Properties

Label 275.2.z.b.124.3
Level $275$
Weight $2$
Character 275.124
Analytic conductor $2.196$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,2,Mod(49,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.z (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 11x^{14} + 56x^{12} - 141x^{10} + 551x^{8} - 1245x^{6} + 1400x^{4} + 125x^{2} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 124.3
Root \(-1.39494 + 0.453245i\) of defining polynomial
Character \(\chi\) \(=\) 275.124
Dual form 275.2.z.b.224.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0549637 + 0.0756511i) q^{2} +(-1.39494 + 0.453245i) q^{3} +(0.615332 - 1.89380i) q^{4} +(-0.110960 - 0.0806171i) q^{6} +(-4.30308 - 1.39815i) q^{7} +(0.354955 - 0.115332i) q^{8} +(-0.686611 + 0.498852i) q^{9} +(-2.39815 + 2.29104i) q^{11} +2.92064i q^{12} +(0.671579 + 0.924349i) q^{13} +(-0.130741 - 0.402380i) q^{14} +(-3.19369 - 2.32035i) q^{16} +(-1.98273 + 2.72899i) q^{17} +(-0.0754774 - 0.0245241i) q^{18} +(-1.88030 - 5.78696i) q^{19} +6.63626 q^{21} +(-0.305131 - 0.0554990i) q^{22} -5.45258i q^{23} +(-0.442869 + 0.321763i) q^{24} +(-0.0330155 + 0.101611i) q^{26} +(3.31805 - 4.56691i) q^{27} +(-5.29564 + 7.28883i) q^{28} +(-1.02619 + 3.15830i) q^{29} +(-1.44887 + 1.05267i) q^{31} -1.11558i q^{32} +(2.30689 - 4.28282i) q^{33} -0.315430 q^{34} +(0.522231 + 1.60726i) q^{36} +(-1.41594 - 0.460067i) q^{37} +(0.334441 - 0.460319i) q^{38} +(-1.35577 - 0.985026i) q^{39} +(-0.539933 - 1.66174i) q^{41} +(0.364754 + 0.502041i) q^{42} -0.263041i q^{43} +(2.86310 + 5.95137i) q^{44} +(0.412494 - 0.299694i) q^{46} +(6.58580 - 2.13986i) q^{47} +(5.50670 + 1.78924i) q^{48} +(10.8985 + 7.91824i) q^{49} +(1.52890 - 4.70546i) q^{51} +(2.16377 - 0.703052i) q^{52} +(0.846269 + 1.16479i) q^{53} +0.527864 q^{54} -1.68865 q^{56} +(5.24582 + 7.22025i) q^{57} +(-0.295332 + 0.0959593i) q^{58} +(2.18416 - 6.72216i) q^{59} +(-2.02452 - 1.47090i) q^{61} +(-0.159271 - 0.0517503i) q^{62} +(3.65201 - 1.18661i) q^{63} +(-6.30297 + 4.57938i) q^{64} +(0.450796 - 0.0608810i) q^{66} +0.516598i q^{67} +(3.94812 + 5.43413i) q^{68} +(2.47136 + 7.60605i) q^{69} +(8.68098 + 6.30710i) q^{71} +(-0.186183 + 0.256258i) q^{72} +(-5.40317 - 1.75560i) q^{73} +(-0.0430208 - 0.132404i) q^{74} -12.1163 q^{76} +(13.5227 - 6.50552i) q^{77} -0.156706i q^{78} +(-9.14460 + 6.64394i) q^{79} +(-1.77179 + 5.45300i) q^{81} +(0.0960360 - 0.132182i) q^{82} +(2.63380 - 3.62511i) q^{83} +(4.08350 - 12.5677i) q^{84} +(0.0198994 - 0.0144577i) q^{86} -4.87077i q^{87} +(-0.587008 + 1.08980i) q^{88} -13.2676 q^{89} +(-1.59747 - 4.91652i) q^{91} +(-10.3261 - 3.35515i) q^{92} +(1.54398 - 2.12511i) q^{93} +(0.523863 + 0.380608i) q^{94} +(0.505633 + 1.55618i) q^{96} +(-1.97293 - 2.71551i) q^{97} +1.25970i q^{98} +(0.503711 - 2.76938i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 12 q^{4} + 26 q^{6} + 10 q^{9} - 10 q^{11} - 32 q^{14} - 40 q^{16} + 2 q^{19} - 24 q^{21} - 50 q^{24} - 28 q^{26} - 38 q^{29} + 12 q^{31} + 40 q^{34} + 42 q^{36} - 18 q^{39} - 8 q^{41} + 56 q^{44}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0549637 + 0.0756511i 0.0388652 + 0.0534934i 0.828007 0.560717i \(-0.189475\pi\)
−0.789142 + 0.614211i \(0.789475\pi\)
\(3\) −1.39494 + 0.453245i −0.805372 + 0.261681i −0.682636 0.730758i \(-0.739167\pi\)
−0.122735 + 0.992439i \(0.539167\pi\)
\(4\) 0.615332 1.89380i 0.307666 0.946898i
\(5\) 0 0
\(6\) −0.110960 0.0806171i −0.0452992 0.0329118i
\(7\) −4.30308 1.39815i −1.62641 0.528453i −0.652968 0.757385i \(-0.726477\pi\)
−0.973442 + 0.228932i \(0.926477\pi\)
\(8\) 0.354955 0.115332i 0.125496 0.0407760i
\(9\) −0.686611 + 0.498852i −0.228870 + 0.166284i
\(10\) 0 0
\(11\) −2.39815 + 2.29104i −0.723071 + 0.690774i
\(12\) 2.92064i 0.843116i
\(13\) 0.671579 + 0.924349i 0.186262 + 0.256368i 0.891929 0.452176i \(-0.149352\pi\)
