Properties

Label 275.2.z.c.124.1
Level $275$
Weight $2$
Character 275.124
Analytic conductor $2.196$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,2,Mod(49,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.z (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 124.1
Character \(\chi\) \(=\) 275.124
Dual form 275.2.z.c.224.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50618 - 2.07308i) q^{2} +(1.70486 - 0.553942i) q^{3} +(-1.41105 + 4.34277i) q^{4} +(-3.71620 - 2.69998i) q^{6} +(3.61485 + 1.17454i) q^{7} +(6.25410 - 2.03208i) q^{8} +(0.172643 - 0.125433i) q^{9} +(3.19489 - 0.890336i) q^{11} +8.18545i q^{12} +(-2.64361 - 3.63862i) q^{13} +(-3.00971 - 9.26295i) q^{14} +(-6.24414 - 4.53663i) q^{16} +(2.94602 - 4.05485i) q^{17} +(-0.520065 - 0.168979i) q^{18} +(1.06936 + 3.29116i) q^{19} +6.81344 q^{21} +(-6.65782 - 5.28226i) q^{22} -0.105727i q^{23} +(9.53671 - 6.92883i) q^{24} +(-3.56139 + 10.9608i) q^{26} +(-2.93613 + 4.04124i) q^{27} +(-10.2015 + 14.0411i) q^{28} +(0.726214 - 2.23506i) q^{29} +(-3.83900 + 2.78920i) q^{31} +6.62570i q^{32} +(4.95364 - 3.28768i) q^{33} -12.8433 q^{34} +(0.301117 + 0.926742i) q^{36} +(-5.32675 - 1.73077i) q^{37} +(5.21219 - 7.17396i) q^{38} +(-6.52257 - 4.73892i) q^{39} +(0.283345 + 0.872045i) q^{41} +(-10.2623 - 14.1248i) q^{42} +4.46162i q^{43} +(-0.641627 + 15.1310i) q^{44} +(-0.219181 + 0.159244i) q^{46} +(-1.19225 + 0.387384i) q^{47} +(-13.1584 - 4.27543i) q^{48} +(6.02449 + 4.37704i) q^{49} +(2.77640 - 8.54487i) q^{51} +(19.5319 - 6.34631i) q^{52} +(-3.23200 - 4.44847i) q^{53} +12.8002 q^{54} +24.9944 q^{56} +(3.64622 + 5.01860i) q^{57} +(-5.72727 + 1.86090i) q^{58} +(0.365582 - 1.12515i) q^{59} +(5.92690 + 4.30614i) q^{61} +(11.5645 + 3.75752i) q^{62} +(0.771405 - 0.250645i) q^{63} +(1.24734 - 0.906248i) q^{64} +(-14.2767 - 5.31745i) q^{66} +7.84414i q^{67} +(13.4523 + 18.5155i) q^{68} +(-0.0585667 - 0.180250i) q^{69} +(1.76384 + 1.28150i) q^{71} +(0.824840 - 1.13529i) q^{72} +(-8.51445 - 2.76651i) q^{73} +(4.43504 + 13.6496i) q^{74} -15.8017 q^{76} +(12.5948 + 0.534080i) q^{77} +20.6595i q^{78} +(11.6357 - 8.45380i) q^{79} +(-2.96491 + 9.12506i) q^{81} +(1.38105 - 1.90086i) q^{82} +(2.76930 - 3.81162i) q^{83} +(-9.61410 + 29.5892i) q^{84} +(9.24930 - 6.72001i) q^{86} -4.21274i q^{87} +(18.1719 - 12.0605i) q^{88} +0.172993 q^{89} +(-5.28256 - 16.2581i) q^{91} +(0.459148 + 0.149186i) q^{92} +(-4.99990 + 6.88177i) q^{93} +(2.59882 + 1.88815i) q^{94} +(3.67026 + 11.2959i) q^{96} +(2.62178 + 3.60857i) q^{97} -19.0819i q^{98} +(0.439899 - 0.554454i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{4} - 6 q^{6} - 16 q^{9} - 10 q^{11} - 6 q^{14} - 8 q^{16} + 26 q^{19} + 20 q^{21} + 86 q^{24} - 68 q^{26} + 22 q^{29} - 20 q^{31} - 40 q^{34} + 6 q^{36} - 6 q^{39} + 50 q^{41} + 2 q^{44} + 80 q^{46}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.50618 2.07308i −1.06503 1.46589i −0.875006 0.484111i \(-0.839143\pi\)
−0.190025 0.981779i \(-0.560857\pi\)
\(3\) 1.70486 0.553942i 0.984301 0.319819i 0.227726 0.973725i \(-0.426871\pi\)
0.756575 + 0.653906i \(0.226871\pi\)
\(4\) −1.41105 + 4.34277i −0.705525 + 2.17138i
\(5\) 0 0
\(6\) −3.71620 2.69998i −1.51713 1.10226i
\(7\) 3.61485 + 1.17454i 1.36628 + 0.443933i 0.898136 0.439717i \(-0.144921\pi\)
0.468148 + 0.883650i \(0.344921\pi\)
\(8\) 6.25410 2.03208i 2.21116 0.718449i
\(9\) 0.172643 0.125433i 0.0575478 0.0418109i
\(10\) 0 0
\(11\) 3.19489 0.890336i 0.963295 0.268446i
\(12\) 8.18545i 2.36294i
\(13\) −2.64361 3.63862i −0.733205 1.00917i −0.998981 0.0451354i \(-0.985628\pi\)
0.265776 0.964035i \(-0.414372\pi\)
\(14\) −3.00971 9.26295i −0.804380 2.47563i
\(15\) 0 0
\(16\) −6.24414 4.53663i −1.56103 1.13416i
\(17\) 2.94602 4.05485i 0.714515 0.983445i −0.285174 0.958476i \(-0.592051\pi\)
0.999688 0.0249691i \(-0.00794875\pi\)
\(18\) −0.520065 0.168979i −0.122580 0.0398288i
\(19\) 1.06936 + 3.29116i 0.245329 + 0.755044i 0.995582 + 0.0938935i \(0.0299313\pi\)
−0.750254 + 0.661150i \(0.770069\pi\)
\(20\) 0 0
\(21\) 6.81344 1.48681
\(22\) −6.65782 5.28226i −1.41945 1.12618i
\(23\) 0.105727i 0.0220456i −0.999939 0.0110228i \(-0.996491\pi\)
0.999939 0.0110228i \(-0.00350874\pi\)
\(24\) 9.53671 6.92883i 1.94667 1.41434i
\(25\) 0 0
\(26\) −3.56139 + 10.9608i −0.698446 + 2.14960i
\(27\) −2.93613 + 4.04124i −0.565059 + 0.777737i
\(28\) −10.2015 + 14.0411i −1.92790 + 2.65352i
\(29\) 0.726214 2.23506i 0.134855 0.415040i −0.860713 0.509091i \(-0.829982\pi\)
0.995567 + 0.0940512i \(0.0299817\pi\)
\(30\) 0 0
\(31\) −3.83900 + 2.78920i −0.689504 + 0.500954i −0.876497 0.481407i \(-0.840126\pi\)
0.186993 + 0.982361i \(0.440126\pi\)
\(32\) 6.62570i 1.17127i
\(33\) 4.95364 3.28768i 0.862318 0.572312i
\(34\) −12.8433 −2.20260
\(35\) 0 0
\(36\) 0.301117 + 0.926742i 0.0501861 + 0.154457i
\(37\) −5.32675 1.73077i −0.875713 0.284536i −0.163537 0.986537i \(-0.552290\pi\)
−0.712176 + 0.702001i \(0.752290\pi\)
\(38\) 5.21219 7.17396i 0.845528 1.16377i
\(39\) −6.52257 4.73892i −1.04445 0.758835i
\(40\) 0 0
\(41\) 0.283345 + 0.872045i 0.0442510 + 0.136191i 0.970741 0.240129i \(-0.0771896\pi\)
−0.926490 + 0.376319i \(0.877190\pi\)
\(42\) −10.2623 14.1248i −1.58350 2.17951i
\(43\) 4.46162i 0.680390i 0.940355 + 0.340195i \(0.110493\pi\)
−0.940355 + 0.340195i \(0.889507\pi\)
\(44\) −0.641627 + 15.1310i −0.0967289 + 2.28108i
\(45\) 0 0
\(46\) −0.219181 + 0.159244i −0.0323165 + 0.0234793i
\(47\) −1.19225 + 0.387384i −0.173907 + 0.0565058i −0.394676 0.918820i \(-0.629143\pi\)
0.220769 + 0.975326i \(0.429143\pi\)
\(48\) −13.1584 4.27543i −1.89925 0.617105i
\(49\) 6.02449 + 4.37704i 0.860641 + 0.625292i
\(50\) 0 0
\(51\) 2.77640 8.54487i 0.388773 1.19652i
\(52\) 19.5319 6.34631i 2.70859 0.880074i
\(53\) −3.23200 4.44847i −0.443949 0.611044i 0.527135 0.849782i \(-0.323266\pi\)
−0.971084 + 0.238738i \(0.923266\pi\)
\(54\) 12.8002 1.74188
\(55\) 0 0
\(56\) 24.9944 3.34002
\(57\) 3.64622 + 5.01860i 0.482954 + 0.664730i
\(58\) −5.72727 + 1.86090i −0.752027 + 0.244348i
\(59\) 0.365582 1.12515i 0.0475947 0.146481i −0.924435 0.381340i \(-0.875463\pi\)
0.972030 + 0.234859i \(0.0754627\pi\)
\(60\) 0 0
\(61\) 5.92690 + 4.30614i 0.758861 + 0.551345i 0.898561 0.438849i \(-0.144614\pi\)
−0.139699 + 0.990194i \(0.544614\pi\)
\(62\) 11.5645 + 3.75752i 1.46869 + 0.477206i
\(63\) 0.771405 0.250645i 0.0971879 0.0315783i
\(64\) 1.24734 0.906248i 0.155918 0.113281i
\(65\) 0 0
\(66\) −14.2767 5.31745i −1.75734 0.654533i
\(67\) 7.84414i 0.958315i 0.877729 + 0.479157i \(0.159058\pi\)
−0.877729 + 0.479157i \(0.840942\pi\)
\(68\) 13.4523 + 18.5155i 1.63133 + 2.24533i
\(69\) −0.0585667 0.180250i −0.00705060 0.0216995i
\(70\) 0 0
