} +(-1.41105 - 4.34277i) q^{4} +(-3.71620 + 2.69998i) q^{6} +(3.61485 - 1.17454i) q^{7} +(6.25410 + 2.03208i) q^{8} +(0.172643 + 0.125433i) q^{9} +(3.19489 + 0.890336i) q^{11} -8.18545i q^{12} +(-2.64361 + 3.63862i) q^{13} +(-3.00971 + 9.26295i) q^{14} +(-6.24414 + 4.53663i) q^{16} +(2.94602 + 4.05485i) q^{17} +(-0.520065 + 0.168979i) q^{18} +(1.06936 - 3.29116i) q^{19} +6.81344 q^{21} +(-6.65782 + 5.28226i) q^{22} +0.105727i q^{23} +(9.53671 + 6.92883i) q^{24} +(-3.56139 - 10.9608i) q^{26} +(-2.93613 - 4.04124i) q^{27} +(-10.2015 - 14.0411i) q^{28} +(0.726214 + 2.23506i) q^{29} +(-3.83900 - 2.78920i) q^{31} -6.62570i q^{32} +(4.95364 + 3.28768i) q^{33} -12.8433 q^{34} +(0.301117 - 0.926742i) q^{36} +(-5.32675 + 1.73077i) q^{37} +(5.21219 + 7.17396i) q^{38} +(-6.52257 + 4.73892i) q^{39} +(0.283345 - 0.872045i) q^{41} +(-10.2623 + 14.1248i) q^{42} -4.46162i q^{43} +(-0.641627 - 15.1310i) q^{44} +(-0.219181 - 0.159244i) q^{46} +(-1.19225 - 0.387384i) q^{47} +(-13.1584 + 4.27543i) q^{48} +(6.02449 - 4.37704i) q^{49} +(2.77640 + 8.54487i) q^{51} +(19.5319 + 6.34631i) q^{52} +(-3.23200 + 4.44847i) q^{53} +12.8002 q^{54} +24.9944 q^{56} +(3.64622 - 5.01860i) q^{57} +(-5.72727 - 1.86090i) q^{58} +(0.365582 + 1.12515i) q^{59} +(5.92690 - 4.30614i) q^{61} +(11.5645 - 3.75752i) q^{62} +(0.771405 + 0.250645i) q^{63} +(1.24734 + 0.906248i) q^{64} +(-14.2767 + 5.31745i) q^{66} -7.84414i q^{67} +(13.4523 - 18.5155i) q^{68} +(-0.0585667 + 0.180250i) q^{69} +(1.76384 - 1.28150i) q^{71} +(0.824840 + 1.13529i) q^{72} +(-8.51445 + 2.76651i) q^{73} +(4.43504 - 13.6496i) q^{74} -15.8017 q^{76} +(12.5948 - 0.534080i) q^{77} -20.6595i q^{78} +(11.6357 + 8.45380i) q^{79} +(-2.96491 - 9.12506i) q^{81} +(1.38105 + 1.90086i) q^{82} +(2.76930 + 3.81162i) q^{83} +(-9.61410 - 29.5892i) q^{84} +(9.24930 + 6.72001i) q^{86} +4.21274i q^{87} +(18.1719 + 12.0605i) q^{88} +0.172993 q^{89} +(-5.28256 + 16.2581i) q^{91} +(0.459148 - 0.149186i) q^{92} +(-4.99990 - 6.88177i) q^{93} +(2.59882 - 1.88815i) q^{94} +(3.67026 - 11.2959i) q^{96} +(2.62178 - 3.60857i) q^{97} +19.0819i q^{98} +(0.439899 + 0.554454i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{4} - 6 q^{6} - 16 q^{9} - 10 q^{11} - 6 q^{14} - 8 q^{16} + 26 q^{19} + 20 q^{21} + 86 q^{24} - 68 q^{26} + 22 q^{29} - 20 q^{31} - 40 q^{34} + 6 q^{36} - 6 q^{39} + 50 q^{41} + 2 q^{44} + 80 q^{46}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.50618 + 2.07308i −1.06503 + 1.46589i −0.190025 + 0.981779i \(0.560857\pi\)
−0.875006 + 0.484111i \(0.839143\pi\)
\(3\) 1.70486 + 0.553942i 0.984301 + 0.319819i 0.756575 0.653906i \(-0.226871\pi\)
0.227726 + 0.973725i \(0.426871\pi\)
\(4\) −1.41105 4.34277i −0.705525 2.17138i
\(5\) 0 0
\(6\) −3.71620 + 2.69998i −1.51713 + 1.10226i
\(7\) 3.61485 1.17454i 1.36628 0.443933i 0.468148 0.883650i \(-0.344921\pi\)
0.898136 + 0.439717i \(0.144921\pi\)
\(8\) 6.25410 + 2.03208i 2.21116 + 0.718449i
\(9\) 0.172643 + 0.125433i 0.0575478 + 0.0418109i
\(10\) 0 0
\(11\) 3.19489 + 0.890336i 0.963295 + 0.268446i
\(12\) 8.18545i 2.36294i
\(13\) −2.64361 + 3.63862i −0.733205 + 1.00917i 0.265776 + 0.964035i \(0.414372\pi\)
−0.998981 + 0.0451354i \(0.985628\pi\)
\(14\) −3.00971 + 9.26295i −0.804380 + 2.47563i
\(15\) 0 0
\(16\) −6.24414 + 4.53663i −1.56103 + 1.13416i
\(17\) 2.94602 + 4.05485i 0.714515 + 0.983445i 0.999688 + 0.0249691i \(0.00794875\pi\)
−0.285174 + 0.958476i \(0.592051\pi\)
\(18\) −0.520065 + 0.168979i −0.122580 + 0.0398288i
\(19\) 1.06936 3.29116i 0.245329 0.755044i −0.750254 0.661150i \(-0.770069\pi\)
0.995582 0.0938935i \(-0.0299313\pi\)
\(20\) 0 0
\(21\) 6.81344 1.48681
\(22\) −6.65782 + 5.28226i −1.41945 + 1.12618i
\(23\) 0.105727i 0.0220456i 0.999939 + 0.0110228i \(0.00350874\pi\)
−0.999939 + 0.0110228i \(0.996491\pi\)
\(24\) 9.53671 + 6.92883i 1.94667 + 1.41434i
\(25\) 0 0
\(26\) −3.56139 10.9608i −0.698446 2.14960i
\(27\) −2.93613 4.04124i −0.565059 0.777737i
\(28\) −10.2015 14.0411i −1.92790 2.65352i
\(29\) 0.726214 + 2.23506i 0.134855 + 0.415040i 0.995567 0.0940512i \(-0.0299817\pi\)
−0.860713 + 0.509091i \(0.829982\pi\)
\(30\) 0 0
\(31\) −3.83900 2.78920i −0.689504 0.500954i 0.186993 0.982361i \(-0.440126\pi\)
−0.876497 + 0.481407i \(0.840126\pi\)
\(32\) 6.62570i 1.17127i
\(33\) 4.95364 + 3.28768i 0.862318 + 0.572312i
\(34\) −12.8433 −2.20260
\(35\) 0 0
\(36\) 0.301117 0.926742i 0.0501861 0.154457i
\(37\) −5.32675 + 1.73077i −0.875713 + 0.284536i −0.712176 0.702001i \(-0.752290\pi\)
−0.163537 + 0.986537i \(0.552290\pi\)
\(38\) 5.21219 + 7.17396i 0.845528 + 1.16377i
\(39\) −6.52257 + 4.73892i −1.04445 + 0.758835i
\(40\) 0 0
\(41\) 0.283345 0.872045i 0.0442510 0.136191i −0.926490 0.376319i \(-0.877190\pi\)
0.970741 + 0.240129i \(0.0771896\pi\)
\(42\) −10.2623 + 14.1248i −1.58350 + 2.17951i
\(43\) 4.46162i 0.680390i −0.940355 0.340195i \(-0.889507\pi\)
0.940355 0.340195i \(-0.110493\pi\)
\(44\) −0.641627 15.1310i −0.0967289 2.28108i
\(45\) 0 0
\(46\) −0.219181 0.159244i −0.0323165 0.0234793i
\(47\) −1.19225 0.387384i −0.173907 0.0565058i 0.220769 0.975326i \(-0.429143\pi\)
−0.394676 + 0.918820i \(0.629143\pi\)
\(48\) −13.1584 + 4.27543i −1.89925 + 0.617105i
\(49\) 6.02449 4.37704i 0.860641 0.625292i
\(50\) 0 0
\(51\) 2.77640 + 8.54487i 0.388773 + 1.19652i
\(52\) 19.5319 + 6.34631i 2.70859 + 0.880074i
\(53\) −3.23200 + 4.44847i −0.443949 + 0.611044i −0.971084 0.238738i \(-0.923266\pi\)
0.527135 + 0.849782i \(0.323266\pi\)
\(54\) 12.8002 1.74188
\(55\) 0 0
\(56\) 24.9944 3.34002
\(57\) 3.64622 5.01860i 0.482954 0.664730i
\(58\) −5.72727 1.86090i −0.752027 0.244348i
\(59\) 0.365582 + 1.12515i 0.0475947 + 0.146481i 0.972030 0.234859i \(-0.0754627\pi\)
−0.924435 + 0.381340i \(0.875463\pi\)
\(60\) 0 0
\(61\) 5.92690 4.30614i 0.758861 0.551345i −0.139699 0.990194i \(-0.544614\pi\)
0.898561 + 0.438849i \(0.144614\pi\)
\(62\) 11.5645 3.75752i 1.46869 0.477206i
\(63\) 0.771405 + 0.250645i 0.0971879 + 0.0315783i
\(64\) 1.24734 + 0.906248i 0.155918 + 0.113281i
\(65\) 0 0
\(66\) −14.2767 + 5.31745i −1.75734 + 0.654533i
\(67\) 7.84414i 0.958315i −0.877729 0.479157i \(-0.840942\pi\)
0.877729 0.479157i \(-0.159058\pi\)
\(68\) 13.4523 18.5155i 1.63133 2.24533i
\(69\) −0.0585667 + 0.180250i −0.00705060 + 0.0216995i
\(70\) 0 0
\(71\) 1.76384 1.28150i 0.209329 0.152086i −0.478181 0.878261i \(-0.658704\pi\)
0.687510 + 0.726175i \(0.258704\pi\)
\(72\) 0.824840 + 1.13529i 0.0972083 + 0.133796i
\(73\) −8.51445 + 2.76651i −0.996541 + 0.323796i −0.761483 0.648185i \(-0.775528\pi\)
−0.235059 + 0.971981i \(0.575528\pi\)
\(74\) 4.43504 13.6496i 0.515563 1.58674i
\(75\) 0 0
\(76\) −15.8017 −1.81257