−0.705666 + 0.708544i \(0.749352\pi\)
\(14\) −0.130741 0.402380i −0.0349421 0.107541i
\(15\) 0 0
\(16\) −3.19369 2.32035i −0.798421 0.580087i
\(17\) −1.98273 + 2.72899i −0.480883 + 0.661878i −0.978674 0.205418i \(-0.934144\pi\)
0.497792 + 0.867297i \(0.334144\pi\)
\(18\) −0.0754774 0.0245241i −0.0177902 0.00578038i
\(19\) −1.88030 5.78696i −0.431369 1.32762i −0.896762 0.442514i \(-0.854087\pi\)
0.465392 0.885105i \(-0.345913\pi\)
\(20\) 0 0
\(21\) 6.63626 1.44815
\(22\) −0.305131 0.0554990i −0.0650542 0.0118324i
\(23\) 5.45258i 1.13694i −0.822703 0.568471i \(-0.807535\pi\)
0.822703 0.568471i \(-0.192465\pi\)
\(24\) −0.442869 + 0.321763i −0.0904003 + 0.0656797i
\(25\) 0 0
\(26\) −0.0330155 + 0.101611i −0.00647488 + 0.0199276i
\(27\) 3.31805 4.56691i 0.638559 0.878902i
\(28\) −5.29564 + 7.28883i −1.00078 + 1.37746i
\(29\) −1.02619 + 3.15830i −0.190559 + 0.586482i −1.00000 0.000720503i \(-0.999771\pi\)
0.809440 + 0.587202i \(0.199771\pi\)
\(30\) 0 0
\(31\) −1.44887 + 1.05267i −0.260225 + 0.189065i −0.710246 0.703953i \(-0.751416\pi\)
0.450021 + 0.893018i \(0.351416\pi\)
\(32\) 1.11558i 0.197209i
\(33\) 2.30689 4.28282i 0.401578 0.745544i
\(34\) −0.315430 −0.0540957
\(35\) 0 0
\(36\) 0.522231 + 1.60726i 0.0870385 + 0.267877i
\(37\) −1.41594 0.460067i −0.232779 0.0756345i 0.190305 0.981725i \(-0.439052\pi\)
−0.423084 + 0.906091i \(0.639052\pi\)
\(38\) 0.334441 0.460319i 0.0542536 0.0746736i
\(39\) −1.35577 0.985026i −0.217097 0.157730i
\(40\) 0 0
\(41\) −0.539933 1.66174i −0.0843234 0.259521i 0.900001 0.435888i \(-0.143566\pi\)
−0.984325 + 0.176367i \(0.943566\pi\)
\(42\) 0.364754 + 0.502041i 0.0562827 + 0.0774665i
\(43\) 0.263041i 0.0401134i −0.999799 0.0200567i \(-0.993615\pi\)
0.999799 0.0200567i \(-0.00638468\pi\)
\(44\) 2.86310 + 5.95137i 0.431628 + 0.897202i
\(45\) 0 0
\(46\) 0.412494 0.299694i 0.0608189 0.0441875i
\(47\) 6.58580 2.13986i 0.960638 0.312130i 0.213607 0.976920i \(-0.431479\pi\)
0.747031 + 0.664790i \(0.231479\pi\)
\(48\) 5.50670 + 1.78924i 0.794824 + 0.258254i
\(49\) 10.8985 + 7.91824i 1.55693 + 1.13118i
\(50\) 0 0
\(51\) 1.52890 4.70546i 0.214088 0.658896i
\(52\) 2.16377 0.703052i 0.300061 0.0974958i
\(53\) 0.846269 + 1.16479i 0.116244 + 0.159996i 0.863174 0.504907i \(-0.168473\pi\)
−0.746930 + 0.664903i \(0.768473\pi\)
\(54\) 0.527864 0.0718332
\(55\) 0 0
\(56\) −1.68865 −0.225656
\(57\) 5.24582 + 7.22025i 0.694826 + 0.956345i
\(58\) −0.295332 + 0.0959593i −0.0387790 + 0.0126001i
\(59\) 2.18416 6.72216i 0.284354 0.875150i −0.702238 0.711942i \(-0.747816\pi\)
0.986592 0.163208i \(-0.0521842\pi\)
\(60\) 0 0
\(61\) −2.02452 1.47090i −0.259214 0.188330i 0.450587 0.892733i \(-0.351215\pi\)
−0.709800 + 0.704403i \(0.751215\pi\)
\(62\) −0.159271 0.0517503i −0.0202274 0.00657229i
\(63\) 3.65201 1.18661i 0.460110 0.149499i
\(64\) −6.30297 + 4.57938i −0.787872 + 0.572422i
\(65\) 0 0
\(66\) 0.450796 0.0608810i 0.0554891 0.00749394i
\(67\) 0.516598i 0.0631124i 0.999502 + 0.0315562i \(0.0100463\pi\)
−0.999502 + 0.0315562i \(0.989954\pi\)
\(68\) 3.94812 + 5.43413i 0.478780 + 0.658984i
\(69\) 2.47136 + 7.60605i 0.297516 + 0.915661i
\(70\) 0 0
\(71\) 8.68098 + 6.30710i 1.03024 + 0.748515i 0.968357 0.249568i \(-0.0802887\pi\)
0.0618853 + 0.998083i \(0.480289\pi\)
\(72\) −0.186183 + 0.256258i −0.0219418 + 0.0302003i
\(73\) −5.40317 1.75560i −0.632393 0.205477i −0.0247584 0.999693i \(-0.507882\pi\)
−0.607635 + 0.794216i \(0.707882\pi\)
\(74\) −0.0430208 0.132404i −0.00500106 0.0153917i
\(75\) 0 0
\(76\) −12.1163 −1.38984
\(77\) 13.5227 6.50552i 1.54105 0.741373i
\(78\) 0.156706i 0.0177435i
\(79\) −9.14460 + 6.64394i −1.02885 + 0.747502i −0.968078 0.250650i \(-0.919356\pi\)
−0.0607700 + 0.998152i \(0.519356\pi\)
\(80\) 0 0
\(81\) −1.77179 + 5.45300i −0.196865 + 0.605888i
\(82\) 0.0960360 0.132182i 0.0106054 0.0145971i
\(83\) 2.63380 3.62511i 0.289097 0.397907i −0.639624 0.768688i \(-0.720910\pi\)