\(71\) 1.76384 + 1.28150i 0.209329 + 0.152086i 0.687510 0.726175i \(-0.258704\pi\)
−0.478181 + 0.878261i \(0.658704\pi\)
\(72\) 0.824840 1.13529i 0.0972083 0.133796i
\(73\) −8.51445 2.76651i −0.996541 0.323796i −0.235059 0.971981i \(-0.575528\pi\)
−0.761483 + 0.648185i \(0.775528\pi\)
\(74\) 4.43504 + 13.6496i 0.515563 + 1.58674i
\(75\) 0 0
\(76\) −15.8017 −1.81257
\(77\) 12.5948 + 0.534080i 1.43531 + 0.0608640i
\(78\) 20.6595i 2.33923i
\(79\) 11.6357 8.45380i 1.30911 0.951127i 0.309114 0.951025i \(-0.399967\pi\)
1.00000 0.000102366i \(-3.25841e-5\pi\)
\(80\) 0 0
\(81\) −2.96491 + 9.12506i −0.329435 + 1.01390i
\(82\) 1.38105 1.90086i 0.152512 0.209914i
\(83\) 2.76930 3.81162i 0.303971 0.418380i −0.629518 0.776986i \(-0.716748\pi\)
0.933489 + 0.358606i \(0.116748\pi\)
\(84\) −9.61410 + 29.5892i −1.04898 + 3.22844i
\(85\) 0 0
\(86\) 9.24930 6.72001i 0.997378 0.724637i
\(87\) 4.21274i 0.451653i
\(88\) 18.1719 12.0605i 1.93713 1.28566i
\(89\) 0.172993 0.0183372 0.00916862 0.999958i \(-0.497081\pi\)
0.00916862 + 0.999958i \(0.497081\pi\)
\(90\) 0 0
\(91\) −5.28256 16.2581i −0.553763 1.70431i
\(92\) 0.459148 + 0.149186i 0.0478695 + 0.0155537i
\(93\) −4.99990 + 6.88177i −0.518465 + 0.713606i
\(94\) 2.59882 + 1.88815i 0.268048 + 0.194748i
\(95\) 0 0
\(96\) 3.67026 + 11.2959i 0.374594 + 1.15288i
\(97\) 2.62178 + 3.60857i 0.266201 + 0.366394i 0.921103 0.389320i \(-0.127290\pi\)
−0.654902 + 0.755714i \(0.727290\pi\)
\(98\) 19.0819i 1.92756i
\(99\) 0.439899 0.554454i 0.0442115 0.0557247i
\(100\) 0 0
\(101\) −7.12354 + 5.17556i −0.708819 + 0.514987i −0.882793 0.469763i \(-0.844339\pi\)
0.173973 + 0.984750i \(0.444339\pi\)
\(102\) −21.8960 + 7.11444i −2.16803 + 0.704434i
\(103\) 15.6677 + 5.09074i 1.54378 + 0.501605i 0.952417 0.304798i \(-0.0985890\pi\)
0.591366 + 0.806403i \(0.298589\pi\)
\(104\) −23.9274 17.3843i −2.34627 1.70467i
\(105\) 0 0
\(106\) −4.35406 + 13.4004i −0.422903 + 1.30156i
\(107\) −16.3319 + 5.30657i −1.57887 + 0.513005i −0.961765 0.273877i \(-0.911694\pi\)
−0.617103 + 0.786882i \(0.711694\pi\)
\(108\) −13.4071 18.4533i −1.29010 1.77567i
\(109\) −17.9060 −1.71508 −0.857542 0.514414i \(-0.828009\pi\)
−0.857542 + 0.514414i \(0.828009\pi\)
\(110\) 0 0
\(111\) −10.0401 −0.952965
\(112\) −17.2432 23.7332i −1.62933 2.24258i
\(113\) −13.6155 + 4.42393i −1.28083 + 0.416168i −0.868874 0.495034i \(-0.835156\pi\)
−0.411960 + 0.911202i \(0.635156\pi\)
\(114\) 4.91209 15.1178i 0.460059 1.41592i
\(115\) 0 0
\(116\) 8.68161 + 6.30756i 0.806067 + 0.585642i
\(117\) −0.912803 0.296588i −0.0843886 0.0274195i
\(118\) −2.88315 + 0.936793i −0.265416 + 0.0862388i
\(119\) 15.4120 11.1975i 1.41281 1.02647i
\(120\) 0 0
\(121\) 9.41460 5.68904i 0.855873 0.517186i
\(122\) 18.7728i 1.69961i
\(123\) 0.966125 + 1.32976i 0.0871126 + 0.119900i
\(124\) −6.69581 20.6076i −0.601301 1.85061i
\(125\) 0 0
\(126\) −1.68148 1.22167i −0.149798 0.108835i
\(127\) −3.27396 + 4.50622i −0.290517 + 0.399863i −0.929182 0.369622i \(-0.879487\pi\)
0.638665 + 0.769485i \(0.279487\pi\)
\(128\) 8.84538 + 2.87404i 0.781828 + 0.254031i
\(129\) 2.47148 + 7.60643i 0.217602 + 0.669709i
\(130\) 0 0
\(131\) −13.8367 −1.20892 −0.604458 0.796637i \(-0.706610\pi\)
−0.604458 + 0.796637i \(0.706610\pi\)
\(132\) 7.28780 + 26.1516i 0.634321 + 2.27620i
\(133\) 13.1530i 1.14051i
\(134\) 16.2616 11.8147i 1.40478 1.02064i
\(135\) 0 0
\(136\) 10.1849 31.3460i 0.873351 2.68790i
\(137\) −5.84522 + 8.04525i −0.499390 + 0.687352i −0.982085 0.188437i \(-0.939658\pi\)
0.482695 + 0.875789i \(0.339658\pi\)
\(138\) −0.285461 + 0.392903i −0.0243000 + 0.0334461i
\(139\) −0.627493 + 1.93122i −0.0532232 + 0.163804i −0.974135 0.225967i \(-0.927446\pi\)
0.920912 + 0.389771i \(0.127446\pi\)
\(140\) 0 0
\(141\) −1.81802 + 1.32087i −0.153105 + 0.111237i
\(142\) 5.58676i 0.468830i
\(143\) −11.6856 9.27126i −0.977201 0.775302i
\(144\) −1.64705 −0.137254
\(145\) 0 0
\(146\) 7.08911 + 21.8180i 0.586699 + 1.80567i
\(147\) 12.6955 + 4.12503i 1.04711 + 0.340227i
\(148\) 15.0326 20.6907i 1.23568 1.70076i
\(149\) 8.59185 + 6.24234i 0.703872 + 0.511393i 0.881191 0.472761i \(-0.156742\pi\)
−0.177319 + 0.984153i \(0.556742\pi\)
\(150\) 0 0
\(151\) −1.06131 3.26639i −0.0863684 0.265815i 0.898540 0.438892i \(-0.144629\pi\)
−0.984908 + 0.173077i \(0.944629\pi\)
\(152\) 13.3758 + 18.4102i 1.08492 + 1.49327i
\(153\) 1.06957i 0.0864696i
\(154\) −17.8628 26.9144i −1.43943 2.16883i
\(155\) 0 0
\(156\) 29.7837 21.6391i 2.38460 1.73252i
\(157\) 0.283971 0.0922677i 0.0226633 0.00736377i −0.297663 0.954671i \(-0.596207\pi\)
0.320327 + 0.947307i \(0.396207\pi\)
\(158\) −35.0509 11.3887i −2.78850 0.906038i
\(159\) −7.97430 5.79367i −0.632403 0.459468i
\(160\) 0 0
\(161\) 0.124180 0.382187i 0.00978677 0.0301206i
\(162\) 23.3827 7.59750i 1.83712 0.596916i
\(163\) 8.38166 + 11.5364i 0.656502 + 0.903597i 0.999359 0.0357901i \(-0.0113948\pi\)
−0.342857 + 0.939387i \(0.611395\pi\)
\(164\) −4.18690 −0.326942
\(165\) 0 0
\(166\) −12.0729 −0.937037
\(167\) −10.5788 14.5604i −0.818611 1.12672i −0.989937 0.141507i \(-0.954805\pi\)
0.171326 0.985214i \(-0.445195\pi\)
\(168\) 42.6119 13.8455i 3.28758 1.06820i
\(169\) −2.23363 + 6.87441i −0.171818 + 0.528801i
\(170\) 0 0
\(171\) 0.597437 + 0.434064i 0.0456872 + 0.0331937i
\(172\) −19.3758 6.29557i −1.47739 0.480033i
\(173\) −8.32510 + 2.70499i −0.632946 + 0.205657i −0.607880 0.794029i \(-0.707980\pi\)
−0.0250663 + 0.999686i \(0.507980\pi\)
\(174\) −8.73335 + 6.34515i −0.662074 + 0.481025i
\(175\) 0 0
\(176\) −23.9884 8.93465i −1.80820 0.673474i
\(177\) 2.12073i 0.159404i
\(178\) −0.260559 0.358629i −0.0195297 0.0268804i
\(179\) 7.07647 + 21.7791i 0.528920 + 1.62785i 0.756431 + 0.654073i \(0.226941\pi\)
−0.227511 + 0.973776i \(0.573059\pi\)
\(180\) 0 0
\(181\) −13.9721 10.1513i −1.03854 0.754542i −0.0685389 0.997648i \(-0.521834\pi\)
−0.970000 + 0.243106i \(0.921834\pi\)
\(182\) −25.7478 + 35.4388i −1.90855 + 2.62690i
\(183\) 12.4899 + 4.05821i 0.923279 + 0.299991i
\(184\) −0.214846 0.661228i −0.0158387 0.0487464i
\(185\) 0 0
\(186\) 21.7972 1.59825
\(187\) 5.80202 15.5777i 0.424286 1.13916i
\(188\) 5.72427i 0.417485i
\(189\) −15.3603 + 11.1599i −1.11729 + 0.811762i
\(190\) 0 0
\(191\) −5.62462 + 17.3108i −0.406984 + 1.25257i 0.512244 + 0.858840i \(0.328814\pi\)
−0.919228 + 0.393727i \(0.871186\pi\)
\(192\) 1.62454 2.23598i 0.117241 0.161368i
\(193\) 6.48687 8.92841i 0.466935 0.642681i −0.508994 0.860770i \(-0.669982\pi\)
0.975929 + 0.218089i \(0.0699824\pi\)
\(194\) 3.53198 10.8703i 0.253581 0.780443i
\(195\) 0 0
\(196\) −27.5093 + 19.9867i −1.96495 + 1.42762i
\(197\) 15.7213i 1.12009i −0.828461 0.560047i \(-0.810783\pi\)
0.828461 0.560047i \(-0.189217\pi\)
\(198\) −1.81200 0.0768375i −0.128773 0.00546060i