\(77\) 12.5948 0.534080i 1.43531 0.0608640i
\(78\) 20.6595i 2.33923i
\(79\) 11.6357 + 8.45380i 1.30911 + 0.951127i 1.00000 0.000102366i \(3.25841e-5\pi\)
0.309114 + 0.951025i \(0.399967\pi\)
\(80\) 0 0
\(81\) −2.96491 9.12506i −0.329435 1.01390i
\(82\) 1.38105 + 1.90086i 0.152512 + 0.209914i
\(83\) 2.76930 + 3.81162i 0.303971 + 0.418380i 0.933489 0.358606i \(-0.116748\pi\)
−0.629518 + 0.776986i \(0.716748\pi\)
\(84\) −9.61410 29.5892i −1.04898 3.22844i
\(85\) 0 0
\(86\) 9.24930 + 6.72001i 0.997378 + 0.724637i
\(87\) 4.21274i 0.451653i
\(88\) 18.1719 + 12.0605i 1.93713 + 1.28566i
\(89\) 0.172993 0.0183372 0.00916862 0.999958i \(-0.497081\pi\)
0.00916862 + 0.999958i \(0.497081\pi\)
\(90\) 0 0
\(91\) −5.28256 + 16.2581i −0.553763 + 1.70431i
\(92\) 0.459148 0.149186i 0.0478695 0.0155537i
\(93\) −4.99990 6.88177i −0.518465 0.713606i
\(94\) 2.59882 1.88815i 0.268048 0.194748i
\(95\) 0 0
\(96\) 3.67026 11.2959i 0.374594 1.15288i
\(97\) 2.62178 3.60857i 0.266201 0.366394i −0.654902 0.755714i \(-0.727290\pi\)
0.921103 + 0.389320i \(0.127290\pi\)
\(98\) 19.0819i 1.92756i
\(99\) 0.439899 + 0.554454i 0.0442115 + 0.0557247i
\(100\) 0 0
\(101\) −7.12354 5.17556i −0.708819 0.514987i 0.173973 0.984750i \(-0.444339\pi\)
−0.882793 + 0.469763i \(0.844339\pi\)
\(102\) −21.8960 7.11444i −2.16803 0.704434i
\(103\) 15.6677 5.09074i 1.54378 0.501605i 0.591366 0.806403i \(-0.298589\pi\)
0.952417 + 0.304798i \(0.0985890\pi\)
\(104\) −23.9274 + 17.3843i −2.34627 + 1.70467i
\(105\) 0 0
\(106\) −4.35406 13.4004i −0.422903 1.30156i
\(107\) −16.3319 5.30657i −1.57887 0.513005i −0.617103 0.786882i \(-0.711694\pi\)
−0.961765 + 0.273877i \(0.911694\pi\)
\(108\) −13.4071 + 18.4533i −1.29010 + 1.77567i
\(109\) −17.9060 −1.71508 −0.857542 0.514414i \(-0.828009\pi\)
−0.857542 + 0.514414i \(0.828009\pi\)
\(110\) 0 0
\(111\) −10.0401 −0.952965
\(112\) −17.2432 + 23.7332i −1.62933 + 2.24258i
\(113\) −13.6155 4.42393i −1.28083 0.416168i −0.411960 0.911202i \(-0.635156\pi\)
−0.868874 + 0.495034i \(0.835156\pi\)
\(114\) 4.91209 + 15.1178i 0.460059 + 1.41592i
\(115\) 0 0
\(116\) 8.68161 6.30756i 0.806067 0.585642i
\(117\) −0.912803 + 0.296588i −0.0843886 + 0.0274195i
\(118\) −2.88315 0.936793i −0.265416 0.0862388i
\(119\) 15.4120 + 11.1975i 1.41281 + 1.02647i
\(120\) 0 0
\(121\) 9.41460 + 5.68904i 0.855873 + 0.517186i
\(122\) 18.7728i 1.69961i
\(123\) 0.966125 1.32976i 0.0871126 0.119900i
\(124\) −6.69581 + 20.6076i −0.601301 + 1.85061i
\(125\) 0 0
\(126\) −1.68148 + 1.22167i −0.149798 + 0.108835i
\(127\) −3.27396 4.50622i −0.290517 0.399863i 0.638665 0.769485i \(-0.279487\pi\)
−0.929182 + 0.369622i \(0.879487\pi\)
\(128\) 8.84538 2.87404i 0.781828 0.254031i
\(129\) 2.47148 7.60643i 0.217602 0.669709i
\(130\) 0 0
\(131\) −13.8367 −1.20892 −0.604458 0.796637i \(-0.706610\pi\)
−0.604458 + 0.796637i \(0.706610\pi\)
\(132\) 7.28780 26.1516i 0.634321 2.27620i
\(133\) 13.1530i 1.14051i
\(134\) 16.2616 + 11.8147i 1.40478 + 1.02064i
\(135\) 0 0
\(136\) 10.1849 + 31.3460i 0.873351 + 2.68790i
\(137\) −5.84522 8.04525i −0.499390 0.687352i 0.482695 0.875789i \(-0.339658\pi\)
−0.982085 + 0.188437i \(0.939658\pi\)
\(138\) −0.285461 0.392903i −0.0243000 0.0334461i
\(139\) −0.627493 1.93122i −0.0532232 0.163804i 0.920912 0.389771i \(-0.127446\pi\)
−0.974135 + 0.225967i \(0.927446\pi\)
\(140\) 0 0
\(141\) −1.81802 1.32087i −0.153105 0.111237i
\(142\) 5.58676i 0.468830i
\(143\) −11.6856 + 9.27126i −0.977201 + 0.775302i
\(144\) −1.64705 −0.137254
\(145\) 0 0
\(146\) 7.08911 21.8180i 0.586699 1.80567i
\(147\) 12.6955 4.12503i 1.04711 0.340227i
\(148\) 15.0326 + 20.6907i 1.23568 + 1.70076i
\(149\) 8.59185 6.24234i 0.703872 0.511393i −0.177319 0.984153i \(-0.556742\pi\)
0.881191 + 0.472761i \(0.156742\pi\)
\(150\) 0 0
\(151\) −1.06131 + 3.26639i −0.0863684 + 0.265815i −0.984908 0.173077i \(-0.944629\pi\)
0.898540 + 0.438892i \(0.144629\pi\)
\(152\) 13.3758 18.4102i 1.08492 1.49327i
\(153\) 1.06957i 0.0864696i
\(154\) −17.8628 + 26.9144i −1.43943 + 2.16883i
\(155\) 0 0
\(156\) 29.7837 + 21.6391i 2.38460 + 1.73252i
\(157\) 0.283971 + 0.0922677i 0.0226633 + 0.00736377i 0.320327 0.947307i \(-0.396207\pi\)
−0.297663 + 0.954671i \(0.596207\pi\)
\(158\) −35.0509 + 11.3887i −2.78850 + 0.906038i
\(159\) −7.97430 + 5.79367i −0.632403 + 0.459468i
\(160\) 0 0
\(161\) 0.124180 + 0.382187i 0.00978677 + 0.0301206i
\(162\) 23.3827 + 7.59750i 1.83712 + 0.596916i
\(163\) 8.38166 11.5364i 0.656502 0.903597i −0.342857 0.939387i \(-0.611395\pi\)
0.999359 + 0.0357901i \(0.0113948\pi\)
\(164\) −4.18690 −0.326942
\(165\) 0 0
\(166\) −12.0729 −0.937037
\(167\) −10.5788 + 14.5604i −0.818611 + 1.12672i 0.171326 + 0.985214i \(0.445195\pi\)
−0.989937 + 0.141507i \(0.954805\pi\)
\(168\) 42.6119 + 13.8455i 3.28758 + 1.06820i
\(169\) −2.23363 6.87441i −0.171818 0.528801i
\(170\) 0 0
\(171\) 0.597437 0.434064i 0.0456872 0.0331937i
\(172\) −19.3758 + 6.29557i −1.47739 + 0.480033i
\(173\) −8.32510 2.70499i −0.632946 0.205657i −0.0250663 0.999686i \(-0.507980\pi\)
−0.607880 + 0.794029i \(0.707980\pi\)
\(174\) −8.73335 6.34515i −0.662074 0.481025i
\(175\) 0 0
\(176\) −23.9884 + 8.93465i −1.80820 + 0.673474i
\(177\) 2.12073i 0.159404i
\(178\) −0.260559 + 0.358629i −0.0195297 + 0.0268804i
\(179\) 7.07647 21.7791i 0.528920 1.62785i −0.227511 0.973776i \(-0.573059\pi\)
0.756431 0.654073i \(-0.226941\pi\)
\(180\) 0 0
\(181\) −13.9721 + 10.1513i −1.03854 + 0.754542i −0.970000 0.243106i \(-0.921834\pi\)
−0.0685389 + 0.997648i \(0.521834\pi\)
\(182\) −25.7478 35.4388i −1.90855 2.62690i
\(183\) 12.4899 4.05821i 0.923279 0.299991i
\(184\) −0.214846 + 0.661228i −0.0158387 + 0.0487464i
\(185\) 0 0
\(186\) 21.7972 1.59825
\(187\) 5.80202 + 15.5777i 0.424286 + 1.13916i
\(188\) 5.72427i 0.417485i
\(189\) −15.3603 11.1599i −1.11729 0.811762i
\(190\) 0 0
\(191\) −5.62462 17.3108i −0.406984 1.25257i −0.919228 0.393727i \(-0.871186\pi\)
0.512244 0.858840i \(-0.328814\pi\)
\(192\) 1.62454 + 2.23598i 0.117241 + 0.161368i
\(193\) 6.48687 + 8.92841i 0.466935 + 0.642681i 0.975929 0.218089i \(-0.0699824\pi\)
−0.508994 + 0.860770i \(0.669982\pi\)
\(194\) 3.53198 + 10.8703i 0.253581 + 0.780443i
\(195\) 0 0
\(196\) −27.5093 19.9867i −1.96495 1.42762i
\(197\) 15.7213i 1.12009i 0.828461 + 0.560047i \(0.189217\pi\)
−0.828461 + 0.560047i \(0.810783\pi\)
\(198\) −1.81200 + 0.0768375i −0.128773 + 0.00546060i
\(199\) −4.44523 −0.315114 −0.157557 0.987510i \(-0.550362\pi\)
−0.157557 + 0.987510i \(0.550362\pi\)
\(200\) 0 0
\(201\) 4.34521 13.3732i 0.306487 0.943270i
\(202\) 21.4587 6.97236i 1.50983 0.490573i
\(203\) 5.25031 + 7.22643i 0.368499 + 0.507196i
\(204\) 33.1908 24.1145i 2.32382 1.68835i