0.928720 + 0.370781i \(0.120910\pi\)
\(84\) 4.08350 12.5677i 0.445547 1.37125i
\(85\) 0 0
\(86\) 0.0198994 0.0144577i 0.00214580 0.00155902i
\(87\) 4.87077i 0.522202i
\(88\) −0.587008 + 1.08980i −0.0625752 + 0.116173i
\(89\) −13.2676 −1.40637 −0.703183 0.711009i \(-0.748238\pi\)
−0.703183 + 0.711009i \(0.748238\pi\)
\(90\) 0 0
\(91\) −1.59747 4.91652i −0.167461 0.515391i
\(92\) −10.3261 3.35515i −1.07657 0.349798i
\(93\) 1.54398 2.12511i 0.160103 0.220363i
\(94\) 0.523863 + 0.380608i 0.0540323 + 0.0392568i
\(95\) 0 0
\(96\) 0.505633 + 1.55618i 0.0516060 + 0.158827i
\(97\) −1.97293 2.71551i −0.200321 0.275718i 0.697024 0.717048i \(-0.254507\pi\)
−0.897345 + 0.441330i \(0.854507\pi\)
\(98\) 1.25970i 0.127249i
\(99\) 0.503711 2.76938i 0.0506248 0.278333i
\(100\) 0 0
\(101\) 7.55216 5.48696i 0.751468 0.545973i −0.144814 0.989459i \(-0.546258\pi\)
0.896282 + 0.443486i \(0.146258\pi\)
\(102\) 0.440007 0.142967i 0.0435672 0.0141558i
\(103\) −13.2349 4.30027i −1.30407 0.423718i −0.427075 0.904216i \(-0.640456\pi\)
−0.876996 + 0.480498i \(0.840456\pi\)
\(104\) 0.344987 + 0.250648i 0.0338288 + 0.0245781i
\(105\) 0 0
\(106\) −0.0416035 + 0.128042i −0.00404089 + 0.0124366i
\(107\) −15.9666 + 5.18787i −1.54355 + 0.501531i −0.952354 0.304996i \(-0.901345\pi\)
−0.591198 + 0.806526i \(0.701345\pi\)
\(108\) −6.60709 9.09388i −0.635768 0.875059i
\(109\) 3.65293 0.349888 0.174944 0.984578i \(-0.444026\pi\)
0.174944 + 0.984578i \(0.444026\pi\)
\(110\) 0 0
\(111\) 2.18368 0.207266
\(112\) 10.4985 + 14.4499i 0.992012 + 1.36539i
\(113\) 11.3198 3.67802i 1.06488 0.345999i 0.276386 0.961047i \(-0.410863\pi\)
0.788490 + 0.615047i \(0.210863\pi\)
\(114\) −0.257890 + 0.793704i −0.0241536 + 0.0743372i
\(115\) 0 0
\(116\) 5.34973 + 3.88681i 0.496710 + 0.360881i
\(117\) −0.922227 0.299650i −0.0852599 0.0277026i
\(118\) 0.628588 0.204241i 0.0578662 0.0188019i
\(119\) 12.3474 8.97091i 1.13188 0.822362i
\(120\) 0 0
\(121\) 0.502293 10.9885i 0.0456630 0.998957i
\(122\) 0.234004i 0.0211857i
\(123\) 1.50635 + 2.07332i 0.135823 + 0.186945i
\(124\) 1.10200 + 3.39161i 0.0989626 + 0.304576i
\(125\) 0 0
\(126\) 0.290497 + 0.211058i 0.0258795 + 0.0188026i
\(127\) −11.6162 + 15.9883i −1.03077 + 1.41873i −0.126404 + 0.991979i \(0.540344\pi\)
−0.904367 + 0.426756i \(0.859656\pi\)
\(128\) −2.81484 0.914596i −0.248799 0.0808397i
\(129\) 0.119222 + 0.366928i 0.0104969 + 0.0323062i
\(130\) 0 0
\(131\) −1.93479 −0.169043 −0.0845215 0.996422i \(-0.526936\pi\)
−0.0845215 + 0.996422i \(0.526936\pi\)
\(132\) −6.69129 7.00414i −0.582402 0.609632i
\(133\) 27.5307i 2.38721i
\(134\) −0.0390812 + 0.0283941i −0.00337610 + 0.00245288i
\(135\) 0 0
\(136\) −0.389040 + 1.19734i −0.0333599 + 0.102671i
\(137\) 7.36808 10.1413i 0.629498 0.866429i −0.368503 0.929626i \(-0.620130\pi\)
0.998001 + 0.0631970i \(0.0201296\pi\)
\(138\) −0.439571 + 0.605018i −0.0374188 + 0.0515025i
\(139\) 3.47491 10.6947i 0.294738 0.907111i −0.688571 0.725169i \(-0.741762\pi\)
0.983309 0.181942i \(-0.0582383\pi\)
\(140\) 0 0
\(141\) −8.21695 + 5.96996i −0.691992 + 0.502762i
\(142\) 1.00339i 0.0842024i
\(143\) −3.72827 0.678120i −0.311773 0.0567072i
\(144\) 3.35033 0.279194
\(145\) 0 0
\(146\) −0.164166 0.505250i −0.0135864 0.0418148i
\(147\) −18.7917 6.10581i −1.54992 0.503599i
\(148\) −1.74255 + 2.39841i −0.143236 + 0.197148i
\(149\) −14.0232 10.1885i −1.14883 0.834672i −0.160503 0.987035i \(-0.551312\pi\)
−0.988325 + 0.152363i \(0.951312\pi\)
\(150\) 0 0
\(151\) −0.00166997 0.00513965i −0.000135901 0.000418259i 0.950989 0.309226i \(-0.100070\pi\)
−0.951124 + 0.308808i \(0.900070\pi\)
\(152\) −1.33484 1.83725i −0.108270 0.149021i
\(153\) 2.86285i 0.231447i
\(154\) 1.23541 + 0.665437i 0.0995519 + 0.0536225i
\(155\) 0 0
\(156\) −2.69969 + 1.96144i −0.216148 + 0.157041i