\(199\) −4.44523 −0.315114 −0.157557 0.987510i \(-0.550362\pi\)
−0.157557 + 0.987510i \(0.550362\pi\)
\(200\) 0 0
\(201\) 4.34521 + 13.3732i 0.306487 + 0.943270i
\(202\) 21.4587 + 6.97236i 1.50983 + 0.490573i
\(203\) 5.25031 7.22643i 0.368499 0.507196i
\(204\) 33.1908 + 24.1145i 2.32382 + 1.68835i
\(205\) 0 0
\(206\) −13.0449 40.1480i −0.908879 2.79724i
\(207\) −0.0132616 0.0182531i −0.000921747 0.00126868i
\(208\) 34.7131i 2.40692i
\(209\) 6.34673 + 9.56279i 0.439012 + 0.661472i
\(210\) 0 0
\(211\) −1.87055 + 1.35903i −0.128774 + 0.0935597i −0.650308 0.759671i \(-0.725360\pi\)
0.521534 + 0.853231i \(0.325360\pi\)
\(212\) 23.8792 7.75881i 1.64003 0.532877i
\(213\) 3.71698 + 1.20772i 0.254683 + 0.0827515i
\(214\) 35.5998 + 25.8648i 2.43355 + 1.76808i
\(215\) 0 0
\(216\) −10.1508 + 31.2408i −0.690671 + 2.12567i
\(217\) −17.1534 + 5.57348i −1.16445 + 0.378353i
\(218\) 26.9697 + 37.1206i 1.82662 + 2.51413i
\(219\) −16.0484 −1.08445
\(220\) 0 0
\(221\) −22.5422 −1.51635
\(222\) 15.1222 + 20.8140i 1.01494 + 1.39694i
\(223\) 9.79327 3.18203i 0.655806 0.213084i 0.0378334 0.999284i \(-0.487954\pi\)
0.617972 + 0.786200i \(0.287954\pi\)
\(224\) −7.78212 + 23.9509i −0.519965 + 1.60029i
\(225\) 0 0
\(226\) 29.6785 + 21.5627i 1.97419 + 1.43433i
\(227\) −6.82700 2.21823i −0.453124 0.147229i 0.0735589 0.997291i \(-0.476564\pi\)
−0.526682 + 0.850062i \(0.676564\pi\)
\(228\) −26.9396 + 8.75321i −1.78412 + 0.579696i
\(229\) 1.66606 1.21047i 0.110097 0.0799899i −0.531375 0.847137i \(-0.678324\pi\)
0.641471 + 0.767147i \(0.278324\pi\)
\(230\) 0 0
\(231\) 21.7682 6.06625i 1.43224 0.399130i
\(232\) 15.4540i 1.01461i
\(233\) 10.3371 + 14.2278i 0.677205 + 0.932093i 0.999896 0.0144113i \(-0.00458742\pi\)
−0.322691 + 0.946504i \(0.604587\pi\)
\(234\) 0.759997 + 2.33903i 0.0496826 + 0.152907i
\(235\) 0 0
\(236\) 4.37039 + 3.17527i 0.284488 + 0.206693i
\(237\) 15.1543 20.8580i 0.984374 1.35488i
\(238\) −46.4265 15.0849i −3.00938 0.977808i
\(239\) −5.77519 17.7742i −0.373566 1.14972i −0.944441 0.328680i \(-0.893396\pi\)
0.570875 0.821037i \(-0.306604\pi\)
\(240\) 0 0
\(241\) 30.1916 1.94481 0.972406 0.233296i \(-0.0749510\pi\)
0.972406 + 0.233296i \(0.0749510\pi\)
\(242\) −25.9740 10.9485i −1.66967 0.703797i
\(243\) 2.21359i 0.142002i
\(244\) −27.0637 + 19.6629i −1.73258 + 1.25879i
\(245\) 0 0
\(246\) 1.30154 4.00571i 0.0829829 0.255395i
\(247\) 9.14828 12.5915i 0.582091 0.801180i
\(248\) −18.3416 + 25.2451i −1.16469 + 1.60306i
\(249\) 2.60986 8.03231i 0.165393 0.509027i
\(250\) 0 0
\(251\) 20.6391 14.9952i 1.30273 0.946489i 0.302752 0.953069i \(-0.402094\pi\)
0.999978 + 0.00657998i \(0.00209449\pi\)
\(252\) 3.70370i 0.233311i
\(253\) −0.0941326 0.337786i −0.00591806 0.0212364i
\(254\) 14.2730 0.895565
\(255\) 0 0
\(256\) −8.31752 25.5987i −0.519845 1.59992i
\(257\) 22.7699 + 7.39839i 1.42035 + 0.461499i 0.915713 0.401834i \(-0.131627\pi\)
0.504635 + 0.863333i \(0.331627\pi\)
\(258\) 12.0463 16.5803i 0.749967 1.03224i
\(259\) −17.2226 12.5129i −1.07016 0.777515i
\(260\) 0 0
\(261\) −0.154973 0.476959i −0.00959260 0.0295230i
\(262\) 20.8406 + 28.6846i 1.28753 + 1.77214i
\(263\) 26.7696i 1.65069i −0.564631 0.825343i \(-0.690982\pi\)
0.564631 0.825343i \(-0.309018\pi\)
\(264\) 24.2997 30.6277i 1.49555 1.88500i
\(265\) 0 0
\(266\) 27.2673 19.8109i 1.67187 1.21468i
\(267\) 0.294929 0.0958283i 0.0180494 0.00586459i
\(268\) −34.0653 11.0685i −2.08087 0.676115i
\(269\) −4.82647 3.50664i −0.294275 0.213803i 0.430845 0.902426i \(-0.358216\pi\)
−0.725120 + 0.688623i \(0.758216\pi\)
\(270\) 0 0
\(271\) −2.31566 + 7.12688i −0.140667 + 0.432927i −0.996428 0.0844429i \(-0.973089\pi\)
0.855762 + 0.517370i \(0.173089\pi\)
\(272\) −36.7907 + 11.9540i −2.23076 + 0.724819i
\(273\) −18.0121 24.7915i −1.09014 1.50045i
\(274\) 25.4824 1.53945
\(275\) 0 0
\(276\) 0.865424 0.0520924
\(277\) −0.847908 1.16704i −0.0509458 0.0701209i 0.782784 0.622293i \(-0.213799\pi\)
−0.833730 + 0.552173i \(0.813799\pi\)
\(278\) 4.94871 1.60793i 0.296804 0.0964373i
\(279\) −0.312921 + 0.963072i −0.0187341 + 0.0576576i
\(280\) 0 0
\(281\) 0.193576 + 0.140641i 0.0115478 + 0.00838994i 0.593544 0.804801i \(-0.297728\pi\)
−0.581996 + 0.813191i \(0.697728\pi\)
\(282\) 5.47655 + 1.77944i 0.326124 + 0.105964i
\(283\) 5.02049 1.63126i 0.298437 0.0969680i −0.155971 0.987762i \(-0.549851\pi\)
0.454408 + 0.890794i \(0.349851\pi\)
\(284\) −8.05414 + 5.85167i −0.477925 + 0.347233i
\(285\) 0 0
\(286\) −1.61942 + 38.1895i −0.0957583 + 2.25819i
\(287\) 3.48511i 0.205720i
\(288\) 0.831079 + 1.14388i 0.0489718 + 0.0674039i
\(289\) −2.50947 7.72336i −0.147616 0.454315i
\(290\) 0 0
\(291\) 6.46870 + 4.69979i 0.379202 + 0.275506i
\(292\) 24.0287 33.0726i 1.40617 1.93543i
\(293\) −14.2619 4.63398i −0.833191 0.270720i −0.138802 0.990320i \(-0.544325\pi\)
−0.694389 + 0.719600i \(0.744325\pi\)
\(294\) −10.5703 32.5319i −0.616470 1.89730i
\(295\) 0 0
\(296\) −36.8311 −2.14077
\(297\) −5.78255 + 15.5255i −0.335538 + 0.900878i
\(298\) 27.2137i 1.57645i
\(299\) −0.384700 + 0.279501i −0.0222478 + 0.0161640i
\(300\) 0 0
\(301\) −5.24033 + 16.1281i −0.302048 + 0.929607i
\(302\) −5.17296 + 7.11996i −0.297670 + 0.409708i
\(303\) −9.27768 + 12.7696i −0.532989 + 0.733596i
\(304\) 8.25353 25.4018i 0.473372 1.45689i
\(305\) 0 0
\(306\) −2.21731 + 1.61097i −0.126755 + 0.0920929i
\(307\) 2.11034i 0.120443i −0.998185 0.0602217i \(-0.980819\pi\)
0.998185 0.0602217i \(-0.0191808\pi\)
\(308\) −20.0912 + 53.9425i −1.14480 + 3.07366i
\(309\) 29.5312 1.67997
\(310\) 0 0
\(311\) −5.14858 15.8457i −0.291949 0.898528i −0.984229 0.176898i \(-0.943394\pi\)
0.692280 0.721629i \(-0.256606\pi\)
\(312\) −50.4227 16.3833i −2.85462 0.927523i
\(313\) −17.0927 + 23.5261i −0.966137 + 1.32977i −0.0221632 + 0.999754i \(0.507055\pi\)
−0.943974 + 0.330020i \(0.892945\pi\)
\(314\) −0.618991 0.449723i −0.0349317 0.0253793i
\(315\) 0 0
\(316\) 20.2944 + 62.4597i 1.14165 + 3.51363i
\(317\) −10.7662 14.8184i −0.604689 0.832282i 0.391439 0.920204i \(-0.371977\pi\)
−0.996127 + 0.0879217i \(0.971977\pi\)
\(318\) 25.2577i 1.41638i
\(319\) 0.330221 7.78733i 0.0184888 0.436007i
\(320\) 0 0
\(321\) −24.9041 + 18.0939i −1.39001 + 1.00990i
\(322\) −0.979344 + 0.318208i −0.0545767 + 0.0177330i
\(323\) 16.4955 + 5.35972i 0.917835 + 0.298223i
\(324\) −35.4444 25.7518i −1.96913 1.43066i
\(325\) 0 0
\(326\) 11.2915 34.7517i 0.625379 1.92472i
\(327\) −30.5272 + 9.91890i −1.68816 + 0.548516i
\(328\) 3.54413 + 4.87808i 0.195692 + 0.269347i
\(329\) −4.76479 −0.262691
\(330\) 0 0
\(331\) 21.5599 1.18504 0.592520 0.805556i \(-0.298133\pi\)
0.592520 + 0.805556i \(0.298133\pi\)
\(332\) 12.6454 + 17.4048i 0.694004 + 0.955214i