\(205\) 0 0
\(206\) −13.0449 + 40.1480i −0.908879 + 2.79724i
\(207\) −0.0132616 + 0.0182531i −0.000921747 + 0.00126868i
\(208\) 34.7131i 2.40692i
\(209\) 6.34673 9.56279i 0.439012 0.661472i
\(210\) 0 0
\(211\) −1.87055 1.35903i −0.128774 0.0935597i 0.521534 0.853231i \(-0.325360\pi\)
−0.650308 + 0.759671i \(0.725360\pi\)
\(212\) 23.8792 + 7.75881i 1.64003 + 0.532877i
\(213\) 3.71698 1.20772i 0.254683 0.0827515i
\(214\) 35.5998 25.8648i 2.43355 1.76808i
\(215\) 0 0
\(216\) −10.1508 31.2408i −0.690671 2.12567i
\(217\) −17.1534 5.57348i −1.16445 0.378353i
\(218\) 26.9697 37.1206i 1.82662 2.51413i
\(219\) −16.0484 −1.08445
\(220\) 0 0
\(221\) −22.5422 −1.51635
\(222\) 15.1222 20.8140i 1.01494 1.39694i
\(223\) 9.79327 + 3.18203i 0.655806 + 0.213084i 0.617972 0.786200i \(-0.287954\pi\)
0.0378334 + 0.999284i \(0.487954\pi\)
\(224\) −7.78212 23.9509i −0.519965 1.60029i
\(225\) 0 0
\(226\) 29.6785 21.5627i 1.97419 1.43433i
\(227\) −6.82700 + 2.21823i −0.453124 + 0.147229i −0.526682 0.850062i \(-0.676564\pi\)
0.0735589 + 0.997291i \(0.476564\pi\)
\(228\) −26.9396 8.75321i −1.78412 0.579696i
\(229\) 1.66606 + 1.21047i 0.110097 + 0.0799899i 0.641471 0.767147i \(-0.278324\pi\)
−0.531375 + 0.847137i \(0.678324\pi\)
\(230\) 0 0
\(231\) 21.7682 + 6.06625i 1.43224 + 0.399130i
\(232\) 15.4540i 1.01461i
\(233\) 10.3371 14.2278i 0.677205 0.932093i −0.322691 0.946504i \(-0.604587\pi\)
0.999896 + 0.0144113i \(0.00458742\pi\)
\(234\) 0.759997 2.33903i 0.0496826 0.152907i
\(235\) 0 0
\(236\) 4.37039 3.17527i 0.284488 0.206693i
\(237\) 15.1543 + 20.8580i 0.984374 + 1.35488i
\(238\) −46.4265 + 15.0849i −3.00938 + 0.977808i
\(239\) −5.77519 + 17.7742i −0.373566 + 1.14972i 0.570875 + 0.821037i \(0.306604\pi\)
−0.944441 + 0.328680i \(0.893396\pi\)
\(240\) 0 0
\(241\) 30.1916 1.94481 0.972406 0.233296i \(-0.0749510\pi\)
0.972406 + 0.233296i \(0.0749510\pi\)
\(242\) −25.9740 + 10.9485i −1.66967 + 0.703797i
\(243\) 2.21359i 0.142002i
\(244\) −27.0637 19.6629i −1.73258 1.25879i
\(245\) 0 0
\(246\) 1.30154 + 4.00571i 0.0829829 + 0.255395i
\(247\) 9.14828 + 12.5915i 0.582091 + 0.801180i
\(248\) −18.3416 25.2451i −1.16469 1.60306i
\(249\) 2.60986 + 8.03231i 0.165393 + 0.509027i
\(250\) 0 0
\(251\) 20.6391 + 14.9952i 1.30273 + 0.946489i 0.999978 0.00657998i \(-0.00209449\pi\)
0.302752 + 0.953069i \(0.402094\pi\)
\(252\) 3.70370i 0.233311i
\(253\) −0.0941326 + 0.337786i −0.00591806 + 0.0212364i
\(254\) 14.2730 0.895565
\(255\) 0 0
\(256\) −8.31752 + 25.5987i −0.519845 + 1.59992i
\(257\) 22.7699 7.39839i 1.42035 0.461499i 0.504635 0.863333i \(-0.331627\pi\)
0.915713 + 0.401834i \(0.131627\pi\)
\(258\) 12.0463 + 16.5803i 0.749967 + 1.03224i
\(259\) −17.2226 + 12.5129i −1.07016 + 0.777515i
\(260\) 0 0
\(261\) −0.154973 + 0.476959i −0.00959260 + 0.0295230i
\(262\) 20.8406 28.6846i 1.28753 1.77214i
\(263\) 26.7696i 1.65069i 0.564631 + 0.825343i \(0.309018\pi\)
−0.564631 + 0.825343i \(0.690982\pi\)
\(264\) 24.2997 + 30.6277i 1.49555 + 1.88500i
\(265\) 0 0
\(266\) 27.2673 + 19.8109i 1.67187 + 1.21468i
\(267\) 0.294929 + 0.0958283i 0.0180494 + 0.00586459i
\(268\) −34.0653 + 11.0685i −2.08087 + 0.676115i
\(269\) −4.82647 + 3.50664i −0.294275 + 0.213803i −0.725120 0.688623i \(-0.758216\pi\)
0.430845 + 0.902426i \(0.358216\pi\)
\(270\) 0 0
\(271\) −2.31566 7.12688i −0.140667 0.432927i 0.855762 0.517370i \(-0.173089\pi\)
−0.996428 + 0.0844429i \(0.973089\pi\)
\(272\) −36.7907 11.9540i −2.23076 0.724819i
\(273\) −18.0121 + 24.7915i −1.09014 + 1.50045i
\(274\) 25.4824 1.53945
\(275\) 0 0
\(276\) 0.865424 0.0520924
\(277\) −0.847908 + 1.16704i −0.0509458 + 0.0701209i −0.833730 0.552173i \(-0.813799\pi\)
0.782784 + 0.622293i \(0.213799\pi\)
\(278\) 4.94871 + 1.60793i 0.296804 + 0.0964373i
\(279\) −0.312921 0.963072i −0.0187341 0.0576576i
\(280\) 0 0
\(281\) 0.193576 0.140641i 0.0115478 0.00838994i −0.581996 0.813191i \(-0.697728\pi\)
0.593544 + 0.804801i \(0.297728\pi\)
\(282\) 5.47655 1.77944i 0.326124 0.105964i
\(283\) 5.02049 + 1.63126i 0.298437 + 0.0969680i 0.454408 0.890794i \(-0.349851\pi\)
−0.155971 + 0.987762i \(0.549851\pi\)
\(284\) −8.05414 5.85167i −0.477925 0.347233i
\(285\) 0 0
\(286\) −1.61942 38.1895i −0.0957583 2.25819i
\(287\) 3.48511i 0.205720i
\(288\) 0.831079 1.14388i 0.0489718 0.0674039i
\(289\) −2.50947 + 7.72336i −0.147616 + 0.454315i
\(290\) 0 0
\(291\) 6.46870 4.69979i 0.379202 0.275506i
\(292\) 24.0287 + 33.0726i 1.40617 + 1.93543i
\(293\) −14.2619 + 4.63398i −0.833191 + 0.270720i −0.694389 0.719600i \(-0.744325\pi\)
−0.138802 + 0.990320i \(0.544325\pi\)
\(294\) −10.5703 + 32.5319i −0.616470 + 1.89730i
\(295\) 0 0
\(296\) −36.8311 −2.14077
\(297\) −5.78255 15.5255i −0.335538 0.900878i
\(298\) 27.2137i 1.57645i
\(299\) −0.384700 0.279501i −0.0222478 0.0161640i
\(300\) 0 0
\(301\) −5.24033 16.1281i −0.302048 0.929607i
\(302\) −5.17296 7.11996i −0.297670 0.409708i
\(303\) −9.27768 12.7696i −0.532989 0.733596i
\(304\) 8.25353 + 25.4018i 0.473372 + 1.45689i
\(305\) 0 0
\(306\) −2.21731 1.61097i −0.126755 0.0920929i
\(307\) 2.11034i 0.120443i 0.998185 + 0.0602217i \(0.0191808\pi\)
−0.998185 + 0.0602217i \(0.980819\pi\)
\(308\) −20.0912 53.9425i −1.14480 3.07366i
\(309\) 29.5312 1.67997
\(310\) 0 0
\(311\) −5.14858 + 15.8457i −0.291949 + 0.898528i 0.692280 + 0.721629i \(0.256606\pi\)
−0.984229 + 0.176898i \(0.943394\pi\)
\(312\) −50.4227 + 16.3833i −2.85462 + 0.927523i
\(313\) −17.0927 23.5261i −0.966137 1.32977i −0.943974 0.330020i \(-0.892945\pi\)
−0.0221632 0.999754i \(-0.507055\pi\)
\(314\) −0.618991 + 0.449723i −0.0349317 + 0.0253793i
\(315\) 0 0
\(316\) 20.2944 62.4597i 1.14165 3.51363i
\(317\) −10.7662 + 14.8184i −0.604689 + 0.832282i −0.996127 0.0879217i \(-0.971977\pi\)
0.391439 + 0.920204i \(0.371977\pi\)
\(318\) 25.2577i 1.41638i
\(319\) 0.330221 + 7.78733i 0.0184888 + 0.436007i
\(320\) 0 0
\(321\) −24.9041 18.0939i −1.39001 1.00990i
\(322\) −0.979344 0.318208i −0.0545767 0.0177330i
\(323\) 16.4955 5.35972i 0.917835 0.298223i
\(324\) −35.4444 + 25.7518i −1.96913 + 1.43066i
\(325\) 0 0
\(326\) 11.2915 + 34.7517i 0.625379 + 1.92472i
\(327\) −30.5272 9.91890i −1.68816 0.548516i
\(328\) 3.54413 4.87808i 0.195692 0.269347i
\(329\) −4.76479 −0.262691
\(330\) 0 0
\(331\) 21.5599 1.18504 0.592520 0.805556i \(-0.298133\pi\)
0.592520 + 0.805556i \(0.298133\pi\)
\(332\) 12.6454 17.4048i 0.694004 0.955214i
\(333\) −1.13672 0.369344i −0.0622921 0.0202399i
\(334\) −14.2514 43.8614i −0.779803 2.39999i
\(335\) 0 0
\(336\) −42.5440 + 30.9101i −2.32097 + 1.68628i
\(337\) −13.3732 + 4.34521i −0.728484 + 0.236699i −0.649697 0.760193i \(-0.725104\pi\)
−0.0787861 + 0.996892i \(0.525104\pi\)