\(157\) 0.527682 0.171454i 0.0421136 0.0136835i −0.287884 0.957665i \(-0.592952\pi\)
0.329998 + 0.943982i \(0.392952\pi\)
\(158\) −1.00524 0.326623i −0.0799728 0.0259847i
\(159\) −1.70843 1.24125i −0.135488 0.0984375i
\(160\) 0 0
\(161\) −7.62356 + 23.4629i −0.600820 + 1.84914i
\(162\) −0.509909 + 0.165679i −0.0400622 + 0.0130170i
\(163\) 4.68129 + 6.44324i 0.366667 + 0.504673i 0.951991 0.306126i \(-0.0990328\pi\)
−0.585324 + 0.810799i \(0.699033\pi\)
\(164\) −3.47924 −0.271683
\(165\) 0 0
\(166\) 0.419007 0.0325212
\(167\) 2.01400 + 2.77204i 0.155848 + 0.214507i 0.879800 0.475344i \(-0.157676\pi\)
−0.723952 + 0.689850i \(0.757676\pi\)
\(168\) 2.35558 0.765373i 0.181737 0.0590498i
\(169\) 3.61382 11.1222i 0.277986 0.855553i
\(170\) 0 0
\(171\) 4.17787 + 3.03540i 0.319489 + 0.232123i
\(172\) −0.498147 0.161858i −0.0379834 0.0123415i
\(173\) −19.5603 + 6.35552i −1.48714 + 0.483201i −0.936237 0.351368i \(-0.885717\pi\)
−0.550903 + 0.834569i \(0.685717\pi\)
\(174\) 0.368479 0.267716i 0.0279343 0.0202955i
\(175\) 0 0
\(176\) 12.9750 1.75230i 0.978024 0.132084i
\(177\) 10.3670i 0.779231i
\(178\) −0.729238 1.00371i −0.0546587 0.0752313i
\(179\) 0.792419 + 2.43882i 0.0592282 + 0.182286i 0.976293 0.216452i \(-0.0694484\pi\)
−0.917065 + 0.398738i \(0.869448\pi\)
\(180\) 0 0
\(181\) −10.8545 7.88624i −0.806807 0.586179i 0.106096 0.994356i \(-0.466165\pi\)
−0.912903 + 0.408177i \(0.866165\pi\)
\(182\) 0.284137 0.391081i 0.0210616 0.0289888i
\(183\) 3.49078 + 1.13422i 0.258046 + 0.0838442i
\(184\) −0.628857 1.93542i −0.0463599 0.142681i
\(185\) 0 0
\(186\) 0.245630 0.0180104
\(187\) −1.49733 11.0871i −0.109496 0.810766i
\(188\) 13.7889i 1.00566i
\(189\) −20.6631 + 15.0126i −1.50302 + 1.09201i
\(190\) 0 0
\(191\) 5.62097 17.2996i 0.406719 1.25175i −0.512733 0.858548i \(-0.671367\pi\)
0.919452 0.393203i \(-0.128633\pi\)
\(192\) 6.71672 9.24477i 0.484738 0.667184i
\(193\) 9.22156 12.6924i 0.663782 0.913618i −0.335817 0.941927i \(-0.609012\pi\)
0.999599 + 0.0283094i \(0.00901235\pi\)
\(194\) 0.0969914 0.298509i 0.00696358 0.0214317i
\(195\) 0 0
\(196\) 21.7018 15.7672i 1.55013 1.12623i
\(197\) 21.8486i 1.55665i 0.627862 + 0.778325i \(0.283930\pi\)
−0.627862 + 0.778325i \(0.716070\pi\)
\(198\) 0.237192 0.114109i 0.0168565 0.00810937i
\(199\) 4.55200 0.322683 0.161341 0.986899i \(-0.448418\pi\)
0.161341 + 0.986899i \(0.448418\pi\)
\(200\) 0 0
\(201\) −0.234145 0.720625i −0.0165153 0.0508290i
\(202\) 0.830190 + 0.269745i 0.0584119 + 0.0189792i
\(203\) 8.83159 12.1556i 0.619856 0.853158i
\(204\) −7.97040 5.79084i −0.558040 0.405440i
\(205\) 0 0
\(206\) −0.402118 1.23759i −0.0280169 0.0862271i
\(207\) 2.72003 + 3.74380i 0.189055 + 0.260212i
\(208\) 4.51038i 0.312738i
\(209\) 17.7674 + 9.57019i 1.22900 + 0.661984i
\(210\) 0 0
\(211\) −15.3393 + 11.1447i −1.05600 + 0.767230i −0.973345 0.229348i \(-0.926341\pi\)
−0.0826575 + 0.996578i \(0.526341\pi\)
\(212\) 2.72661 0.885929i 0.187264 0.0608459i
\(213\) −14.9681 4.86345i −1.02560 0.333238i
\(214\) −1.27005 0.922748i −0.0868191 0.0630778i
\(215\) 0 0
\(216\) 0.651050 2.00372i 0.0442983 0.136336i
\(217\) 7.70641 2.50396i 0.523145 0.169980i
\(218\) 0.200779 + 0.276348i 0.0135985 + 0.0187167i
\(219\) 8.33284 0.563081
\(220\) 0 0
\(221\) −3.85410 −0.259255
\(222\) 0.120023 + 0.165198i 0.00805543 + 0.0110873i
\(223\) −4.64070 + 1.50785i −0.310764 + 0.100973i −0.460247 0.887791i \(-0.652239\pi\)
0.149483 + 0.988764i \(0.452239\pi\)
\(224\) −1.55976 + 4.80045i −0.104216 + 0.320743i
\(225\) 0 0
\(226\) 0.900424 + 0.654197i 0.0598953 + 0.0435165i
\(227\) −15.5240 5.04404i −1.03036 0.334785i −0.255428 0.966828i \(-0.582216\pi\)
−0.774933 + 0.632043i \(0.782216\pi\)
\(228\) 16.9016 5.49166i 1.11934 0.363694i
\(229\) −3.90890 + 2.83998i −0.258307 + 0.187671i −0.709401 0.704806i \(-0.751034\pi\)
0.451093 + 0.892477i \(0.351034\pi\)
\(230\) 0 0
\(231\) −15.9148 + 15.2039i −1.04712 + 1.00035i