\(333\) −1.13672 + 0.369344i −0.0622921 + 0.0202399i
\(334\) −14.2514 + 43.8614i −0.779803 + 2.39999i
\(335\) 0 0
\(336\) −42.5440 30.9101i −2.32097 1.68628i
\(337\) −13.3732 4.34521i −0.728484 0.236699i −0.0787861 0.996892i \(-0.525104\pi\)
−0.649697 + 0.760193i \(0.725104\pi\)
\(338\) 17.6155 5.72362i 0.958156 0.311324i
\(339\) −20.7618 + 15.0844i −1.12763 + 0.819270i
\(340\) 0 0
\(341\) −9.78185 + 12.3292i −0.529717 + 0.667662i
\(342\) 1.89232i 0.102325i
\(343\) 0.997912 + 1.37351i 0.0538822 + 0.0741625i
\(344\) 9.06637 + 27.9034i 0.488826 + 1.50445i
\(345\) 0 0
\(346\) 18.1468 + 13.1844i 0.975578 + 0.708799i
\(347\) 16.8399 23.1781i 0.904013 1.24427i −0.0651572 0.997875i \(-0.520755\pi\)
0.969170 0.246392i \(-0.0792451\pi\)
\(348\) 18.2949 + 5.94439i 0.980712 + 0.318653i
\(349\) 5.53826 + 17.0450i 0.296456 + 0.912399i 0.982728 + 0.185054i \(0.0592459\pi\)
−0.686272 + 0.727345i \(0.740754\pi\)
\(350\) 0 0
\(351\) 22.4665 1.19917
\(352\) 5.89910 + 21.1684i 0.314423 + 1.12828i
\(353\) 24.7757i 1.31868i −0.751845 0.659339i \(-0.770836\pi\)
0.751845 0.659339i \(-0.229164\pi\)
\(354\) −4.39644 + 3.19420i −0.233668 + 0.169770i
\(355\) 0 0
\(356\) −0.244102 + 0.751269i −0.0129374 + 0.0398172i
\(357\) 20.0725 27.6274i 1.06235 1.46220i
\(358\) 34.4915 47.4735i 1.82293 2.50905i
\(359\) 3.22994 9.94073i 0.170470 0.524652i −0.828928 0.559355i \(-0.811049\pi\)
0.999398 + 0.0347037i \(0.0110487\pi\)
\(360\) 0 0
\(361\) 5.68314 4.12904i 0.299112 0.217318i
\(362\) 44.2551i 2.32600i
\(363\) 12.8992 14.9142i 0.677031 0.782791i
\(364\) 78.0589 4.09140
\(365\) 0 0
\(366\) −10.3990 32.0050i −0.543567 1.67293i
\(367\) −14.4514 4.69553i −0.754355 0.245105i −0.0935010 0.995619i \(-0.529806\pi\)
−0.660854 + 0.750514i \(0.729806\pi\)
\(368\) −0.479645 + 0.660174i −0.0250032 + 0.0344140i
\(369\) 0.158300 + 0.115012i 0.00824079 + 0.00598729i
\(370\) 0 0
\(371\) −6.45831 19.8766i −0.335299 1.03194i
\(372\) −22.8308 31.4239i −1.18372 1.62925i
\(373\) 21.1774i 1.09653i 0.836306 + 0.548263i \(0.184711\pi\)
−0.836306 + 0.548263i \(0.815289\pi\)
\(374\) −41.0328 + 11.4348i −2.12176 + 0.591281i
\(375\) 0 0
\(376\) −6.66924 + 4.84548i −0.343940 + 0.249887i
\(377\) −10.0523 + 3.26620i −0.517722 + 0.168218i
\(378\) 46.2707 + 15.0343i 2.37991 + 0.773279i
\(379\) −28.4486 20.6691i −1.46131 1.06170i −0.983020 0.183498i \(-0.941258\pi\)
−0.478287 0.878204i \(-0.658742\pi\)
\(380\) 0 0
\(381\) −3.08546 + 9.49606i −0.158073 + 0.486498i
\(382\) 44.3584 14.4129i 2.26958 0.737430i
\(383\) −1.16961 1.60983i −0.0597642 0.0822584i 0.778089 0.628154i \(-0.216189\pi\)
−0.837853 + 0.545896i \(0.816189\pi\)
\(384\) 16.6722 0.850799
\(385\) 0 0
\(386\) −28.2797 −1.43940
\(387\) 0.559633 + 0.770268i 0.0284477 + 0.0391549i
\(388\) −19.3706 + 6.29390i −0.983394 + 0.319524i
\(389\) 1.87218 5.76197i 0.0949231 0.292143i −0.892311 0.451422i \(-0.850917\pi\)
0.987234 + 0.159279i \(0.0509169\pi\)
\(390\) 0 0
\(391\) −0.428707 0.311474i −0.0216807 0.0157519i
\(392\) 46.5723 + 15.1322i 2.35226 + 0.764294i
\(393\) −23.5896 + 7.66473i −1.18994 + 0.386634i
\(394\) −32.5915 + 23.6791i −1.64194 + 1.19294i
\(395\) 0 0
\(396\) 1.78714 + 2.69274i 0.0898074 + 0.135315i
\(397\) 35.0663i 1.75993i 0.475040 + 0.879964i \(0.342434\pi\)
−0.475040 + 0.879964i \(0.657566\pi\)
\(398\) 6.69533 + 9.21534i 0.335607 + 0.461923i
\(399\) 7.28603 + 22.4241i 0.364758 + 1.12261i
\(400\) 0 0
\(401\) −13.3283 9.68359i −0.665585 0.483576i 0.202960 0.979187i \(-0.434944\pi\)
−0.868544 + 0.495612i \(0.834944\pi\)
\(402\) 21.1790 29.1504i 1.05631 1.45389i
\(403\) 20.2976 + 6.59510i 1.01110 + 0.328525i
\(404\) −12.4246 38.2389i −0.618145 1.90245i
\(405\) 0 0
\(406\) −22.8889 −1.13596
\(407\) −18.5593 0.787007i −0.919952 0.0390105i
\(408\) 59.0824i 2.92501i
\(409\) 3.48714 2.53356i 0.172428 0.125276i −0.498224 0.867048i \(-0.666014\pi\)
0.670652 + 0.741772i \(0.266014\pi\)
\(410\) 0 0
\(411\) −5.50867 + 16.9539i −0.271722 + 0.836276i
\(412\) −44.2158 + 60.8578i −2.17836 + 2.99825i
\(413\) 2.64305 3.63784i 0.130056 0.179007i
\(414\) −0.0178657 + 0.0549849i −0.000878050 + 0.00270236i
\(415\) 0 0
\(416\) 24.1084 17.5158i 1.18201 0.858781i
\(417\) 3.64006i 0.178255i
\(418\) 10.2651 27.5606i 0.502083 1.34803i
\(419\) 18.7114 0.914110 0.457055 0.889438i \(-0.348904\pi\)
0.457055 + 0.889438i \(0.348904\pi\)
\(420\) 0 0
\(421\) −9.42742 29.0146i −0.459465 1.41409i −0.865813 0.500368i \(-0.833198\pi\)
0.406348 0.913718i \(-0.366802\pi\)
\(422\) 5.63477 + 1.83085i 0.274297 + 0.0891244i
\(423\) −0.157243 + 0.216426i −0.00764540 + 0.0105230i
\(424\) −29.2529 21.2535i −1.42065 1.03216i
\(425\) 0 0
\(426\) −3.09474 9.52464i −0.149941 0.461470i
\(427\) 16.3671 + 22.5274i 0.792061 + 1.09018i
\(428\) 78.4136i 3.79027i
\(429\) −25.0581 9.33304i −1.20982 0.450604i
\(430\) 0 0
\(431\) −6.72568 + 4.88649i −0.323965 + 0.235374i −0.737865 0.674948i \(-0.764166\pi\)
0.413901 + 0.910322i \(0.364166\pi\)
\(432\) 36.6673 11.9139i 1.76415 0.573208i
\(433\) 26.1062 + 8.48242i 1.25458 + 0.407639i 0.859561 0.511032i \(-0.170737\pi\)
0.395023 + 0.918671i \(0.370737\pi\)
\(434\) 37.3905 + 27.1658i 1.79480 + 1.30400i
\(435\) 0 0
\(436\) 25.2663 77.7616i 1.21004 3.72411i
\(437\) 0.347964 0.113061i 0.0166454 0.00540842i
\(438\) 24.1719 + 33.2697i 1.15498 + 1.58969i
\(439\) 23.1527 1.10502 0.552510 0.833506i \(-0.313670\pi\)
0.552510 + 0.833506i \(0.313670\pi\)
\(440\) 0 0
\(441\) 1.58911 0.0756720
\(442\) 33.9526 + 46.7317i 1.61496 + 2.22280i
\(443\) −19.1957 + 6.23705i −0.912013 + 0.296331i −0.727186 0.686440i \(-0.759172\pi\)
−0.184827 + 0.982771i \(0.559172\pi\)
\(444\) 14.1671 43.6019i 0.672341 2.06925i
\(445\) 0 0
\(446\) −21.3471 15.5095i −1.01081 0.734398i
\(447\) 18.1058 + 5.88293i 0.856375 + 0.278253i
\(448\) 5.57338 1.81090i 0.263317 0.0855570i
\(449\) 11.3539 8.24906i 0.535822 0.389297i −0.286709 0.958018i \(-0.592561\pi\)
0.822531 + 0.568720i \(0.192561\pi\)
\(450\) 0 0
\(451\) 1.68167 + 2.53381i 0.0791866 + 0.119313i
\(452\) 65.3711i 3.07480i
\(453\) −3.61878 4.98082i −0.170025 0.234019i
\(454\) 5.68414 + 17.4940i 0.266770 + 0.821033i
\(455\) 0 0
\(456\) 33.0021 + 23.9774i 1.54546 + 1.12285i
\(457\) −9.18334 + 12.6398i −0.429579 + 0.591264i −0.967856 0.251503i \(-0.919075\pi\)
0.538278 + 0.842767i \(0.319075\pi\)
\(458\) −5.01879 1.63071i −0.234513 0.0761979i
\(459\) 7.73671 + 23.8111i 0.361119 + 1.11141i
\(460\) 0 0
\(461\) 29.6082 1.37899 0.689496 0.724289i \(-0.257832\pi\)
0.689496 + 0.724289i \(0.257832\pi\)
\(462\) −45.3626 35.9903i −2.11046 1.67442i
\(463\) 1.31629i 0.0611730i −0.999532 0.0305865i \(-0.990262\pi\)
0.999532 0.0305865i \(-0.00973751\pi\)
\(464\) −14.6742 + 10.6614i −0.681233 + 0.494945i
\(465\) 0 0