\(338\) 17.6155 + 5.72362i 0.958156 + 0.311324i
\(339\) −20.7618 15.0844i −1.12763 0.819270i
\(340\) 0 0
\(341\) −9.78185 12.3292i −0.529717 0.667662i
\(342\) 1.89232i 0.102325i
\(343\) 0.997912 1.37351i 0.0538822 0.0741625i
\(344\) 9.06637 27.9034i 0.488826 1.50445i
\(345\) 0 0
\(346\) 18.1468 13.1844i 0.975578 0.708799i
\(347\) 16.8399 + 23.1781i 0.904013 + 1.24427i 0.969170 + 0.246392i \(0.0792451\pi\)
−0.0651572 + 0.997875i \(0.520755\pi\)
\(348\) 18.2949 5.94439i 0.980712 0.318653i
\(349\) 5.53826 17.0450i 0.296456 0.912399i −0.686272 0.727345i \(-0.740754\pi\)
0.982728 0.185054i \(-0.0592459\pi\)
\(350\) 0 0
\(351\) 22.4665 1.19917
\(352\) 5.89910 21.1684i 0.314423 1.12828i
\(353\) 24.7757i 1.31868i 0.751845 + 0.659339i \(0.229164\pi\)
−0.751845 + 0.659339i \(0.770836\pi\)
\(354\) −4.39644 3.19420i −0.233668 0.169770i
\(355\) 0 0
\(356\) −0.244102 0.751269i −0.0129374 0.0398172i
\(357\) 20.0725 + 27.6274i 1.06235 + 1.46220i
\(358\) 34.4915 + 47.4735i 1.82293 + 2.50905i
\(359\) 3.22994 + 9.94073i 0.170470 + 0.524652i 0.999398 0.0347037i \(-0.0110487\pi\)
−0.828928 + 0.559355i \(0.811049\pi\)
\(360\) 0 0
\(361\) 5.68314 + 4.12904i 0.299112 + 0.217318i
\(362\) 44.2551i 2.32600i
\(363\) 12.8992 + 14.9142i 0.677031 + 0.782791i
\(364\) 78.0589 4.09140
\(365\) 0 0
\(366\) −10.3990 + 32.0050i −0.543567 + 1.67293i
\(367\) −14.4514 + 4.69553i −0.754355 + 0.245105i −0.660854 0.750514i \(-0.729806\pi\)
−0.0935010 + 0.995619i \(0.529806\pi\)
\(368\) −0.479645 0.660174i −0.0250032 0.0344140i
\(369\) 0.158300 0.115012i 0.00824079 0.00598729i
\(370\) 0 0
\(371\) −6.45831 + 19.8766i −0.335299 + 1.03194i
\(372\) −22.8308 + 31.4239i −1.18372 + 1.62925i
\(373\) 21.1774i 1.09653i −0.836306 0.548263i \(-0.815289\pi\)
0.836306 0.548263i \(-0.184711\pi\)
\(374\) −41.0328 11.4348i −2.12176 0.591281i
\(375\) 0 0
\(376\) −6.66924 4.84548i −0.343940 0.249887i
\(377\) −10.0523 3.26620i −0.517722 0.168218i
\(378\) 46.2707 15.0343i 2.37991 0.773279i
\(379\) −28.4486 + 20.6691i −1.46131 + 1.06170i −0.478287 + 0.878204i \(0.658742\pi\)
−0.983020 + 0.183498i \(0.941258\pi\)
\(380\) 0 0
\(381\) −3.08546 9.49606i −0.158073 0.486498i
\(382\) 44.3584 + 14.4129i 2.26958 + 0.737430i
\(383\) −1.16961 + 1.60983i −0.0597642 + 0.0822584i −0.837853 0.545896i \(-0.816189\pi\)
0.778089 + 0.628154i \(0.216189\pi\)
\(384\) 16.6722 0.850799
\(385\) 0 0
\(386\) −28.2797 −1.43940
\(387\) 0.559633 0.770268i 0.0284477 0.0391549i
\(388\) −19.3706 6.29390i −0.983394 0.319524i
\(389\) 1.87218 + 5.76197i 0.0949231 + 0.292143i 0.987234 0.159279i \(-0.0509169\pi\)
−0.892311 + 0.451422i \(0.850917\pi\)
\(390\) 0 0
\(391\) −0.428707 + 0.311474i −0.0216807 + 0.0157519i
\(392\) 46.5723 15.1322i 2.35226 0.764294i
\(393\) −23.5896 7.66473i −1.18994 0.386634i
\(394\) −32.5915 23.6791i −1.64194 1.19294i
\(395\) 0 0
\(396\) 1.78714 2.69274i 0.0898074 0.135315i
\(397\) 35.0663i 1.75993i −0.475040 0.879964i \(-0.657566\pi\)
0.475040 0.879964i \(-0.342434\pi\)
\(398\) 6.69533 9.21534i 0.335607 0.461923i
\(399\) 7.28603 22.4241i 0.364758 1.12261i
\(400\) 0 0
\(401\) −13.3283 + 9.68359i −0.665585 + 0.483576i −0.868544 0.495612i \(-0.834944\pi\)
0.202960 + 0.979187i \(0.434944\pi\)
\(402\) 21.1790 + 29.1504i 1.05631 + 1.45389i
\(403\) 20.2976 6.59510i 1.01110 0.328525i
\(404\) −12.4246 + 38.2389i −0.618145 + 1.90245i
\(405\) 0 0
\(406\) −22.8889 −1.13596
\(407\) −18.5593 + 0.787007i −0.919952 + 0.0390105i
\(408\) 59.0824i 2.92501i
\(409\) 3.48714 + 2.53356i 0.172428 + 0.125276i 0.670652 0.741772i \(-0.266014\pi\)
−0.498224 + 0.867048i \(0.666014\pi\)
\(410\) 0 0
\(411\) −5.50867 16.9539i −0.271722 0.836276i
\(412\) −44.2158 60.8578i −2.17836 2.99825i
\(413\) 2.64305 + 3.63784i 0.130056 + 0.179007i
\(414\) −0.0178657 0.0549849i −0.000878050 0.00270236i
\(415\) 0 0
\(416\) 24.1084 + 17.5158i 1.18201 + 0.858781i
\(417\) 3.64006i 0.178255i
\(418\) 10.2651 + 27.5606i 0.502083 + 1.34803i
\(419\) 18.7114 0.914110 0.457055 0.889438i \(-0.348904\pi\)
0.457055 + 0.889438i \(0.348904\pi\)
\(420\) 0 0
\(421\) −9.42742 + 29.0146i −0.459465 + 1.41409i 0.406348 + 0.913718i \(0.366802\pi\)
−0.865813 + 0.500368i \(0.833198\pi\)
\(422\) 5.63477 1.83085i 0.274297 0.0891244i
\(423\) −0.157243 0.216426i −0.00764540 0.0105230i
\(424\) −29.2529 + 21.2535i −1.42065 + 1.03216i
\(425\) 0 0
\(426\) −3.09474 + 9.52464i −0.149941 + 0.461470i
\(427\) 16.3671 22.5274i 0.792061 1.09018i
\(428\) 78.4136i 3.79027i
\(429\) −25.0581 + 9.33304i −1.20982 + 0.450604i
\(430\) 0 0
\(431\) −6.72568 4.88649i −0.323965 0.235374i 0.413901 0.910322i \(-0.364166\pi\)
−0.737865 + 0.674948i \(0.764166\pi\)
\(432\) 36.6673 + 11.9139i 1.76415 + 0.573208i
\(433\) 26.1062 8.48242i 1.25458 0.407639i 0.395023 0.918671i \(-0.370737\pi\)
0.859561 + 0.511032i \(0.170737\pi\)
\(434\) 37.3905 27.1658i 1.79480 1.30400i
\(435\) 0 0
\(436\) 25.2663 + 77.7616i 1.21004 + 3.72411i
\(437\) 0.347964 + 0.113061i 0.0166454 + 0.00540842i
\(438\) 24.1719 33.2697i 1.15498 1.58969i
\(439\) 23.1527 1.10502 0.552510 0.833506i \(-0.313670\pi\)
0.552510 + 0.833506i \(0.313670\pi\)
\(440\) 0 0
\(441\) 1.58911 0.0756720
\(442\) 33.9526 46.7317i 1.61496 2.22280i
\(443\) −19.1957 6.23705i −0.912013 0.296331i −0.184827 0.982771i \(-0.559172\pi\)
−0.727186 + 0.686440i \(0.759172\pi\)
\(444\) 14.1671 + 43.6019i 0.672341 + 2.06925i
\(445\) 0 0
\(446\) −21.3471 + 15.5095i −1.01081 + 0.734398i
\(447\) 18.1058 5.88293i 0.856375 0.278253i
\(448\) 5.57338 + 1.81090i 0.263317 + 0.0855570i
\(449\) 11.3539 + 8.24906i 0.535822 + 0.389297i 0.822531 0.568720i \(-0.192561\pi\)
−0.286709 + 0.958018i \(0.592561\pi\)
\(450\) 0 0
\(451\) 1.68167 2.53381i 0.0791866 0.119313i
\(452\) 65.3711i 3.07480i
\(453\) −3.61878 + 4.98082i −0.170025 + 0.234019i
\(454\) 5.68414 17.4940i 0.266770 0.821033i
\(455\) 0 0
\(456\) 33.0021 23.9774i 1.54546 1.12285i
\(457\) −9.18334 12.6398i −0.429579 0.591264i 0.538278 0.842767i \(-0.319075\pi\)
−0.967856 + 0.251503i \(0.919075\pi\)
\(458\) −5.01879 + 1.63071i −0.234513 + 0.0761979i
\(459\) 7.73671 23.8111i 0.361119 1.11141i
\(460\) 0 0
\(461\) 29.6082 1.37899 0.689496 0.724289i \(-0.257832\pi\)
0.689496 + 0.724289i \(0.257832\pi\)
\(462\) −45.3626 + 35.9903i −2.11046 + 1.67442i
\(463\) 1.31629i 0.0611730i 0.999532 + 0.0305865i \(0.00973751\pi\)
−0.999532 + 0.0305865i \(0.990262\pi\)
\(464\) −14.6742 10.6614i −0.681233 0.494945i
\(465\) 0 0
\(466\) 13.9258 + 42.8593i 0.645101 + 1.98542i
\(467\) 7.11191 + 9.78870i 0.329100 + 0.452967i 0.941218 0.337799i \(-0.109682\pi\)
−0.612118 + 0.790766i \(0.709682\pi\)
\(468\) 2.57602 + 3.54559i 0.119077 + 0.163895i