\(232\) 1.23941i 0.0813711i
\(233\) 4.94900 + 6.81172i 0.324220 + 0.446251i 0.939750 0.341863i \(-0.111058\pi\)
−0.615530 + 0.788114i \(0.711058\pi\)
\(234\) −0.0280202 0.0862373i −0.00183174 0.00563751i
\(235\) 0 0
\(236\) −11.3864 8.27272i −0.741193 0.538508i
\(237\) 9.74488 13.4127i 0.632998 0.871247i
\(238\) 1.35732 + 0.441019i 0.0879819 + 0.0285870i
\(239\) 7.01245 + 21.5821i 0.453598 + 1.39603i 0.872773 + 0.488126i \(0.162319\pi\)
−0.419175 + 0.907905i \(0.637681\pi\)
\(240\) 0 0
\(241\) 11.6065 0.747638 0.373819 0.927502i \(-0.378048\pi\)
0.373819 + 0.927502i \(0.378048\pi\)
\(242\) 0.858902 0.565971i 0.0552123 0.0363820i
\(243\) 8.52534i 0.546901i
\(244\) −4.03135 + 2.92894i −0.258080 + 0.187506i
\(245\) 0 0
\(246\) −0.0740540 + 0.227915i −0.00472151 + 0.0145313i
\(247\) 4.08640 5.62445i 0.260011 0.357875i
\(248\) −0.392879 + 0.540751i −0.0249478 + 0.0343377i
\(249\) −2.03094 + 6.25058i −0.128705 + 0.396114i
\(250\) 0 0
\(251\) −2.68032 + 1.94736i −0.169180 + 0.122917i −0.669153 0.743124i \(-0.733343\pi\)
0.499973 + 0.866041i \(0.333343\pi\)
\(252\) 7.64633i 0.481674i
\(253\) 12.4921 + 13.0761i 0.785370 + 0.822090i
\(254\) −1.84800 −0.115954
\(255\) 0 0
\(256\) 4.72952 + 14.5560i 0.295595 + 0.909748i
\(257\) 25.5326 + 8.29606i 1.59268 + 0.517494i 0.965284 0.261204i \(-0.0841197\pi\)
0.627399 + 0.778698i \(0.284120\pi\)
\(258\) −0.0212056 + 0.0291870i −0.00132020 + 0.00181711i
\(259\) 5.44965 + 3.95940i 0.338625 + 0.246025i
\(260\) 0 0
\(261\) −0.870929 2.68044i −0.0539091 0.165915i
\(262\) −0.106343 0.146369i −0.00656990 0.00904269i
\(263\) 12.1682i 0.750324i 0.926959 + 0.375162i \(0.122413\pi\)
−0.926959 + 0.375162i \(0.877587\pi\)
\(264\) 0.324897 1.78627i 0.0199960 0.109937i
\(265\) 0 0
\(266\) −2.08273 + 1.51319i −0.127700 + 0.0927795i
\(267\) 18.5076 6.01349i 1.13265 0.368019i
\(268\) 0.978331 + 0.317879i 0.0597611 + 0.0194176i
\(269\) −1.69369 1.23053i −0.103266 0.0750270i 0.534954 0.844881i \(-0.320329\pi\)
−0.638220 + 0.769854i \(0.720329\pi\)
\(270\) 0 0
\(271\) 4.67938 14.4017i 0.284252 0.874838i −0.702370 0.711812i \(-0.747875\pi\)
0.986622 0.163026i \(-0.0521254\pi\)
\(272\) 12.6644 4.11492i 0.767894 0.249504i
\(273\) 4.45677 + 6.13422i 0.269736 + 0.371260i
\(274\) 1.17218 0.0708138
\(275\) 0 0
\(276\) 15.9250 0.958574
\(277\) 4.86137 + 6.69110i 0.292091 + 0.402029i 0.929692 0.368338i \(-0.120073\pi\)
−0.637601 + 0.770367i \(0.720073\pi\)
\(278\) 1.00006 0.324939i 0.0599795 0.0194885i
\(279\) 0.469687 1.44555i 0.0281194 0.0865426i
\(280\) 0 0
\(281\) −1.97985 1.43844i −0.118108 0.0858104i 0.527163 0.849764i \(-0.323256\pi\)
−0.645271 + 0.763954i \(0.723256\pi\)
\(282\) −0.903268 0.293490i −0.0537888 0.0174771i
\(283\) −24.8176 + 8.06372i −1.47525 + 0.479339i −0.932691 0.360677i \(-0.882546\pi\)
−0.542562 + 0.840016i \(0.682546\pi\)
\(284\) 17.2860 12.5590i 1.02574 0.745242i
\(285\) 0 0
\(286\) −0.153619 0.319320i −0.00908369 0.0188818i
\(287\) 7.90553i 0.466648i
\(288\) 0.556512 + 0.765973i 0.0327928 + 0.0451354i
\(289\) 1.73710 + 5.34624i 0.102182 + 0.314485i
\(290\) 0 0
\(291\) 3.98292 + 2.89376i 0.233483 + 0.169635i
\(292\) −6.64949 + 9.15223i −0.389132 + 0.535594i
\(293\) 12.7945 + 4.15719i 0.747463 + 0.242866i 0.657889 0.753115i \(-0.271449\pi\)
0.0895739 + 0.995980i \(0.471449\pi\)
\(294\) −0.570953 1.75721i −0.0332987 0.102483i
\(295\) 0 0
\(296\) −0.555655 −0.0322968
\(297\) 2.50575 + 18.5539i 0.145399 + 1.07661i
\(298\) 1.62087i 0.0938944i
\(299\) 5.04009 3.66184i 0.291476 0.211770i
\(300\) 0 0
\(301\) −0.367773 + 1.13189i −0.0211981 + 0.0652409i
\(302\) 0.000297032 0 0.000408830i 1.70923e−5 0 2.35255e-5i
\(303\) −8.04791 + 11.0770i −0.462340 + 0.636357i
\(304\) −7.42268 + 22.8447i −0.425720 + 1.31023i
\(305\) 0 0
\(306\) 0.216577 0.157353i 0.0123809 0.00899526i
\(307\) 27.1844i 1.55150i −0.631042 0.775748i \(-0.717373\pi\)