\(466\) 13.9258 42.8593i 0.645101 1.98542i
\(467\) 7.11191 9.78870i 0.329100 0.452967i −0.612118 0.790766i \(-0.709682\pi\)
0.941218 + 0.337799i \(0.109682\pi\)
\(468\) 2.57602 3.54559i 0.119077 0.163895i
\(469\) −9.21323 + 28.3554i −0.425427 + 1.30933i
\(470\) 0 0
\(471\) 0.433019 0.314607i 0.0199525 0.0144963i
\(472\) 7.77967i 0.358088i
\(473\) 3.97234 + 14.2544i 0.182648 + 0.655416i
\(474\) −66.0655 −3.03449
\(475\) 0 0
\(476\) 26.8809 + 82.7308i 1.23208 + 3.79196i
\(477\) −1.11597 0.362599i −0.0510966 0.0166023i
\(478\) −28.1489 + 38.7436i −1.28750 + 1.77209i
\(479\) 2.47074 + 1.79509i 0.112891 + 0.0820200i 0.642798 0.766036i \(-0.277773\pi\)
−0.529907 + 0.848055i \(0.677773\pi\)
\(480\) 0 0
\(481\) 7.78426 + 23.9575i 0.354932 + 1.09237i
\(482\) −45.4741 62.5897i −2.07129 2.85088i
\(483\) 0.720365i 0.0327777i
\(484\) 11.4217 + 48.9130i 0.519168 + 2.22332i
\(485\) 0 0
\(486\) 4.58896 3.33408i 0.208160 0.151237i
\(487\) 23.0534 7.49051i 1.04465 0.339427i 0.264083 0.964500i \(-0.414931\pi\)
0.780566 + 0.625073i \(0.214931\pi\)
\(488\) 45.8179 + 14.8871i 2.07408 + 0.673909i
\(489\) 20.6800 + 15.0249i 0.935183 + 0.679450i
\(490\) 0 0
\(491\) −10.0985 + 31.0801i −0.455741 + 1.40263i 0.414522 + 0.910039i \(0.363949\pi\)
−0.870263 + 0.492587i \(0.836051\pi\)
\(492\) −7.13808 + 2.31930i −0.321809 + 0.104562i
\(493\) −6.92337 9.52921i −0.311813 0.429174i
\(494\) −39.8823 −1.79439
\(495\) 0 0
\(496\) 36.6248 1.64450
\(497\) 4.87084 + 6.70413i 0.218487 + 0.300721i
\(498\) −20.5826 + 6.68768i −0.922327 + 0.299682i
\(499\) 9.27234 28.5373i 0.415087 1.27751i −0.497086 0.867701i \(-0.665597\pi\)
0.912173 0.409805i \(-0.134403\pi\)
\(500\) 0 0
\(501\) −26.1010 18.9635i −1.16611 0.847226i
\(502\) −62.1726 20.2011i −2.77490 0.901619i
\(503\) −12.8883 + 4.18767i −0.574662 + 0.186719i −0.581908 0.813255i \(-0.697694\pi\)
0.00724562 + 0.999974i \(0.497694\pi\)
\(504\) 4.31512 3.13512i 0.192211 0.139649i
\(505\) 0 0
\(506\) −0.558477 + 0.703912i −0.0248273 + 0.0312927i
\(507\) 12.9572i 0.575450i
\(508\) −14.9497 20.5766i −0.663288 0.912937i
\(509\) −11.7687 36.2203i −0.521638 1.60544i −0.770870 0.636993i \(-0.780178\pi\)
0.249232 0.968444i \(-0.419822\pi\)
\(510\) 0 0
\(511\) −27.5291 20.0011i −1.21782 0.884795i
\(512\) −29.6070 + 40.7506i −1.30846 + 1.80094i
\(513\) −16.4402 5.34173i −0.725851 0.235843i
\(514\) −18.9582 58.3472i −0.836209 2.57359i
\(515\) 0 0
\(516\) −36.5203 −1.60772
\(517\) −3.46419 + 2.29915i −0.152355 + 0.101116i
\(518\) 54.5505i 2.39681i
\(519\) −12.6947 + 9.22326i −0.557237 + 0.404856i
\(520\) 0 0
\(521\) 0.682532 2.10062i 0.0299023 0.0920298i −0.934992 0.354670i \(-0.884593\pi\)
0.964894 + 0.262640i \(0.0845932\pi\)
\(522\) −0.755356 + 1.03966i −0.0330610 + 0.0455046i
\(523\) −1.41222 + 1.94375i −0.0617521 + 0.0849944i −0.838776 0.544477i \(-0.816728\pi\)
0.777024 + 0.629471i \(0.216728\pi\)
\(524\) 19.5243 60.0895i 0.852921 2.62502i
\(525\) 0 0
\(526\) −55.4957 + 40.3200i −2.41973 + 1.75803i
\(527\) 23.7836i 1.03603i
\(528\) −45.8462 1.94410i −1.99520 0.0846063i
\(529\) 22.9888 0.999514
\(530\) 0 0
\(531\) −0.0780148 0.240105i −0.00338555 0.0104197i
\(532\) −57.1206 18.5596i −2.47649 0.804661i
\(533\) 2.42398 3.33633i 0.104994 0.144512i
\(534\) −0.642877 0.467077i −0.0278200 0.0202124i
\(535\) 0 0
\(536\) 15.9399 + 49.0581i 0.688501 + 2.11899i
\(537\) 24.1288 + 33.2104i 1.04123 + 1.43314i
\(538\) 15.2873i 0.659083i
\(539\) 23.1446 + 8.62035i 0.996908 + 0.371305i
\(540\) 0 0
\(541\) 19.0200 13.8189i 0.817735 0.594119i −0.0983277 0.995154i \(-0.531349\pi\)
0.916063 + 0.401035i \(0.131349\pi\)
\(542\) 18.2624 5.93382i 0.784438 0.254879i
\(543\) −29.4437 9.56685i −1.26355 0.410553i
\(544\) 26.8662 + 19.5194i 1.15188 + 0.836889i
\(545\) 0 0
\(546\) −24.2653 + 74.6810i −1.03846 + 3.19605i
\(547\) −1.34503 + 0.437026i −0.0575093 + 0.0186859i −0.337630 0.941279i \(-0.609625\pi\)
0.280121 + 0.959965i \(0.409625\pi\)
\(548\) −26.6907 36.7367i −1.14017 1.56931i
\(549\) 1.56337 0.0667230
\(550\) 0 0
\(551\) 8.13251 0.346457
\(552\) −0.732565 1.00829i −0.0311800 0.0429156i
\(553\) 51.9905 16.8927i 2.21086 0.718352i
\(554\) −1.14228 + 3.51556i −0.0485307 + 0.149362i
\(555\) 0 0
\(556\) −7.50143 5.45011i −0.318132 0.231136i
\(557\) 4.72163 + 1.53415i 0.200062 + 0.0650041i 0.407334 0.913279i \(-0.366458\pi\)
−0.207272 + 0.978283i \(0.566458\pi\)
\(558\) 2.46784 0.801851i 0.104472 0.0339451i
\(559\) 16.2341 11.7948i 0.686630 0.498866i
\(560\) 0 0
\(561\) 1.26247 29.7718i 0.0533016 1.25697i
\(562\) 0.613129i 0.0258633i
\(563\) 9.75863 + 13.4316i 0.411277 + 0.566075i 0.963529 0.267603i \(-0.0862314\pi\)
−0.552252 + 0.833677i \(0.686231\pi\)
\(564\) −3.17091 9.75907i −0.133520 0.410931i
\(565\) 0 0
\(566\) −10.9435 7.95091i −0.459989 0.334202i
\(567\) −21.4354 + 29.5033i −0.900203 + 1.23902i
\(568\) 13.6353 + 4.43039i 0.572126 + 0.185895i
\(569\) 8.37027 + 25.7610i 0.350900 + 1.07996i 0.958349 + 0.285600i \(0.0921929\pi\)
−0.607449 + 0.794359i \(0.707807\pi\)
\(570\) 0 0
\(571\) −25.9648 −1.08659 −0.543296 0.839541i \(-0.682824\pi\)
−0.543296 + 0.839541i \(0.682824\pi\)
\(572\) 56.7519 37.6657i 2.37292 1.57488i
\(573\) 32.6282i 1.36306i
\(574\) 7.22492 5.24921i 0.301562 0.219098i
\(575\) 0 0
\(576\) 0.101672 0.312915i 0.00423635 0.0130381i
\(577\) −0.438786 + 0.603937i −0.0182669 + 0.0251422i −0.818053 0.575143i \(-0.804946\pi\)
0.799786 + 0.600285i \(0.204946\pi\)
\(578\) −12.2314 + 16.8351i −0.508761 + 0.700249i
\(579\) 6.11338 18.8150i 0.254063 0.781926i
\(580\) 0 0
\(581\) 14.4875 10.5258i 0.601043 0.436683i
\(582\) 20.4889i 0.849291i
\(583\) −14.2865 11.3348i −0.591687 0.469439i
\(584\) −58.8721 −2.43614
\(585\) 0 0
\(586\) 11.8744 + 36.5458i 0.490529 + 1.50969i
\(587\) 17.0241 + 5.53146i 0.702659 + 0.228308i 0.638488 0.769631i \(-0.279560\pi\)
0.0641701 + 0.997939i \(0.479560\pi\)
\(588\) −35.8281 + 49.3131i −1.47753 + 2.03364i
\(589\) −13.2850 9.65209i −0.547397 0.397708i
\(590\) 0 0
\(591\) −8.70868 26.8026i −0.358227 1.10251i
\(592\) 25.4091 + 34.9727i 1.04431 + 1.43737i
\(593\) 11.1992i 0.459895i −0.973203 0.229948i \(-0.926145\pi\)
0.973203 0.229948i \(-0.0738555\pi\)
\(594\) 40.8951 11.3965i 1.67795 0.467602i
\(595\) 0 0
\(596\) −39.2326 + 28.5041i −1.60703 + 1.16758i
\(597\) −7.57850 + 2.46240i −0.310167 + 0.100780i
\(598\) 1.15886 + 0.376535i 0.0473892 + 0.0153977i
\(599\) −1.46910 1.06736i −0.0600257 0.0436112i 0.557368 0.830266i \(-0.311811\pi\)
−0.617393 + 0.786654i \(0.711811\pi\)
\(600\) 0 0
\(601\) 14.4659 44.5214i 0.590075 1.81606i 0.0122187 0.999925i \(-0.496111\pi\)
0.577856 0.816139i \(-0.303889\pi\)
\(602\) 41.3277 13.4282i 1.68439 0.547292i
\(603\) 0.983912 + 1.35424i 0.0400680 + 0.0551489i