\(469\) −9.21323 28.3554i −0.425427 1.30933i
\(470\) 0 0
\(471\) 0.433019 + 0.314607i 0.0199525 + 0.0144963i
\(472\) 7.77967i 0.358088i
\(473\) 3.97234 14.2544i 0.182648 0.655416i
\(474\) −66.0655 −3.03449
\(475\) 0 0
\(476\) 26.8809 82.7308i 1.23208 3.79196i
\(477\) −1.11597 + 0.362599i −0.0510966 + 0.0166023i
\(478\) −28.1489 38.7436i −1.28750 1.77209i
\(479\) 2.47074 1.79509i 0.112891 0.0820200i −0.529907 0.848055i \(-0.677773\pi\)
0.642798 + 0.766036i \(0.277773\pi\)
\(480\) 0 0
\(481\) 7.78426 23.9575i 0.354932 1.09237i
\(482\) −45.4741 + 62.5897i −2.07129 + 2.85088i
\(483\) 0.720365i 0.0327777i
\(484\) 11.4217 48.9130i 0.519168 2.22332i
\(485\) 0 0
\(486\) 4.58896 + 3.33408i 0.208160 + 0.151237i
\(487\) 23.0534 + 7.49051i 1.04465 + 0.339427i 0.780566 0.625073i \(-0.214931\pi\)
0.264083 + 0.964500i \(0.414931\pi\)
\(488\) 45.8179 14.8871i 2.07408 0.673909i
\(489\) 20.6800 15.0249i 0.935183 0.679450i
\(490\) 0 0
\(491\) −10.0985 31.0801i −0.455741 1.40263i −0.870263 0.492587i \(-0.836051\pi\)
0.414522 0.910039i \(-0.363949\pi\)
\(492\) −7.13808 2.31930i −0.321809 0.104562i
\(493\) −6.92337 + 9.52921i −0.311813 + 0.429174i
\(494\) −39.8823 −1.79439
\(495\) 0 0
\(496\) 36.6248 1.64450
\(497\) 4.87084 6.70413i 0.218487 0.300721i
\(498\) −20.5826 6.68768i −0.922327 0.299682i
\(499\) 9.27234 + 28.5373i 0.415087 + 1.27751i 0.912173 + 0.409805i \(0.134403\pi\)
−0.497086 + 0.867701i \(0.665597\pi\)
\(500\) 0 0
\(501\) −26.1010 + 18.9635i −1.16611 + 0.847226i
\(502\) −62.1726 + 20.2011i −2.77490 + 0.901619i
\(503\) −12.8883 4.18767i −0.574662 0.186719i 0.00724562 0.999974i \(-0.497694\pi\)
−0.581908 + 0.813255i \(0.697694\pi\)
\(504\) 4.31512 + 3.13512i 0.192211 + 0.139649i
\(505\) 0 0
\(506\) −0.558477 0.703912i −0.0248273 0.0312927i
\(507\) 12.9572i 0.575450i
\(508\) −14.9497 + 20.5766i −0.663288 + 0.912937i
\(509\) −11.7687 + 36.2203i −0.521638 + 1.60544i 0.249232 + 0.968444i \(0.419822\pi\)
−0.770870 + 0.636993i \(0.780178\pi\)
\(510\) 0 0
\(511\) −27.5291 + 20.0011i −1.21782 + 0.884795i
\(512\) −29.6070 40.7506i −1.30846 1.80094i
\(513\) −16.4402 + 5.34173i −0.725851 + 0.235843i
\(514\) −18.9582 + 58.3472i −0.836209 + 2.57359i
\(515\) 0 0
\(516\) −36.5203 −1.60772
\(517\) −3.46419 2.29915i −0.152355 0.101116i
\(518\) 54.5505i 2.39681i
\(519\) −12.6947 9.22326i −0.557237 0.404856i
\(520\) 0 0
\(521\) 0.682532 + 2.10062i 0.0299023 + 0.0920298i 0.964894 0.262640i \(-0.0845932\pi\)
−0.934992 + 0.354670i \(0.884593\pi\)
\(522\) −0.755356 1.03966i −0.0330610 0.0455046i
\(523\) −1.41222 1.94375i −0.0617521 0.0849944i 0.777024 0.629471i \(-0.216728\pi\)
−0.838776 + 0.544477i \(0.816728\pi\)
\(524\) 19.5243 + 60.0895i 0.852921 + 2.62502i
\(525\) 0 0
\(526\) −55.4957 40.3200i −2.41973 1.75803i
\(527\) 23.7836i 1.03603i
\(528\) −45.8462 + 1.94410i −1.99520 + 0.0846063i
\(529\) 22.9888 0.999514
\(530\) 0 0
\(531\) −0.0780148 + 0.240105i −0.00338555 + 0.0104197i
\(532\) −57.1206 + 18.5596i −2.47649 + 0.804661i
\(533\) 2.42398 + 3.33633i 0.104994 + 0.144512i
\(534\) −0.642877 + 0.467077i −0.0278200 + 0.0202124i
\(535\) 0 0
\(536\) 15.9399 49.0581i 0.688501 2.11899i
\(537\) 24.1288 33.2104i 1.04123 1.43314i
\(538\) 15.2873i 0.659083i
\(539\) 23.1446 8.62035i 0.996908 0.371305i
\(540\) 0 0
\(541\) 19.0200 + 13.8189i 0.817735 + 0.594119i 0.916063 0.401035i \(-0.131349\pi\)
−0.0983277 + 0.995154i \(0.531349\pi\)
\(542\) 18.2624 + 5.93382i 0.784438 + 0.254879i
\(543\) −29.4437 + 9.56685i −1.26355 + 0.410553i
\(544\) 26.8662 19.5194i 1.15188 0.836889i
\(545\) 0 0
\(546\) −24.2653 74.6810i −1.03846 3.19605i
\(547\) −1.34503 0.437026i −0.0575093 0.0186859i 0.280121 0.959965i \(-0.409625\pi\)
−0.337630 + 0.941279i \(0.609625\pi\)
\(548\) −26.6907 + 36.7367i −1.14017 + 1.56931i
\(549\) 1.56337 0.0667230
\(550\) 0 0
\(551\) 8.13251 0.346457
\(552\) −0.732565 + 1.00829i −0.0311800 + 0.0429156i
\(553\) 51.9905 + 16.8927i 2.21086 + 0.718352i
\(554\) −1.14228 3.51556i −0.0485307 0.149362i
\(555\) 0 0
\(556\) −7.50143 + 5.45011i −0.318132 + 0.231136i
\(557\) 4.72163 1.53415i 0.200062 0.0650041i −0.207272 0.978283i \(-0.566458\pi\)
0.407334 + 0.913279i \(0.366458\pi\)
\(558\) 2.46784 + 0.801851i 0.104472 + 0.0339451i
\(559\) 16.2341 + 11.7948i 0.686630 + 0.498866i
\(560\) 0 0
\(561\) 1.26247 + 29.7718i 0.0533016 + 1.25697i
\(562\) 0.613129i 0.0258633i
\(563\) 9.75863 13.4316i 0.411277 0.566075i −0.552252 0.833677i \(-0.686231\pi\)
0.963529 + 0.267603i \(0.0862314\pi\)
\(564\) −3.17091 + 9.75907i −0.133520 + 0.410931i
\(565\) 0 0
\(566\) −10.9435 + 7.95091i −0.459989 + 0.334202i
\(567\) −21.4354 29.5033i −0.900203 1.23902i
\(568\) 13.6353 4.43039i 0.572126 0.185895i
\(569\) 8.37027 25.7610i 0.350900 1.07996i −0.607449 0.794359i \(-0.707807\pi\)
0.958349 0.285600i \(-0.0921929\pi\)
\(570\) 0 0
\(571\) −25.9648 −1.08659 −0.543296 0.839541i \(-0.682824\pi\)
−0.543296 + 0.839541i \(0.682824\pi\)
\(572\) 56.7519 + 37.6657i 2.37292 + 1.57488i
\(573\) 32.6282i 1.36306i
\(574\) 7.22492 + 5.24921i 0.301562 + 0.219098i
\(575\) 0 0
\(576\) 0.101672 + 0.312915i 0.00423635 + 0.0130381i
\(577\) −0.438786 0.603937i −0.0182669 0.0251422i 0.799786 0.600285i \(-0.204946\pi\)
−0.818053 + 0.575143i \(0.804946\pi\)
\(578\) −12.2314 16.8351i −0.508761 0.700249i
\(579\) 6.11338 + 18.8150i 0.254063 + 0.781926i
\(580\) 0 0
\(581\) 14.4875 + 10.5258i 0.601043 + 0.436683i
\(582\) 20.4889i 0.849291i
\(583\) −14.2865 + 11.3348i −0.591687 + 0.469439i
\(584\) −58.8721 −2.43614
\(585\) 0 0
\(586\) 11.8744 36.5458i 0.490529 1.50969i
\(587\) 17.0241 5.53146i 0.702659 0.228308i 0.0641701 0.997939i \(-0.479560\pi\)
0.638488 + 0.769631i \(0.279560\pi\)
\(588\) −35.8281 49.3131i −1.47753 2.03364i
\(589\) −13.2850 + 9.65209i −0.547397 + 0.397708i
\(590\) 0 0
\(591\) −8.70868 + 26.8026i −0.358227 + 1.10251i
\(592\) 25.4091 34.9727i 1.04431 1.43737i
\(593\) 11.1992i 0.459895i 0.973203 + 0.229948i \(0.0738555\pi\)
−0.973203 + 0.229948i \(0.926145\pi\)
\(594\) 40.8951 + 11.3965i 1.67795 + 0.467602i
\(595\) 0 0
\(596\) −39.2326 28.5041i −1.60703 1.16758i
\(597\) −7.57850 2.46240i −0.310167 0.100780i
\(598\) 1.15886 0.376535i 0.0473892 0.0153977i
\(599\) −1.46910 + 1.06736i −0.0600257 + 0.0436112i −0.617393 0.786654i \(-0.711811\pi\)
0.557368 + 0.830266i \(0.311811\pi\)
\(600\) 0 0
\(601\) 14.4659 + 44.5214i 0.590075 + 1.81606i 0.577856 + 0.816139i \(0.303889\pi\)
0.0122187 + 0.999925i \(0.496111\pi\)
\(602\) 41.3277 + 13.4282i 1.68439 + 0.547292i
\(603\) 0.983912 1.35424i 0.0400680 0.0551489i
\(604\) 15.6827 0.638121
\(605\) 0 0
\(606\) 40.4464 1.64302
\(607\) −19.3381 + 26.6166i −0.784908 + 1.08033i 0.209815 + 0.977741i \(0.432714\pi\)