0.631042 0.775748i \(-0.282627\pi\)
\(308\) −3.99921 29.6123i −0.227876 1.68731i
\(309\) 20.4110 1.16114
\(310\) 0 0
\(311\) −4.07872 12.5530i −0.231283 0.711817i −0.997593 0.0693450i \(-0.977909\pi\)
0.766310 0.642472i \(-0.222091\pi\)
\(312\) −0.594843 0.193276i −0.0336764 0.0109421i
\(313\) 9.50561 13.0833i 0.537289 0.739515i −0.450931 0.892559i \(-0.648908\pi\)
0.988219 + 0.153044i \(0.0489078\pi\)
\(314\) 0.0419741 + 0.0304959i 0.00236873 + 0.00172099i
\(315\) 0 0
\(316\) 6.95531 + 21.4062i 0.391267 + 1.20420i
\(317\) −3.16296 4.35344i −0.177650 0.244514i 0.710901 0.703292i \(-0.248287\pi\)
−0.888551 + 0.458778i \(0.848287\pi\)
\(318\) 0.197469i 0.0110735i
\(319\) −4.77481 9.92514i −0.267338 0.555701i
\(320\) 0 0
\(321\) 19.9212 14.4736i 1.11189 0.807837i
\(322\) −2.19401 + 0.712878i −0.122268 + 0.0397271i
\(323\) 19.5207 + 6.34266i 1.08616 + 0.352915i
\(324\) 9.23663 + 6.71080i 0.513146 + 0.372822i
\(325\) 0 0
\(326\) −0.230137 + 0.708289i −0.0127461 + 0.0392285i
\(327\) −5.09564 + 1.65567i −0.281790 + 0.0915590i
\(328\) −0.383304 0.527573i −0.0211644 0.0291304i
\(329\) −31.3311 −1.72734
\(330\) 0 0
\(331\) −18.5702 −1.02071 −0.510356 0.859963i \(-0.670486\pi\)
−0.510356 + 0.859963i \(0.670486\pi\)
\(332\) −5.24456 7.21852i −0.287833 0.396168i
\(333\) 1.20170 0.390457i 0.0658530 0.0213969i
\(334\) −0.0990106 + 0.304723i −0.00541762 + 0.0166737i
\(335\) 0 0
\(336\) −21.1941 15.3984i −1.15623 0.840054i
\(337\) −8.56535 2.78305i −0.466585 0.151603i 0.0662836 0.997801i \(-0.478886\pi\)
−0.532868 + 0.846198i \(0.678886\pi\)
\(338\) 1.04003 0.337928i 0.0565704 0.0183808i
\(339\) −14.1234 + 10.2613i −0.767080 + 0.557316i
\(340\) 0 0
\(341\) 1.06292 5.84388i 0.0575604 0.316464i
\(342\) 0.482897i 0.0261121i
\(343\) −17.2101 23.6877i −0.929260 1.27902i
\(344\) −0.0303371 0.0933679i −0.00163567 0.00503406i
\(345\) 0 0
\(346\) −1.55591 1.13043i −0.0836461 0.0607725i
\(347\) −6.03712 + 8.30939i −0.324090 + 0.446071i −0.939710 0.341971i \(-0.888905\pi\)
0.615621 + 0.788043i \(0.288905\pi\)
\(348\) −9.22425 2.99714i −0.494472 0.160664i
\(349\) −5.33402 16.4164i −0.285524 0.878752i −0.986241 0.165313i \(-0.947137\pi\)
0.700718 0.713439i \(-0.252863\pi\)
\(350\) 0 0
\(351\) 6.44975 0.344262
\(352\) 2.55585 + 2.67534i 0.136227 + 0.142596i
\(353\) 22.8096i 1.21403i −0.794689 0.607017i \(-0.792366\pi\)
0.794689 0.607017i \(-0.207634\pi\)
\(354\) −0.784275 + 0.569809i −0.0416837 + 0.0302850i
\(355\) 0 0
\(356\) −8.16399 + 25.1262i −0.432691 + 1.33169i
\(357\) −13.1579 + 18.1103i −0.696391 + 0.958500i
\(358\) −0.140945 + 0.193994i −0.00744916 + 0.0102529i
\(359\) 4.96736 15.2879i 0.262167 0.806867i −0.730166 0.683270i \(-0.760557\pi\)
0.992333 0.123597i \(-0.0394429\pi\)
\(360\) 0 0
\(361\) −14.5820 + 10.5945i −0.767475 + 0.557603i
\(362\) 1.25461i 0.0659408i
\(363\) 4.27982 + 15.5560i 0.224632 + 0.816481i
\(364\) −10.2939 −0.539545
\(365\) 0 0
\(366\) 0.106061 + 0.326422i 0.00554390 + 0.0170624i
\(367\) −20.9208 6.79759i −1.09206 0.354832i −0.293017 0.956107i \(-0.594659\pi\)
−0.799042 + 0.601276i \(0.794659\pi\)
\(368\) −12.6519 + 17.4138i −0.659525 + 0.907759i
\(369\) 1.19969 + 0.871625i 0.0624533 + 0.0453750i
\(370\) 0 0
\(371\) −2.01301 6.19539i −0.104510 0.321649i
\(372\) −3.07446 4.23163i −0.159403 0.219400i
\(373\) 20.2604i 1.04905i −0.851396 0.524523i \(-0.824244\pi\)
0.851396 0.524523i \(-0.175756\pi\)
\(374\) 0.756449 0.722661i 0.0391151 0.0373679i
\(375\) 0 0
\(376\) 2.09087 1.51911i 0.107828 0.0783419i
\(377\) −3.60854 + 1.17249i −0.185849 + 0.0603861i
\(378\) −2.27144 0.738036i −0.116830 0.0379605i
\(379\) −3.01578 2.19109i −0.154910 0.112549i 0.507630 0.861575i \(-0.330522\pi\)
−0.662540 + 0.749026i \(0.730522\pi\)
\(380\) 0 0
\(381\) 8.95733 27.5678i 0.458898 1.41234i
\(382\) 1.61768 0.525616i 0.0827677 0.0268928i