\(604\) 15.6827 0.638121
\(605\) 0 0
\(606\) 40.4464 1.64302
\(607\) −19.3381 26.6166i −0.784908 1.08033i −0.994723 0.102593i \(-0.967286\pi\)
0.209815 0.977741i \(-0.432714\pi\)
\(608\) −21.8062 + 7.08527i −0.884359 + 0.287346i
\(609\) 4.94801 15.2284i 0.200504 0.617087i
\(610\) 0 0
\(611\) 4.56137 + 3.31403i 0.184533 + 0.134071i
\(612\) 4.64489 + 1.50922i 0.187759 + 0.0610065i
\(613\) 14.1574 4.60003i 0.571813 0.185793i −0.00881636 0.999961i \(-0.502806\pi\)
0.580630 + 0.814168i \(0.302806\pi\)
\(614\) −4.37490 + 3.17855i −0.176557 + 0.128276i
\(615\) 0 0
\(616\) 79.8543 22.2534i 3.21742 0.896615i
\(617\) 37.4741i 1.50865i 0.656502 + 0.754324i \(0.272035\pi\)
−0.656502 + 0.754324i \(0.727965\pi\)
\(618\) −44.4793 61.2206i −1.78922 2.46265i
\(619\) 3.82934 + 11.7855i 0.153914 + 0.473700i 0.998049 0.0624311i \(-0.0198854\pi\)
−0.844135 + 0.536131i \(0.819885\pi\)
\(620\) 0 0
\(621\) 0.427269 + 0.310429i 0.0171457 + 0.0124571i
\(622\) −25.0948 + 34.5400i −1.00621 + 1.38493i
\(623\) 0.625344 + 0.203187i 0.0250539 + 0.00814050i
\(624\) 19.2291 + 59.1810i 0.769778 + 2.36913i
\(625\) 0 0
\(626\) 74.5163 2.97827
\(627\) 16.1175 + 12.7875i 0.643671 + 0.510683i
\(628\) 1.36341i 0.0544061i
\(629\) −22.7107 + 16.5003i −0.905536 + 0.657910i
\(630\) 0 0
\(631\) 0.476748 1.46728i 0.0189790 0.0584114i −0.941118 0.338077i \(-0.890224\pi\)
0.960097 + 0.279666i \(0.0902236\pi\)
\(632\) 55.5918 76.5156i 2.21132 3.04363i
\(633\) −2.43620 + 3.35314i −0.0968301 + 0.133275i
\(634\) −14.5039 + 44.6383i −0.576022 + 1.77281i
\(635\) 0 0
\(636\) 36.4127 26.4554i 1.44386 1.04902i
\(637\) 33.4920i 1.32700i
\(638\) −16.6411 + 11.0446i −0.658829 + 0.437258i
\(639\) 0.465257 0.0184053
\(640\) 0 0
\(641\) 9.64663 + 29.6893i 0.381019 + 1.17266i 0.939327 + 0.343023i \(0.111451\pi\)
−0.558308 + 0.829634i \(0.688549\pi\)
\(642\) 75.0203 + 24.3756i 2.96082 + 0.962027i
\(643\) −11.9428 + 16.4378i −0.470978 + 0.648245i −0.976740 0.214428i \(-0.931211\pi\)
0.505762 + 0.862673i \(0.331211\pi\)
\(644\) 1.48453 + 1.07857i 0.0584985 + 0.0425017i
\(645\) 0 0
\(646\) −13.7341 42.2693i −0.540361 1.66306i
\(647\) 13.0304 + 17.9348i 0.512279 + 0.705092i 0.984302 0.176495i \(-0.0564759\pi\)
−0.472023 + 0.881586i \(0.656476\pi\)
\(648\) 63.0940i 2.47857i
\(649\) 0.166236 3.92020i 0.00652533 0.153881i
\(650\) 0 0
\(651\) −26.1568 + 19.0040i −1.02516 + 0.744826i
\(652\) −61.9267 + 20.1212i −2.42524 + 0.788007i
\(653\) 11.2908 + 3.66862i 0.441845 + 0.143564i 0.521487 0.853259i \(-0.325378\pi\)
−0.0796417 + 0.996824i \(0.525378\pi\)
\(654\) 66.5423 + 48.3458i 2.60201 + 1.89047i
\(655\) 0 0
\(656\) 2.18690 6.73060i 0.0853843 0.262786i
\(657\) −1.81697 + 0.590371i −0.0708869 + 0.0230326i
\(658\) 7.17664 + 9.87780i 0.279774 + 0.385077i
\(659\) −13.3368 −0.519527 −0.259764 0.965672i \(-0.583645\pi\)
−0.259764 + 0.965672i \(0.583645\pi\)
\(660\) 0 0
\(661\) −44.8817 −1.74570 −0.872848 0.487992i \(-0.837730\pi\)
−0.872848 + 0.487992i \(0.837730\pi\)
\(662\) −32.4732 44.6955i −1.26211 1.73714i
\(663\) −38.4312 + 12.4871i −1.49254 + 0.484957i
\(664\) 9.57400 29.4657i 0.371543 1.14349i
\(665\) 0 0
\(666\) 2.47779 + 1.80022i 0.0960125 + 0.0697572i
\(667\) −0.236306 0.0767805i −0.00914980 0.00297295i
\(668\) 78.1598 25.3957i 3.02409 0.982588i
\(669\) 14.9335 10.8498i 0.577362 0.419478i
\(670\) 0 0
\(671\) 22.7697 + 8.48071i 0.879014 + 0.327394i
\(672\) 45.1438i 1.74146i
\(673\) 3.45897 + 4.76086i 0.133333 + 0.183518i 0.870463 0.492233i \(-0.163819\pi\)
−0.737130 + 0.675751i \(0.763819\pi\)
\(674\) 11.1345 + 34.2684i 0.428884 + 1.31997i
\(675\) 0 0
\(676\) −26.7022 19.4003i −1.02701 0.746165i
\(677\) 17.3989 23.9475i 0.668694 0.920379i −0.331035 0.943618i \(-0.607398\pi\)
0.999730 + 0.0232393i \(0.00739798\pi\)
\(678\) 62.5422 + 20.3212i 2.40192 + 0.780431i
\(679\) 5.23894 + 16.1238i 0.201052 + 0.618774i
\(680\) 0 0
\(681\) −12.8678 −0.493097
\(682\) 40.2926 + 1.70860i 1.54288 + 0.0654258i
\(683\) 13.1257i 0.502239i −0.967956 0.251120i \(-0.919201\pi\)
0.967956 0.251120i \(-0.0807988\pi\)
\(684\) −2.72805 + 1.98204i −0.104310 + 0.0757854i
\(685\) 0 0
\(686\) 1.34436 4.13751i 0.0513278 0.157971i
\(687\) 2.16988 2.98658i 0.0827860 0.113945i
\(688\) 20.2407 27.8590i 0.771670 1.06211i
\(689\) −7.64211 + 23.5200i −0.291141 + 0.896041i
\(690\) 0 0
\(691\) 5.69772 4.13963i 0.216751 0.157479i −0.474112 0.880465i \(-0.657231\pi\)
0.690863 + 0.722986i \(0.257231\pi\)
\(692\) 39.9709i 1.51946i
\(693\) 2.24139 1.48759i 0.0851435 0.0565089i
\(694\) −73.4141 −2.78676
\(695\) 0 0
\(696\) −8.56063 26.3469i −0.324490 0.998677i
\(697\) 4.37075 + 1.42014i 0.165554 + 0.0537917i
\(698\) 26.9941 37.1542i 1.02174 1.40631i
\(699\) 25.5047 + 18.5302i 0.964675 + 0.700877i
\(700\) 0 0
\(701\) 13.7090 + 42.1921i 0.517783 + 1.59357i 0.778161 + 0.628065i \(0.216153\pi\)
−0.260377 + 0.965507i \(0.583847\pi\)
\(702\) −33.8387 46.5749i −1.27716 1.75786i
\(703\) 19.3820i 0.731006i
\(704\) 3.17826 4.00591i 0.119785 0.150979i
\(705\) 0 0
\(706\) −51.3621 + 37.3168i −1.93304 + 1.40443i
\(707\) −31.8294 + 10.3420i −1.19707 + 0.388951i
\(708\) 9.20982 + 2.99245i 0.346126 + 0.112463i
\(709\) −15.7889 11.4713i −0.592963 0.430813i 0.250411 0.968140i \(-0.419434\pi\)
−0.843374 + 0.537327i \(0.819434\pi\)
\(710\) 0 0
\(711\) 0.948436 2.91899i 0.0355691 0.109471i
\(712\) 1.08192 0.351536i 0.0405466 0.0131744i
\(713\) 0.294893 + 0.405886i 0.0110438 + 0.0152006i
\(714\) −87.5068 −3.27486
\(715\) 0 0
\(716\) −104.567 −3.90785
\(717\) −19.6918 27.1034i −0.735402 1.01219i
\(718\) −25.4728 + 8.27662i −0.950638 + 0.308881i
\(719\) −14.6482 + 45.0824i −0.546284 + 1.68129i 0.171634 + 0.985161i \(0.445095\pi\)
−0.717918 + 0.696128i \(0.754905\pi\)
\(720\) 0 0
\(721\) 50.6571 + 36.8045i 1.88657 + 1.37067i
\(722\) −17.1197 5.56252i −0.637128 0.207016i
\(723\) 51.4724 16.7244i 1.91428 0.621987i
\(724\) 63.8002 46.3536i 2.37112 1.72272i
\(725\) 0 0
\(726\) −50.3468 4.27760i −1.86855 0.158756i
\(727\) 37.2483i 1.38146i −0.723112 0.690731i \(-0.757289\pi\)
0.723112 0.690731i \(-0.242711\pi\)
\(728\) −66.0754 90.9450i −2.44892 3.37065i
\(729\) −7.66853 23.6013i −0.284020 0.874123i
\(730\) 0 0
\(731\) 18.0912 + 13.1440i 0.669126 + 0.486149i
\(732\) −35.2477 + 48.5143i −1.30279 + 1.79314i
\(733\) 11.0521 + 3.59105i 0.408219 + 0.132638i 0.505926 0.862577i \(-0.331151\pi\)
−0.0977073 + 0.995215i \(0.531151\pi\)
\(734\) 12.0322 + 37.0312i 0.444115 + 1.36685i
\(735\) 0 0
\(736\) 0.700516 0.0258214
\(737\) 6.98392 + 25.0612i 0.257256 + 0.923140i
\(738\) 0.501399i 0.0184568i
\(739\) 30.7265 22.3241i 1.13029 0.821207i 0.144556 0.989497i \(-0.453824\pi\)
0.985738 + 0.168290i \(0.0538245\pi\)
\(740\) 0 0
\(741\) 8.62156 26.5344i 0.316721 0.974766i