−0.994723 + 0.102593i \(0.967286\pi\)
\(608\) −21.8062 7.08527i −0.884359 0.287346i
\(609\) 4.94801 + 15.2284i 0.200504 + 0.617087i
\(610\) 0 0
\(611\) 4.56137 3.31403i 0.184533 0.134071i
\(612\) 4.64489 1.50922i 0.187759 0.0610065i
\(613\) 14.1574 + 4.60003i 0.571813 + 0.185793i 0.580630 0.814168i \(-0.302806\pi\)
−0.00881636 + 0.999961i \(0.502806\pi\)
\(614\) −4.37490 3.17855i −0.176557 0.128276i
\(615\) 0 0
\(616\) 79.8543 + 22.2534i 3.21742 + 0.896615i
\(617\) 37.4741i 1.50865i −0.656502 0.754324i \(-0.727965\pi\)
0.656502 0.754324i \(-0.272035\pi\)
\(618\) −44.4793 + 61.2206i −1.78922 + 2.46265i
\(619\) 3.82934 11.7855i 0.153914 0.473700i −0.844135 0.536131i \(-0.819885\pi\)
0.998049 + 0.0624311i \(0.0198854\pi\)
\(620\) 0 0
\(621\) 0.427269 0.310429i 0.0171457 0.0124571i
\(622\) −25.0948 34.5400i −1.00621 1.38493i
\(623\) 0.625344 0.203187i 0.0250539 0.00814050i
\(624\) 19.2291 59.1810i 0.769778 2.36913i
\(625\) 0 0
\(626\) 74.5163 2.97827
\(627\) 16.1175 12.7875i 0.643671 0.510683i
\(628\) 1.36341i 0.0544061i
\(629\) −22.7107 16.5003i −0.905536 0.657910i
\(630\) 0 0
\(631\) 0.476748 + 1.46728i 0.0189790 + 0.0584114i 0.960097 0.279666i \(-0.0902236\pi\)
−0.941118 + 0.338077i \(0.890224\pi\)
\(632\) 55.5918 + 76.5156i 2.21132 + 3.04363i
\(633\) −2.43620 3.35314i −0.0968301 0.133275i
\(634\) −14.5039 44.6383i −0.576022 1.77281i
\(635\) 0 0
\(636\) 36.4127 + 26.4554i 1.44386 + 1.04902i
\(637\) 33.4920i 1.32700i
\(638\) −16.6411 11.0446i −0.658829 0.437258i
\(639\) 0.465257 0.0184053
\(640\) 0 0
\(641\) 9.64663 29.6893i 0.381019 1.17266i −0.558308 0.829634i \(-0.688549\pi\)
0.939327 0.343023i \(-0.111451\pi\)
\(642\) 75.0203 24.3756i 2.96082 0.962027i
\(643\) −11.9428 16.4378i −0.470978 0.648245i 0.505762 0.862673i \(-0.331211\pi\)
−0.976740 + 0.214428i \(0.931211\pi\)
\(644\) 1.48453 1.07857i 0.0584985 0.0425017i
\(645\) 0 0
\(646\) −13.7341 + 42.2693i −0.540361 + 1.66306i
\(647\) 13.0304 17.9348i 0.512279 0.705092i −0.472023 0.881586i \(-0.656476\pi\)
0.984302 + 0.176495i \(0.0564759\pi\)
\(648\) 63.0940i 2.47857i
\(649\) 0.166236 + 3.92020i 0.00652533 + 0.153881i
\(650\) 0 0
\(651\) −26.1568 19.0040i −1.02516 0.744826i
\(652\) −61.9267 20.1212i −2.42524 0.788007i
\(653\) 11.2908 3.66862i 0.441845 0.143564i −0.0796417 0.996824i \(-0.525378\pi\)
0.521487 + 0.853259i \(0.325378\pi\)
\(654\) 66.5423 48.3458i 2.60201 1.89047i
\(655\) 0 0
\(656\) 2.18690 + 6.73060i 0.0853843 + 0.262786i
\(657\) −1.81697 0.590371i −0.0708869 0.0230326i
\(658\) 7.17664 9.87780i 0.279774 0.385077i
\(659\) −13.3368 −0.519527 −0.259764 0.965672i \(-0.583645\pi\)
−0.259764 + 0.965672i \(0.583645\pi\)
\(660\) 0 0
\(661\) −44.8817 −1.74570 −0.872848 0.487992i \(-0.837730\pi\)
−0.872848 + 0.487992i \(0.837730\pi\)
\(662\) −32.4732 + 44.6955i −1.26211 + 1.73714i
\(663\) −38.4312 12.4871i −1.49254 0.484957i
\(664\) 9.57400 + 29.4657i 0.371543 + 1.14349i
\(665\) 0 0
\(666\) 2.47779 1.80022i 0.0960125 0.0697572i
\(667\) −0.236306 + 0.0767805i −0.00914980 + 0.00297295i
\(668\) 78.1598 + 25.3957i 3.02409 + 0.982588i
\(669\) 14.9335 + 10.8498i 0.577362 + 0.419478i
\(670\) 0 0
\(671\) 22.7697 8.48071i 0.879014 0.327394i
\(672\) 45.1438i 1.74146i
\(673\) 3.45897 4.76086i 0.133333 0.183518i −0.737130 0.675751i \(-0.763819\pi\)
0.870463 + 0.492233i \(0.163819\pi\)
\(674\) 11.1345 34.2684i 0.428884 1.31997i
\(675\) 0 0
\(676\) −26.7022 + 19.4003i −1.02701 + 0.746165i
\(677\) 17.3989 + 23.9475i 0.668694 + 0.920379i 0.999730 0.0232393i \(-0.00739798\pi\)
−0.331035 + 0.943618i \(0.607398\pi\)
\(678\) 62.5422 20.3212i 2.40192 0.780431i
\(679\) 5.23894 16.1238i 0.201052 0.618774i
\(680\) 0 0
\(681\) −12.8678 −0.493097
\(682\) 40.2926 1.70860i 1.54288 0.0654258i
\(683\) 13.1257i 0.502239i 0.967956 + 0.251120i \(0.0807988\pi\)
−0.967956 + 0.251120i \(0.919201\pi\)
\(684\) −2.72805 1.98204i −0.104310 0.0757854i
\(685\) 0 0
\(686\) 1.34436 + 4.13751i 0.0513278 + 0.157971i
\(687\) 2.16988 + 2.98658i 0.0827860 + 0.113945i
\(688\) 20.2407 + 27.8590i 0.771670 + 1.06211i
\(689\) −7.64211 23.5200i −0.291141 0.896041i
\(690\) 0 0
\(691\) 5.69772 + 4.13963i 0.216751 + 0.157479i 0.690863 0.722986i \(-0.257231\pi\)
−0.474112 + 0.880465i \(0.657231\pi\)
\(692\) 39.9709i 1.51946i
\(693\) 2.24139 + 1.48759i 0.0851435 + 0.0565089i
\(694\) −73.4141 −2.78676
\(695\) 0 0
\(696\) −8.56063 + 26.3469i −0.324490 + 0.998677i
\(697\) 4.37075 1.42014i 0.165554 0.0537917i
\(698\) 26.9941 + 37.1542i 1.02174 + 1.40631i
\(699\) 25.5047 18.5302i 0.964675 0.700877i
\(700\) 0 0
\(701\) 13.7090 42.1921i 0.517783 1.59357i −0.260377 0.965507i \(-0.583847\pi\)
0.778161 0.628065i \(-0.216153\pi\)
\(702\) −33.8387 + 46.5749i −1.27716 + 1.75786i
\(703\) 19.3820i 0.731006i
\(704\) 3.17826 + 4.00591i 0.119785 + 0.150979i
\(705\) 0 0
\(706\) −51.3621 37.3168i −1.93304 1.40443i
\(707\) −31.8294 10.3420i −1.19707 0.388951i
\(708\) 9.20982 2.99245i 0.346126 0.112463i
\(709\) −15.7889 + 11.4713i −0.592963 + 0.430813i −0.843374 0.537327i \(-0.819434\pi\)
0.250411 + 0.968140i \(0.419434\pi\)
\(710\) 0 0
\(711\) 0.948436 + 2.91899i 0.0355691 + 0.109471i
\(712\) 1.08192 + 0.351536i 0.0405466 + 0.0131744i
\(713\) 0.294893 0.405886i 0.0110438 0.0152006i
\(714\) −87.5068 −3.27486
\(715\) 0 0
\(716\) −104.567 −3.90785
\(717\) −19.6918 + 27.1034i −0.735402 + 1.01219i
\(718\) −25.4728 8.27662i −0.950638 0.308881i
\(719\) −14.6482 45.0824i −0.546284 1.68129i −0.717918 0.696128i \(-0.754905\pi\)
0.171634 0.985161i \(-0.445095\pi\)
\(720\) 0 0
\(721\) 50.6571 36.8045i 1.88657 1.37067i
\(722\) −17.1197 + 5.56252i −0.637128 + 0.207016i
\(723\) 51.4724 + 16.7244i 1.91428 + 0.621987i
\(724\) 63.8002 + 46.3536i 2.37112 + 1.72272i
\(725\) 0 0
\(726\) −50.3468 + 4.27760i −1.86855 + 0.158756i
\(727\) 37.2483i 1.38146i 0.723112 + 0.690731i \(0.242711\pi\)
−0.723112 + 0.690731i \(0.757289\pi\)
\(728\) −66.0754 + 90.9450i −2.44892 + 3.37065i
\(729\) −7.66853 + 23.6013i −0.284020 + 0.874123i
\(730\) 0 0
\(731\) 18.0912 13.1440i 0.669126 0.486149i
\(732\) −35.2477 48.5143i −1.30279 1.79314i
\(733\) 11.0521 3.59105i 0.408219 0.132638i −0.0977073 0.995215i \(-0.531151\pi\)
0.505926 + 0.862577i \(0.331151\pi\)
\(734\) 12.0322 37.0312i 0.444115 1.36685i
\(735\) 0 0
\(736\) 0.700516 0.0258214
\(737\) 6.98392 25.0612i 0.257256 0.923140i
\(738\) 0.501399i 0.0184568i
\(739\) 30.7265 + 22.3241i 1.13029 + 0.821207i 0.985738 0.168290i \(-0.0538245\pi\)
0.144556 + 0.989497i \(0.453824\pi\)
\(740\) 0 0
\(741\) 8.62156 + 26.5344i 0.316721 + 0.974766i
\(742\) −31.4785 43.3265i −1.15561 1.59056i
\(743\) −4.53596 6.24321i −0.166408 0.229041i 0.717666 0.696387i \(-0.245210\pi\)