\(383\) 6.46411 + 8.89708i 0.330301 + 0.454620i 0.941577 0.336797i \(-0.109344\pi\)
−0.611277 + 0.791417i \(0.709344\pi\)
\(384\) 4.34108 0.221530
\(385\) 0 0
\(386\) 1.46704 0.0746706
\(387\) 0.131219 + 0.180607i 0.00667023 + 0.00918078i
\(388\) −6.35663 + 2.06539i −0.322709 + 0.104854i
\(389\) −2.89926 + 8.92300i −0.146998 + 0.452414i −0.997263 0.0739418i \(-0.976442\pi\)
0.850264 + 0.526356i \(0.176442\pi\)
\(390\) 0 0
\(391\) 14.8801 + 10.8110i 0.752517 + 0.546736i
\(392\) 4.78171 + 1.55367i 0.241513 + 0.0784723i
\(393\) 2.69892 0.876932i 0.136143 0.0442354i
\(394\) −1.65287 + 1.20088i −0.0832705 + 0.0604996i
\(395\) 0 0
\(396\) −4.93469 2.65801i −0.247977 0.133570i
\(397\) 22.3136i 1.11989i −0.828530 0.559945i \(-0.810822\pi\)
0.828530 0.559945i \(-0.189178\pi\)
\(398\) 0.250195 + 0.344364i 0.0125411 + 0.0172614i
\(399\) −12.4781 38.4038i −0.624688 1.92259i
\(400\) 0 0
\(401\) 19.9683 + 14.5078i 0.997171 + 0.724487i 0.961480 0.274876i \(-0.0886368\pi\)
0.0356909 + 0.999363i \(0.488637\pi\)
\(402\) 0.0416466 0.0573216i 0.00207714 0.00285894i
\(403\) −1.94606 0.632315i −0.0969404 0.0314978i
\(404\) −5.74411 17.6786i −0.285780 0.879541i
\(405\) 0 0
\(406\) 1.40500 0.0697292
\(407\) 4.44967 2.14066i 0.220562 0.106109i
\(408\) 1.84656i 0.0914182i
\(409\) 23.8705 17.3429i 1.18032 0.857553i 0.188113 0.982147i \(-0.439763\pi\)
0.992208 + 0.124594i \(0.0397630\pi\)
\(410\) 0 0
\(411\) −5.68158 + 17.4861i −0.280252 + 0.862526i
\(412\) −16.2877 + 22.4181i −0.802437 + 1.10446i
\(413\) −18.7972 + 25.8722i −0.924951 + 1.27309i
\(414\) −0.133720 + 0.411547i −0.00657196 + 0.0202264i
\(415\) 0 0
\(416\) 1.03119 0.749203i 0.0505582 0.0367327i
\(417\) 16.4935i 0.807689i
\(418\) 0.252566 + 1.87013i 0.0123534 + 0.0914713i
\(419\) −9.03564 −0.441420 −0.220710 0.975339i \(-0.570837\pi\)
−0.220710 + 0.975339i \(0.570837\pi\)
\(420\) 0 0
\(421\) 4.39426 + 13.5242i 0.214163 + 0.659127i 0.999212 + 0.0396928i \(0.0126379\pi\)
−0.785049 + 0.619434i \(0.787362\pi\)
\(422\) −1.68621 0.547884i −0.0820835 0.0266706i
\(423\) −3.45441 + 4.75459i −0.167959 + 0.231176i
\(424\) 0.434725 + 0.315846i 0.0211121 + 0.0153388i
\(425\) 0 0
\(426\) −0.454780 1.39967i −0.0220342 0.0678142i
\(427\) 6.65514 + 9.16001i 0.322065 + 0.443284i
\(428\) 33.4298i 1.61589i
\(429\) 5.50808 0.743880i 0.265933 0.0359149i
\(430\) 0 0
\(431\) 1.40086 1.01778i 0.0674769 0.0490248i −0.553535 0.832826i \(-0.686722\pi\)
0.621012 + 0.783801i \(0.286722\pi\)
\(432\) −21.1936 + 6.88623i −1.01968 + 0.331314i
\(433\) 17.5447 + 5.70062i 0.843145 + 0.273955i 0.698572 0.715540i \(-0.253819\pi\)
0.144573 + 0.989494i \(0.453819\pi\)
\(434\) 0.613000 + 0.445371i 0.0294250 + 0.0213785i
\(435\) 0 0
\(436\) 2.24777 6.91791i 0.107649 0.331308i
\(437\) −31.5539 + 10.2525i −1.50943 + 0.490442i
\(438\) 0.458004 + 0.630389i 0.0218843 + 0.0301211i
\(439\) 17.1704 0.819499 0.409750 0.912198i \(-0.365616\pi\)
0.409750 + 0.912198i \(0.365616\pi\)
\(440\) 0 0
\(441\) −11.4331 −0.544432
\(442\) −0.211836 0.291567i −0.0100760 0.0138684i
\(443\) −34.8079 + 11.3098i −1.65377 + 0.537344i −0.979553 0.201185i \(-0.935521\pi\)
−0.674221 + 0.738529i \(0.735521\pi\)
\(444\) 1.34369 4.13545i 0.0637686 0.196260i
\(445\) 0 0
\(446\) −0.369141 0.268196i −0.0174793 0.0126995i
\(447\) 24.1795 + 7.85640i 1.14365 + 0.371595i
\(448\) 33.5249 10.8929i 1.58390 0.514641i
\(449\) −13.4320 + 9.75895i −0.633897 + 0.460553i −0.857748 0.514070i \(-0.828137\pi\)
0.223851 + 0.974623i \(0.428137\pi\)
\(450\) 0 0
\(451\) 5.10196 + 2.74811i 0.240242 + 0.129404i
\(452\) 23.7006i 1.11478i
\(453\) 0.00465904 + 0.00641262i 0.000218901 + 0.000301291i
\(454\) −0.471667 1.45164i −0.0221365 0.0681290i
\(455\) 0 0
\(456\) 2.69476 + 1.95785i 0.126193 + 0.0916849i
\(457\) 18.6124 25.6178i 0.870651 1.19835i −0.108272 0.994121i \(-0.534532\pi\)
0.978923 0.204227i \(-0.0654682\pi\)