\(742\) −31.4785 + 43.3265i −1.15561 + 1.59056i
\(743\) −4.53596 + 6.24321i −0.166408 + 0.229041i −0.884075 0.467346i \(-0.845210\pi\)
0.717666 + 0.696387i \(0.245210\pi\)
\(744\) −17.2856 + 53.1995i −0.633720 + 1.95039i
\(745\) 0 0
\(746\) 43.9025 31.8971i 1.60739 1.16783i
\(747\) 1.00541i 0.0367861i
\(748\) 59.4635 + 47.1778i 2.17420 + 1.72499i
\(749\) −65.2703 −2.38492
\(750\) 0 0
\(751\) 4.95293 + 15.2435i 0.180735 + 0.556245i 0.999849 0.0173860i \(-0.00553442\pi\)
−0.819114 + 0.573631i \(0.805534\pi\)
\(752\) 9.20197 + 2.98990i 0.335561 + 0.109030i
\(753\) 26.8803 36.9976i 0.979574 1.34827i
\(754\) 21.9118 + 15.9198i 0.797979 + 0.579766i
\(755\) 0 0
\(756\) −26.7907 82.4532i −0.974367 2.99879i
\(757\) −3.74775 5.15833i −0.136214 0.187483i 0.735461 0.677568i \(-0.236966\pi\)
−0.871675 + 0.490085i \(0.836966\pi\)
\(758\) 90.1078i 3.27286i
\(759\) −0.347597 0.523734i −0.0126170 0.0190103i
\(760\) 0 0
\(761\) 12.8347 9.32499i 0.465259 0.338031i −0.330332 0.943865i \(-0.607161\pi\)
0.795591 + 0.605834i \(0.207161\pi\)
\(762\) 24.3334 7.90640i 0.881506 0.286419i
\(763\) −64.7275 21.0312i −2.34329 0.761382i
\(764\) −67.2402 48.8529i −2.43267 1.76743i
\(765\) 0 0
\(766\) −1.57566 + 4.84939i −0.0569310 + 0.175216i
\(767\) −5.06043 + 1.64423i −0.182721 + 0.0593698i
\(768\) −28.3604 39.0348i −1.02337 1.40855i
\(769\) 51.7503 1.86616 0.933082 0.359663i \(-0.117108\pi\)
0.933082 + 0.359663i \(0.117108\pi\)
\(770\) 0 0
\(771\) 42.9178 1.54565
\(772\) 29.6207 + 40.7694i 1.06607 + 1.46732i
\(773\) −9.21198 + 2.99315i −0.331332 + 0.107656i −0.469959 0.882688i \(-0.655731\pi\)
0.138627 + 0.990345i \(0.455731\pi\)
\(774\) 0.753921 2.32033i 0.0270991 0.0834025i
\(775\) 0 0
\(776\) 23.7298 + 17.2407i 0.851849 + 0.618905i
\(777\) −36.2935 11.7925i −1.30202 0.423053i
\(778\) −14.7649 + 4.79740i −0.529346 + 0.171995i
\(779\) −2.56704 + 1.86506i −0.0919737 + 0.0668228i
\(780\) 0 0
\(781\) 6.77623 + 2.52385i 0.242473 + 0.0903105i
\(782\) 1.35788i 0.0485578i
\(783\) 6.90014 + 9.49723i 0.246591 + 0.339403i
\(784\) −17.7607 54.6617i −0.634310 1.95221i
\(785\) 0 0
\(786\) 51.4199 + 37.3587i 1.83409 + 1.33254i
\(787\) 10.7110 14.7424i 0.381805 0.525510i −0.574256 0.818675i \(-0.694709\pi\)
0.956062 + 0.293166i \(0.0947088\pi\)
\(788\) 68.2739 + 22.1835i 2.43216 + 0.790255i
\(789\) −14.8288 45.6385i −0.527921 1.62477i
\(790\) 0 0
\(791\) −54.4139 −1.93473
\(792\) 1.62448 4.36152i 0.0577233 0.154980i
\(793\) 32.9495i 1.17007i
\(794\) 72.6954 52.8163i 2.57986 1.87438i
\(795\) 0 0
\(796\) 6.27245 19.3046i 0.222321 0.684234i
\(797\) 11.7634 16.1910i 0.416682 0.573514i −0.548150 0.836380i \(-0.684668\pi\)
0.964832 + 0.262866i \(0.0846677\pi\)
\(798\) 35.5129 48.8793i 1.25714 1.73031i
\(799\) −1.94160 + 5.97562i −0.0686887 + 0.211402i
\(800\) 0 0
\(801\) 0.0298661 0.0216990i 0.00105527 0.000766696i
\(802\) 42.2160i 1.49070i
\(803\) −29.6658 1.25798i −1.04688 0.0443930i
\(804\) −64.2079 −2.26444
\(805\) 0 0
\(806\) −16.8997 52.0121i −0.595268 1.83205i
\(807\) −10.1709 3.30474i −0.358034 0.116332i
\(808\) −34.0342 + 46.8441i −1.19732 + 1.64797i
\(809\) −25.7317 18.6952i −0.904679 0.657288i 0.0349842 0.999388i \(-0.488862\pi\)
−0.939664 + 0.342100i \(0.888862\pi\)
\(810\) 0 0
\(811\) 1.12941 + 3.47596i 0.0396589 + 0.122057i 0.968926 0.247351i \(-0.0795602\pi\)
−0.929267 + 0.369409i \(0.879560\pi\)
\(812\) 23.9742 + 32.9977i 0.841331 + 1.15799i
\(813\) 13.4331i 0.471119i
\(814\) 26.3222 + 39.6604i 0.922593 + 1.39010i
\(815\) 0 0
\(816\) −56.1012 + 40.7599i −1.96393 + 1.42688i
\(817\) −14.6839 + 4.77108i −0.513724 + 0.166919i
\(818\) −10.5045 3.41313i −0.367283 0.119337i
\(819\) −2.95129 2.14424i −0.103126 0.0749258i
\(820\) 0 0
\(821\) 4.25449 13.0940i 0.148483 0.456983i −0.848960 0.528458i \(-0.822770\pi\)
0.997442 + 0.0714746i \(0.0227705\pi\)
\(822\) 43.4440 14.1158i 1.51528 0.492345i
\(823\) 23.8500 + 32.8267i 0.831358 + 1.14427i 0.987669 + 0.156558i \(0.0500398\pi\)
−0.156311 + 0.987708i \(0.549960\pi\)
\(824\) 108.332 3.77393
\(825\) 0 0
\(826\) −11.5225 −0.400918
\(827\) 9.12955 + 12.5658i 0.317466 + 0.436954i 0.937691 0.347469i \(-0.112959\pi\)
−0.620226 + 0.784423i \(0.712959\pi\)
\(828\) 0.0979817 0.0318362i 0.00340510 0.00110638i
\(829\) 9.00201 27.7053i 0.312653 0.962247i −0.664057 0.747682i \(-0.731167\pi\)
0.976710 0.214565i \(-0.0688332\pi\)
\(830\) 0 0
\(831\) −2.09204 1.51996i −0.0725720 0.0527267i
\(832\) −6.59497 2.14284i −0.228640 0.0742895i
\(833\) 35.4965 11.5335i 1.22988 0.399612i
\(834\) 7.54615 5.48260i 0.261302 0.189847i
\(835\) 0 0
\(836\) −50.4845 + 14.0688i −1.74604 + 0.486579i
\(837\) 23.7038i 0.819322i
\(838\) −28.1827 38.7902i −0.973557 1.33999i
\(839\) −6.73139 20.7171i −0.232393 0.715233i −0.997456 0.0712779i \(-0.977292\pi\)
0.765063 0.643955i \(-0.222708\pi\)
\(840\) 0 0
\(841\) 18.9934 + 13.7995i 0.654945 + 0.475845i
\(842\) −45.9503 + 63.2451i −1.58355 + 2.17957i
\(843\) 0.407927 + 0.132543i 0.0140497 + 0.00456504i
\(844\) −3.26253 10.0410i −0.112301 0.345626i
\(845\) 0 0
\(846\) 0.685505 0.0235681
\(847\) 40.7144 9.50725i 1.39896 0.326673i
\(848\) 42.4392i 1.45737i
\(849\) 7.65560 5.56212i 0.262740 0.190892i
\(850\) 0 0
\(851\) −0.182989 + 0.563182i −0.00627278 + 0.0193056i
\(852\) −10.4897 + 14.4378i −0.359371 + 0.494631i
\(853\) 5.14484 7.08127i 0.176156 0.242458i −0.711804 0.702378i \(-0.752122\pi\)
0.887961 + 0.459920i \(0.152122\pi\)
\(854\) 22.0493 67.8608i 0.754512 2.32215i
\(855\) 0 0
\(856\) −91.3583 + 66.3757i −3.12256 + 2.26867i
\(857\) 14.0273i 0.479163i −0.970876 0.239582i \(-0.922990\pi\)
0.970876 0.239582i \(-0.0770103\pi\)
\(858\) 18.3939 + 66.0047i 0.627957 + 2.25336i
\(859\) −31.8774 −1.08764 −0.543822 0.839201i \(-0.683023\pi\)
−0.543822 + 0.839201i \(0.683023\pi\)
\(860\) 0 0
\(861\) 1.93055 + 5.94162i 0.0657930 + 0.202490i
\(862\) 20.2602 + 6.58294i 0.690065 + 0.224216i
\(863\) 2.03681 2.80343i 0.0693338 0.0954298i −0.772942 0.634477i \(-0.781216\pi\)
0.842276 + 0.539047i \(0.181216\pi\)
\(864\) −26.7761 19.4539i −0.910940 0.661836i
\(865\) 0 0
\(866\) −21.7360 66.8964i −0.738618 2.27323i
\(867\) −8.55659 11.7771i −0.290597 0.399973i
\(868\) 82.3577i 2.79540i
\(869\) 29.6479 37.3686i 1.00574 1.26764i
\(870\) 0 0
\(871\) 28.5418 20.7368i 0.967103 0.702641i
\(872\) −111.986 + 36.3865i −3.79233 + 1.23220i
\(873\) 0.905265 + 0.294138i 0.0306386 + 0.00995507i
\(874\) −0.758482 0.551069i −0.0256560 0.0186402i
\(875\) 0 0
\(876\) 22.6452 69.6946i 0.765109 2.35476i
\(877\) 18.8084 6.11122i 0.635114 0.206361i 0.0262750 0.999655i \(-0.491635\pi\)
0.608839 + 0.793294i \(0.291635\pi\)
\(878\) −34.8723 47.9975i −1.17688 1.61984i
\(879\) −26.8816 −0.906692
\(880\) 0 0