−0.884075 + 0.467346i \(0.845210\pi\)
\(744\) −17.2856 53.1995i −0.633720 1.95039i
\(745\) 0 0
\(746\) 43.9025 + 31.8971i 1.60739 + 1.16783i
\(747\) 1.00541i 0.0367861i
\(748\) 59.4635 47.1778i 2.17420 1.72499i
\(749\) −65.2703 −2.38492
\(750\) 0 0
\(751\) 4.95293 15.2435i 0.180735 0.556245i −0.819114 0.573631i \(-0.805534\pi\)
0.999849 + 0.0173860i \(0.00553442\pi\)
\(752\) 9.20197 2.98990i 0.335561 0.109030i
\(753\) 26.8803 + 36.9976i 0.979574 + 1.34827i
\(754\) 21.9118 15.9198i 0.797979 0.579766i
\(755\) 0 0
\(756\) −26.7907 + 82.4532i −0.974367 + 2.99879i
\(757\) −3.74775 + 5.15833i −0.136214 + 0.187483i −0.871675 0.490085i \(-0.836966\pi\)
0.735461 + 0.677568i \(0.236966\pi\)
\(758\) 90.1078i 3.27286i
\(759\) −0.347597 + 0.523734i −0.0126170 + 0.0190103i
\(760\) 0 0
\(761\) 12.8347 + 9.32499i 0.465259 + 0.338031i 0.795591 0.605834i \(-0.207161\pi\)
−0.330332 + 0.943865i \(0.607161\pi\)
\(762\) 24.3334 + 7.90640i 0.881506 + 0.286419i
\(763\) −64.7275 + 21.0312i −2.34329 + 0.761382i
\(764\) −67.2402 + 48.8529i −2.43267 + 1.76743i
\(765\) 0 0
\(766\) −1.57566 4.84939i −0.0569310 0.175216i
\(767\) −5.06043 1.64423i −0.182721 0.0593698i
\(768\) −28.3604 + 39.0348i −1.02337 + 1.40855i
\(769\) 51.7503 1.86616 0.933082 0.359663i \(-0.117108\pi\)
0.933082 + 0.359663i \(0.117108\pi\)
\(770\) 0 0
\(771\) 42.9178 1.54565
\(772\) 29.6207 40.7694i 1.06607 1.46732i
\(773\) −9.21198 2.99315i −0.331332 0.107656i 0.138627 0.990345i \(-0.455731\pi\)
−0.469959 + 0.882688i \(0.655731\pi\)
\(774\) 0.753921 + 2.32033i 0.0270991 + 0.0834025i
\(775\) 0 0
\(776\) 23.7298 17.2407i 0.851849 0.618905i
\(777\) −36.2935 + 11.7925i −1.30202 + 0.423053i
\(778\) −14.7649 4.79740i −0.529346 0.171995i
\(779\) −2.56704 1.86506i −0.0919737 0.0668228i
\(780\) 0 0
\(781\) 6.77623 2.52385i 0.242473 0.0903105i
\(782\) 1.35788i 0.0485578i
\(783\) 6.90014 9.49723i 0.246591 0.339403i
\(784\) −17.7607 + 54.6617i −0.634310 + 1.95221i
\(785\) 0 0
\(786\) 51.4199 37.3587i 1.83409 1.33254i
\(787\) 10.7110 + 14.7424i 0.381805 + 0.525510i 0.956062 0.293166i \(-0.0947088\pi\)
−0.574256 + 0.818675i \(0.694709\pi\)
\(788\) 68.2739 22.1835i 2.43216 0.790255i
\(789\) −14.8288 + 45.6385i −0.527921 + 1.62477i
\(790\) 0 0
\(791\) −54.4139 −1.93473
\(792\) 1.62448 + 4.36152i 0.0577233 + 0.154980i
\(793\) 32.9495i 1.17007i
\(794\) 72.6954 + 52.8163i 2.57986 + 1.87438i
\(795\) 0 0
\(796\) 6.27245 + 19.3046i 0.222321 + 0.684234i
\(797\) 11.7634 + 16.1910i 0.416682 + 0.573514i 0.964832 0.262866i \(-0.0846677\pi\)
−0.548150 + 0.836380i \(0.684668\pi\)
\(798\) 35.5129 + 48.8793i 1.25714 + 1.73031i
\(799\) −1.94160 5.97562i −0.0686887 0.211402i
\(800\) 0 0
\(801\) 0.0298661 + 0.0216990i 0.00105527 + 0.000766696i
\(802\) 42.2160i 1.49070i
\(803\) −29.6658 + 1.25798i −1.04688 + 0.0443930i
\(804\) −64.2079 −2.26444
\(805\) 0 0
\(806\) −16.8997 + 52.0121i −0.595268 + 1.83205i
\(807\) −10.1709 + 3.30474i −0.358034 + 0.116332i
\(808\) −34.0342 46.8441i −1.19732 1.64797i
\(809\) −25.7317 + 18.6952i −0.904679 + 0.657288i −0.939664 0.342100i \(-0.888862\pi\)
0.0349842 + 0.999388i \(0.488862\pi\)
\(810\) 0 0
\(811\) 1.12941 3.47596i 0.0396589 0.122057i −0.929267 0.369409i \(-0.879560\pi\)
0.968926 + 0.247351i \(0.0795602\pi\)
\(812\) 23.9742 32.9977i 0.841331 1.15799i
\(813\) 13.4331i 0.471119i
\(814\) 26.3222 39.6604i 0.922593 1.39010i
\(815\) 0 0
\(816\) −56.1012 40.7599i −1.96393 1.42688i
\(817\) −14.6839 4.77108i −0.513724 0.166919i
\(818\) −10.5045 + 3.41313i −0.367283 + 0.119337i
\(819\) −2.95129 + 2.14424i −0.103126 + 0.0749258i
\(820\) 0 0
\(821\) 4.25449 + 13.0940i 0.148483 + 0.456983i 0.997442 0.0714746i \(-0.0227705\pi\)
−0.848960 + 0.528458i \(0.822770\pi\)
\(822\) 43.4440 + 14.1158i 1.51528 + 0.492345i
\(823\) 23.8500 32.8267i 0.831358 1.14427i −0.156311 0.987708i \(-0.549960\pi\)
0.987669 0.156558i \(-0.0500398\pi\)
\(824\) 108.332 3.77393
\(825\) 0 0
\(826\) −11.5225 −0.400918
\(827\) 9.12955 12.5658i 0.317466 0.436954i −0.620226 0.784423i \(-0.712959\pi\)
0.937691 + 0.347469i \(0.112959\pi\)
\(828\) 0.0979817 + 0.0318362i 0.00340510 + 0.00110638i
\(829\) 9.00201 + 27.7053i 0.312653 + 0.962247i 0.976710 + 0.214565i \(0.0688332\pi\)
−0.664057 + 0.747682i \(0.731167\pi\)
\(830\) 0 0
\(831\) −2.09204 + 1.51996i −0.0725720 + 0.0527267i
\(832\) −6.59497 + 2.14284i −0.228640 + 0.0742895i
\(833\) 35.4965 + 11.5335i 1.22988 + 0.399612i
\(834\) 7.54615 + 5.48260i 0.261302 + 0.189847i
\(835\) 0 0
\(836\) −50.4845 14.0688i −1.74604 0.486579i
\(837\) 23.7038i 0.819322i
\(838\) −28.1827 + 38.7902i −0.973557 + 1.33999i
\(839\) −6.73139 + 20.7171i −0.232393 + 0.715233i 0.765063 + 0.643955i \(0.222708\pi\)
−0.997456 + 0.0712779i \(0.977292\pi\)
\(840\) 0 0
\(841\) 18.9934 13.7995i 0.654945 0.475845i
\(842\) −45.9503 63.2451i −1.58355 2.17957i
\(843\) 0.407927 0.132543i 0.0140497 0.00456504i
\(844\) −3.26253 + 10.0410i −0.112301 + 0.345626i
\(845\) 0 0
\(846\) 0.685505 0.0235681
\(847\) 40.7144 + 9.50725i 1.39896 + 0.326673i
\(848\) 42.4392i 1.45737i
\(849\) 7.65560 + 5.56212i 0.262740 + 0.190892i
\(850\) 0 0
\(851\) −0.182989 0.563182i −0.00627278 0.0193056i
\(852\) −10.4897 14.4378i −0.359371 0.494631i
\(853\) 5.14484 + 7.08127i 0.176156 + 0.242458i 0.887961 0.459920i \(-0.152122\pi\)
−0.711804 + 0.702378i \(0.752122\pi\)
\(854\) 22.0493 + 67.8608i 0.754512 + 2.32215i
\(855\) 0 0
\(856\) −91.3583 66.3757i −3.12256 2.26867i
\(857\) 14.0273i 0.479163i 0.970876 + 0.239582i \(0.0770103\pi\)
−0.970876 + 0.239582i \(0.922990\pi\)
\(858\) 18.3939 66.0047i 0.627957 2.25336i
\(859\) −31.8774 −1.08764 −0.543822 0.839201i \(-0.683023\pi\)
−0.543822 + 0.839201i \(0.683023\pi\)
\(860\) 0 0
\(861\) 1.93055 5.94162i 0.0657930 0.202490i
\(862\) 20.2602 6.58294i 0.690065 0.224216i
\(863\) 2.03681 + 2.80343i 0.0693338 + 0.0954298i 0.842276 0.539047i \(-0.181216\pi\)
−0.772942 + 0.634477i \(0.781216\pi\)
\(864\) −26.7761 + 19.4539i −0.910940 + 0.661836i
\(865\) 0 0
\(866\) −21.7360 + 66.8964i −0.738618 + 2.27323i
\(867\) −8.55659 + 11.7771i −0.290597 + 0.399973i
\(868\) 82.3577i 2.79540i
\(869\) 29.6479 + 37.3686i 1.00574 + 1.26764i
\(870\) 0 0
\(871\) 28.5418 + 20.7368i 0.967103 + 0.702641i
\(872\) −111.986 36.3865i −3.79233 1.23220i
\(873\) 0.905265 0.294138i 0.0306386 0.00995507i
\(874\) −0.758482 + 0.551069i −0.0256560 + 0.0186402i
\(875\) 0 0
\(876\) 22.6452 + 69.6946i 0.765109 + 2.35476i
\(877\) 18.8084 + 6.11122i 0.635114 + 0.206361i 0.608839 0.793294i \(-0.291635\pi\)
0.0262750 + 0.999655i \(0.491635\pi\)
\(878\) −34.8723 + 47.9975i −1.17688 + 1.61984i
\(879\) −26.8816 −0.906692
\(880\) 0 0
\(881\) 57.2097 1.92744 0.963722 0.266910i \(-0.0860025\pi\)
0.963722 + 0.266910i \(0.0860025\pi\)
\(882\) −2.39349 + 3.29436i −0.0805931 + 0.110927i
\(883\) −54.4396 17.6885i −1.83204 0.595265i −0.999123 0.0418636i \(-0.986671\pi\)
−0.832915 0.553402i \(-0.813329\pi\)
\(884\) 31.8081 + 97.8953i 1.06982 + 3.29258i
\(885\) 0 0
\(886\) 41.8421 30.4000i 1.40571 1.02131i
\(887\) 37.7809 12.2757i 1.26856 0.412179i 0.404021 0.914750i \(-0.367612\pi\)
0.864536 + 0.502571i \(0.167612\pi\)
\(888\) −62.7919 20.4023i −2.10716 0.684657i
\(889\) −17.1276 12.4439i −0.574441 0.417356i
\(890\) 0 0
\(891\) −1.34819 31.7933i −0.0451661 1.06512i
\(892\) 47.0199i 1.57434i
\(893\) −2.54989 + 3.50962i −0.0853287 + 0.117445i
\(894\) −15.0748 + 46.3956i −0.504178 + 1.55170i
\(895\) 0 0
\(896\) 28.5990 20.7784i 0.955427 0.694158i
\(897\) −0.501032 0.689612i −0.0167290 0.0230255i
\(898\) −34.2020 + 11.1129i −1.14133 + 0.370842i
\(899\) 3.44608 10.6059i 0.114933 0.353728i
\(900\) 0 0
\(901\) −27.5594 −0.918136
\(902\) 2.71991 + 7.30262i 0.0905630 + 0.243151i
\(903\) 30.3989i 1.01161i
\(904\) −76.1627 55.3354i −2.53313 1.84043i
\(905\) 0 0
\(906\) −4.87511 15.0041i −0.161965 0.498476i
\(907\) −15.6421 21.5295i −0.519387 0.714875i 0.466080 0.884743i \(-0.345666\pi\)
−0.985467 + 0.169867i \(0.945666\pi\)
\(908\) 19.2665 + 26.5180i 0.639380 + 0.880032i
\(909\) −0.580648 1.78705i −0.0192589 0.0592727i
\(910\) 0 0
\(911\) −6.30044 4.57754i −0.208743 0.151661i 0.478502 0.878087i \(-0.341180\pi\)
−0.687245 + 0.726426i \(0.741180\pi\)
\(912\) 47.8784i 1.58541i
\(913\) 5.45399 + 14.6433i 0.180501 + 0.484623i
\(914\) 40.0351 1.32424
\(915\) 0 0
\(916\) 2.90587 8.94336i 0.0960128 0.295497i
\(917\) −50.0175 + 16.2517i −1.65172 + 0.536678i
\(918\) 37.7096 + 51.9028i 1.24460 + 1.71305i
\(919\) −12.9266 + 9.39169i −0.426408 + 0.309803i −0.780211 0.625517i \(-0.784888\pi\)
0.353803 + 0.935320i \(0.384888\pi\)
\(920\) 0 0
\(921\) −1.16901 + 3.59783i −0.0385201 + 0.118553i
\(922\) −44.5954 + 61.3803i −1.46867 + 2.02145i
\(923\) 9.80572i 0.322759i
\(924\) −4.37168 103.094i −0.143818 3.39154i
\(925\) 0 0
\(926\) −2.72877 1.98257i −0.0896730 0.0651512i
\(927\) 3.34347 + 1.08636i 0.109814 + 0.0356807i
\(928\) 14.8088 4.81167i 0.486123 0.157951i
\(929\) 8.02976 5.83396i 0.263448 0.191406i −0.448218 0.893924i \(-0.647941\pi\)
0.711666 + 0.702518i \(0.247941\pi\)
\(930\) 0 0
\(931\) −7.96319 24.5082i −0.260983 0.803223i
\(932\) −76.3741 24.8155i −2.50172 0.812857i
\(933\) −17.5552 + 24.1627i −0.574732 + 0.791051i
\(934\) −31.0046 −1.01450
\(935\) 0 0
\(936\) −6.31145 −0.206296
\(937\) 5.24192 7.21488i 0.171246 0.235700i −0.714764 0.699365i \(-0.753466\pi\)
0.886010 + 0.463666i \(0.153466\pi\)
\(938\) 72.6599 + 23.6086i 2.37243 + 0.770849i
\(939\) −16.1086 49.5771i −0.525683 1.61789i
\(940\) 0 0
\(941\) −30.1937 + 21.9370i −0.984287 + 0.715126i −0.958663 0.284546i \(-0.908157\pi\)
−0.0256241 + 0.999672i \(0.508157\pi\)
\(942\) −1.30441 + 0.423829i −0.0425001 + 0.0138091i
\(943\) 0.0921987 + 0.0299572i 0.00300240 + 0.000975540i
\(944\) −7.38712 5.36705i −0.240430 0.174683i
\(945\) 0 0
\(946\) 23.5674 + 29.7047i 0.766242 + 0.965782i
\(947\) 1.62118i 0.0526814i 0.999653 + 0.0263407i \(0.00838548\pi\)
−0.999653 + 0.0263407i \(0.991615\pi\)
\(948\) 69.1982 95.2431i 2.24745 3.09335i
\(949\) 12.4426 38.2944i 0.403904 1.24309i
\(950\) 0 0
\(951\) −26.5633 + 19.2994i −0.861375 + 0.625826i
\(952\) 73.6340 + 101.348i 2.38649 + 3.28472i
\(953\) −24.1017 + 7.83110i −0.780729 + 0.253674i −0.672152 0.740414i \(-0.734630\pi\)
−0.108578 + 0.994088i \(0.534630\pi\)
\(954\) 0.929151 2.85963i 0.0300824 0.0925840i
\(955\) 0 0
\(956\) 85.3383 2.76004
\(957\) −3.75075 + 13.4592i −0.121245 + 0.435075i
\(958\) 7.82578i 0.252839i
\(959\) −30.5790 22.2169i −0.987448 0.717423i
\(960\) 0 0
\(961\) −2.62123 8.06732i −0.0845558 0.260236i
\(962\) 37.9413 + 52.2217i 1.22328 + 1.68370i
\(963\) −2.15398 2.96470i −0.0694111 0.0955362i
\(964\) −42.6019 131.115i −1.37211 4.22293i
\(965\) 0 0
\(966\) −1.49338 1.08500i −0.0480486 0.0349093i
\(967\) 6.70594i 0.215648i 0.994170 + 0.107824i \(0.0343884\pi\)
−0.994170 + 0.107824i \(0.965612\pi\)
\(968\) 47.3193 + 54.7111i 1.52090 + 1.75848i
\(969\) 31.0915 0.998803
\(970\) 0 0
\(971\) 1.79835 5.53476i 0.0577119 0.177619i −0.918045 0.396476i \(-0.870233\pi\)
0.975757 + 0.218857i \(0.0702329\pi\)
\(972\) −9.61312 + 3.12349i −0.308341 + 0.100186i
\(973\) −4.53658 6.24407i −0.145436 0.200176i
\(974\) −50.2511 + 36.5095i −1.61015 + 1.16984i
\(975\) 0 0
\(976\) −17.4730 + 53.7763i −0.559296 + 1.72134i
\(977\) −3.07530 + 4.23279i −0.0983875 + 0.135419i −0.855372 0.518014i \(-0.826672\pi\)
0.756985 + 0.653432i \(0.226672\pi\)
\(978\) 65.5017i 2.09451i
\(979\) 0.552694 + 0.154022i 0.0176642 + 0.00492256i
\(980\) 0 0
\(981\) −3.09135 2.24600i −0.0986993 0.0717092i
\(982\) 79.6419 + 25.8772i 2.54148 + 0.825775i
\(983\) 14.0673 4.57075i 0.448678 0.145784i −0.0759580 0.997111i \(-0.524201\pi\)
0.524636 + 0.851327i \(0.324201\pi\)
\(984\) 8.74443 6.35320i 0.278762 0.202533i
\(985\) 0 0
\(986\) −9.32696 28.7054i −0.297031 0.914168i
\(987\) −8.12329 2.63942i −0.258567 0.0840136i
\(988\) 41.7734 57.4962i 1.32899 1.82920i
\(989\) 0.471714 0.0149996
\(990\) 0 0
\(991\) 24.9189 0.791575 0.395788 0.918342i \(-0.370472\pi\)
0.395788 + 0.918342i \(0.370472\pi\)
\(992\) −18.4804 + 25.4361i −0.586752 + 0.807595i
\(993\) 36.7566 + 11.9430i 1.16644 + 0.378998i
\(994\) 6.56185 + 20.1953i 0.208129 + 0.640556i
\(995\) 0 0
\(996\) 31.1998 22.6680i 0.988604 0.718263i
\(997\) 14.1122 4.58532i 0.446937 0.145219i −0.0768969 0.997039i \(-0.524501\pi\)
0.523834 + 0.851820i \(0.324501\pi\)
\(998\) −73.1261 23.7601i −2.31477 0.752113i
\(999\) 22.6345 + 16.4449i 0.716124 + 0.520295i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.z.c.224.1 32
5.2 odd 4 275.2.h.e.26.1 yes 16
5.3 odd 4 275.2.h.c.26.4 16
5.4 even 2 inner 275.2.z.c.224.8 32
11.3 even 5 inner 275.2.z.c.124.8 32
55.3 odd 20 275.2.h.c.201.4 yes 16
55.14 even 10 inner 275.2.z.c.124.1 32
55.17 even 20 3025.2.a.bj.1.2 8
55.27 odd 20 3025.2.a.bn.1.7 8
55.28 even 20 3025.2.a.bm.1.7 8
55.38 odd 20 3025.2.a.bi.1.2 8
55.47 odd 20 275.2.h.e.201.1 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.2.h.c.26.4 16 5.3 odd 4
275.2.h.c.201.4 yes 16 55.3 odd 20
275.2.h.e.26.1 yes 16 5.2 odd 4
275.2.h.e.201.1 yes 16 55.47 odd 20
275.2.z.c.124.1 32 55.14 even 10 inner
275.2.z.c.124.8 32 11.3 even 5 inner
275.2.z.c.224.1 32 1.1 even 1 trivial
275.2.z.c.224.8 32 5.4 even 2 inner
3025.2.a.bi.1.2 8 55.38 odd 20
3025.2.a.bj.1.2 8 55.17 even 20
3025.2.a.bm.1.7 8 55.28 even 20
3025.2.a.bn.1.7 8 55.27 odd 20