\(881\) 57.2097 1.92744 0.963722 0.266910i \(-0.0860025\pi\)
0.963722 + 0.266910i \(0.0860025\pi\)
\(882\) −2.39349 3.29436i −0.0805931 0.110927i
\(883\) −54.4396 + 17.6885i −1.83204 + 0.595265i −0.832915 + 0.553402i \(0.813329\pi\)
−0.999123 + 0.0418636i \(0.986671\pi\)
\(884\) 31.8081 97.8953i 1.06982 3.29258i
\(885\) 0 0
\(886\) 41.8421 + 30.4000i 1.40571 + 1.02131i
\(887\) 37.7809 + 12.2757i 1.26856 + 0.412179i 0.864536 0.502571i \(-0.167612\pi\)
0.404021 + 0.914750i \(0.367612\pi\)
\(888\) −62.7919 + 20.4023i −2.10716 + 0.684657i
\(889\) −17.1276 + 12.4439i −0.574441 + 0.417356i
\(890\) 0 0
\(891\) −1.34819 + 31.7933i −0.0451661 + 1.06512i
\(892\) 47.0199i 1.57434i
\(893\) −2.54989 3.50962i −0.0853287 0.117445i
\(894\) −15.0748 46.3956i −0.504178 1.55170i
\(895\) 0 0
\(896\) 28.5990 + 20.7784i 0.955427 + 0.694158i
\(897\) −0.501032 + 0.689612i −0.0167290 + 0.0230255i
\(898\) −34.2020 11.1129i −1.14133 0.370842i
\(899\) 3.44608 + 10.6059i 0.114933 + 0.353728i
\(900\) 0 0
\(901\) −27.5594 −0.918136
\(902\) 2.71991 7.30262i 0.0905630 0.243151i
\(903\) 30.3989i 1.01161i
\(904\) −76.1627 + 55.3354i −2.53313 + 1.84043i
\(905\) 0 0
\(906\) −4.87511 + 15.0041i −0.161965 + 0.498476i
\(907\) −15.6421 + 21.5295i −0.519387 + 0.714875i −0.985467 0.169867i \(-0.945666\pi\)
0.466080 + 0.884743i \(0.345666\pi\)
\(908\) 19.2665 26.5180i 0.639380 0.880032i
\(909\) −0.580648 + 1.78705i −0.0192589 + 0.0592727i
\(910\) 0 0
\(911\) −6.30044 + 4.57754i −0.208743 + 0.151661i −0.687245 0.726426i \(-0.741180\pi\)
0.478502 + 0.878087i \(0.341180\pi\)
\(912\) 47.8784i 1.58541i
\(913\) 5.45399 14.6433i 0.180501 0.484623i
\(914\) 40.0351 1.32424
\(915\) 0 0
\(916\) 2.90587 + 8.94336i 0.0960128 + 0.295497i
\(917\) −50.0175 16.2517i −1.65172 0.536678i
\(918\) 37.7096 51.9028i 1.24460 1.71305i
\(919\) −12.9266 9.39169i −0.426408 0.309803i 0.353803 0.935320i \(-0.384888\pi\)
−0.780211 + 0.625517i \(0.784888\pi\)
\(920\) 0 0
\(921\) −1.16901 3.59783i −0.0385201 0.118553i
\(922\) −44.5954 61.3803i −1.46867 2.02145i
\(923\) 9.80572i 0.322759i
\(924\) −4.37168 + 103.094i −0.143818 + 3.39154i
\(925\) 0 0
\(926\) −2.72877 + 1.98257i −0.0896730 + 0.0651512i
\(927\) 3.34347 1.08636i 0.109814 0.0356807i
\(928\) 14.8088 + 4.81167i 0.486123 + 0.157951i
\(929\) 8.02976 + 5.83396i 0.263448 + 0.191406i 0.711666 0.702518i \(-0.247941\pi\)
−0.448218 + 0.893924i \(0.647941\pi\)
\(930\) 0 0
\(931\) −7.96319 + 24.5082i −0.260983 + 0.803223i
\(932\) −76.3741 + 24.8155i −2.50172 + 0.812857i
\(933\) −17.5552 24.1627i −0.574732 0.791051i
\(934\) −31.0046 −1.01450
\(935\) 0 0
\(936\) −6.31145 −0.206296
\(937\) 5.24192 + 7.21488i 0.171246 + 0.235700i 0.886010 0.463666i \(-0.153466\pi\)
−0.714764 + 0.699365i \(0.753466\pi\)
\(938\) 72.6599 23.6086i 2.37243 0.770849i
\(939\) −16.1086 + 49.5771i −0.525683 + 1.61789i
\(940\) 0 0
\(941\) −30.1937 21.9370i −0.984287 0.715126i −0.0256241 0.999672i \(-0.508157\pi\)
−0.958663 + 0.284546i \(0.908157\pi\)
\(942\) −1.30441 0.423829i −0.0425001 0.0138091i
\(943\) 0.0921987 0.0299572i 0.00300240 0.000975540i
\(944\) −7.38712 + 5.36705i −0.240430 + 0.174683i
\(945\) 0 0
\(946\) 23.5674 29.7047i 0.766242 0.965782i
\(947\) 1.62118i 0.0526814i −0.999653 0.0263407i \(-0.991615\pi\)
0.999653 0.0263407i \(-0.00838548\pi\)
\(948\) 69.1982 + 95.2431i 2.24745 + 3.09335i
\(949\) 12.4426 + 38.2944i 0.403904 + 1.24309i
\(950\) 0 0
\(951\) −26.5633 19.2994i −0.861375 0.625826i
\(952\) 73.6340 101.348i 2.38649 3.28472i
\(953\) −24.1017 7.83110i −0.780729 0.253674i −0.108578 0.994088i \(-0.534630\pi\)
−0.672152 + 0.740414i \(0.734630\pi\)
\(954\) 0.929151 + 2.85963i 0.0300824 + 0.0925840i
\(955\) 0 0
\(956\) 85.3383 2.76004
\(957\) −3.75075 13.4592i −0.121245 0.435075i
\(958\) 7.82578i 0.252839i
\(959\) −30.5790 + 22.2169i −0.987448 + 0.717423i
\(960\) 0 0
\(961\) −2.62123 + 8.06732i −0.0845558 + 0.260236i
\(962\) 37.9413 52.2217i 1.22328 1.68370i
\(963\) −2.15398 + 2.96470i −0.0694111 + 0.0955362i
\(964\) −42.6019 + 131.115i −1.37211 + 4.22293i
\(965\) 0 0
\(966\) −1.49338 + 1.08500i −0.0480486 + 0.0349093i
\(967\) 6.70594i 0.215648i −0.994170 0.107824i \(-0.965612\pi\)
0.994170 0.107824i \(-0.0343884\pi\)
\(968\) 47.3193 54.7111i 1.52090 1.75848i
\(969\) 31.0915 0.998803
\(970\) 0 0
\(971\) 1.79835 + 5.53476i 0.0577119 + 0.177619i 0.975757 0.218857i \(-0.0702329\pi\)
−0.918045 + 0.396476i \(0.870233\pi\)
\(972\) −9.61312 3.12349i −0.308341 0.100186i
\(973\) −4.53658 + 6.24407i −0.145436 + 0.200176i
\(974\) −50.2511 36.5095i −1.61015 1.16984i
\(975\) 0 0
\(976\) −17.4730 53.7763i −0.559296 1.72134i
\(977\) −3.07530 4.23279i −0.0983875 0.135419i 0.756985 0.653432i \(-0.226672\pi\)
−0.855372 + 0.518014i \(0.826672\pi\)
\(978\) 65.5017i 2.09451i
\(979\) 0.552694 0.154022i 0.0176642 0.00492256i
\(980\) 0 0
\(981\) −3.09135 + 2.24600i −0.0986993 + 0.0717092i
\(982\) 79.6419 25.8772i 2.54148 0.825775i
\(983\) 14.0673 + 4.57075i 0.448678 + 0.145784i 0.524636 0.851327i \(-0.324201\pi\)
−0.0759580 + 0.997111i \(0.524201\pi\)
\(984\) 8.74443 + 6.35320i 0.278762 + 0.202533i
\(985\) 0 0
\(986\) −9.32696 + 28.7054i −0.297031 + 0.914168i
\(987\) −8.12329 + 2.63942i −0.258567 + 0.0840136i
\(988\) 41.7734 + 57.4962i 1.32899 + 1.82920i
\(989\) 0.471714 0.0149996
\(990\) 0 0
\(991\) 24.9189 0.791575 0.395788 0.918342i \(-0.370472\pi\)
0.395788 + 0.918342i \(0.370472\pi\)
\(992\) −18.4804 25.4361i −0.586752 0.807595i
\(993\) 36.7566 11.9430i 1.16644 0.378998i
\(994\) 6.56185 20.1953i 0.208129 0.640556i
\(995\) 0 0
\(996\) 31.1998 + 22.6680i 0.988604 + 0.718263i
\(997\) 14.1122 + 4.58532i 0.446937 + 0.145219i 0.523834 0.851820i \(-0.324501\pi\)
−0.0768969 + 0.997039i \(0.524501\pi\)
\(998\) −73.1261 + 23.7601i −2.31477 + 0.752113i
\(999\) 22.6345 16.4449i 0.716124 0.520295i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.z.c.124.1 32
5.2 odd 4 275.2.h.c.201.4 yes 16
5.3 odd 4 275.2.h.e.201.1 yes 16
5.4 even 2 inner 275.2.z.c.124.8 32
11.4 even 5 inner 275.2.z.c.224.8 32
55.2 even 20 3025.2.a.bm.1.7 8
55.4 even 10 inner 275.2.z.c.224.1 32
55.13 even 20 3025.2.a.bj.1.2 8
55.37 odd 20 275.2.h.c.26.4 16
55.42 odd 20 3025.2.a.bi.1.2 8
55.48 odd 20 275.2.h.e.26.1 yes 16
55.53 odd 20 3025.2.a.bn.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.2.h.c.26.4 16 55.37 odd 20
275.2.h.c.201.4 yes 16 5.2 odd 4
275.2.h.e.26.1 yes 16 55.48 odd 20
275.2.h.e.201.1 yes 16 5.3 odd 4
275.2.z.c.124.1 32 1.1 even 1 trivial
275.2.z.c.124.8 32 5.4 even 2 inner
275.2.z.c.224.1 32 55.4 even 10 inner
275.2.z.c.224.8 32 11.4 even 5 inner
3025.2.a.bi.1.2 8 55.42 odd 20
3025.2.a.bj.1.2 8 55.13 even 20
3025.2.a.bm.1.7 8 55.2 even 20
3025.2.a.bn.1.7 8 55.53 odd 20