\(458\) −0.429696 0.139617i −0.0200784 0.00652385i
\(459\) 5.88426 + 18.1099i 0.274654 + 0.845297i
\(460\) 0 0
\(461\) −25.4351 −1.18463 −0.592315 0.805706i \(-0.701786\pi\)
−0.592315 + 0.805706i \(0.701786\pi\)
\(462\) −2.02493 0.368306i −0.0942083 0.0171352i
\(463\) 16.3319i 0.759007i −0.925190 0.379503i \(-0.876095\pi\)
0.925190 0.379503i \(-0.123905\pi\)
\(464\) 10.6057 7.70549i 0.492357 0.357718i
\(465\) 0 0
\(466\) −0.243298 + 0.748795i −0.0112706 + 0.0346873i
\(467\) −5.01329 + 6.90020i −0.231987 + 0.319303i −0.909101 0.416575i \(-0.863230\pi\)
0.677114 + 0.735878i \(0.263230\pi\)
\(468\) −1.13495 + 1.56213i −0.0524631 + 0.0722093i
\(469\) 0.722284 2.22296i 0.0333520 0.102647i
\(470\) 0 0
\(471\) −0.658376 + 0.478338i −0.0303364 + 0.0220407i
\(472\) 2.63797i 0.121422i
\(473\) 0.602638 + 0.630814i 0.0277093 + 0.0290049i
\(474\) 1.55030 0.0712076
\(475\) 0 0
\(476\) −9.39133 28.9036i −0.430451 1.32479i
\(477\) −1.16211 0.377594i −0.0532096 0.0172888i
\(478\) −1.24728 + 1.71673i −0.0570493 + 0.0785216i
\(479\) 24.2283 + 17.6029i 1.10702 + 0.804296i 0.982192 0.187882i \(-0.0601623\pi\)
0.124827 + 0.992178i \(0.460162\pi\)
\(480\) 0 0
\(481\) −0.525653 1.61779i −0.0239677 0.0737650i
\(482\) 0.637934 + 0.878041i 0.0290571 + 0.0399937i
\(483\) 36.1848i 1.64646i
\(484\) −20.5010 7.71283i −0.931862 0.350583i
\(485\) 0 0
\(486\) −0.644951 + 0.468585i −0.0292556 + 0.0212554i
\(487\) −18.6436 + 6.05768i −0.844823 + 0.274500i −0.699276 0.714852i \(-0.746494\pi\)
−0.145547 + 0.989351i \(0.546494\pi\)
\(488\) −0.888257 0.288612i −0.0402095 0.0130649i
\(489\) −9.45050 6.86619i −0.427367 0.310500i
\(490\) 0 0
\(491\) −4.87911 + 15.0163i −0.220191 + 0.677678i 0.778553 + 0.627579i \(0.215954\pi\)
−0.998744 + 0.0500997i \(0.984046\pi\)
\(492\) 4.85335 1.57695i 0.218806 0.0710944i
\(493\) −6.58432 9.06253i −0.296543 0.408156i
\(494\) 0.650099 0.0292494
\(495\) 0 0
\(496\) 7.06980 0.317443
\(497\) −28.5366 39.2773i −1.28004 1.76183i
\(498\) −0.584491 + 0.189913i −0.0261917 + 0.00851019i
\(499\) −3.46350 + 10.6596i −0.155048 + 0.477188i −0.998166 0.0605408i \(-0.980717\pi\)
0.843118 + 0.537729i \(0.180717\pi\)
\(500\) 0 0
\(501\) −4.06584 2.95400i −0.181648 0.131975i
\(502\) −0.294640 0.0957345i −0.0131504 0.00427284i
\(503\) 0.326125 0.105965i 0.0145412 0.00472473i −0.301737 0.953391i \(-0.597567\pi\)
0.316279 + 0.948666i \(0.397567\pi\)
\(504\) 1.15945 0.842387i 0.0516459 0.0375229i
\(505\) 0 0
\(506\) −0.302613 + 1.66375i −0.0134528 + 0.0739628i
\(507\) 17.1528i 0.761782i
\(508\) 23.1308 + 31.8368i 1.02626 + 1.41253i
\(509\) 6.04518 + 18.6052i 0.267948 + 0.824659i 0.991000 + 0.133865i \(0.0427389\pi\)
−0.723052 + 0.690794i \(0.757261\pi\)
\(510\) 0 0
\(511\) 20.7957 + 15.1089i 0.919946 + 0.668380i
\(512\) −4.32055 + 5.94673i −0.190943 + 0.262811i
\(513\) −32.6674 10.6143i −1.44230 0.468632i
\(514\) 0.775763 + 2.38755i 0.0342175 + 0.105311i
\(515\) 0 0
\(516\) 0.768249 0.0338203
\(517\) −10.8913 + 20.2200i −0.478998 + 0.889275i
\(518\) 0.629896i 0.0276760i
\(519\) 24.4049 17.7312i 1.07126 0.778313i
\(520\) 0 0
\(521\) 12.9869 39.9695i 0.568966 1.75110i −0.0868981 0.996217i \(-0.527695\pi\)
0.655864 0.754879i \(-0.272305\pi\)
\(522\) 0.154909 0.213214i 0.00678018 0.00933212i
\(523\) 17.6398 24.2790i 0.771333 1.06165i −0.224853 0.974393i \(-0.572190\pi\)
0.996186 0.0872555i \(-0.0278097\pi\)
\(524\) −1.19054 + 3.66409i −0.0520088 + 0.160067i
\(525\) 0 0
\(526\) −0.920538 + 0.668810i −0.0401374 + 0.0291615i
\(527\) 6.04112i 0.263155i
\(528\) −17.3051 + 8.32519i −0.753109 + 0.362308i
\(529\) −6.73067 −0.292638
\(530\) 0 0
\(531\) 1.85369 + 5.70508i 0.0804434 + 0.247579i
\(532\) 52.1375 + 16.9405i 2.26045 + 0.734464i
\(533\) 1.17342 1.61508i 0.0508266 0.0699568i
\(534\) 1.47217 + 1.06960i 0.0637072 + 0.0462860i
\(535\) 0 0
\(536\) 0.0595802 + 0.183369i 0.00257347 + 0.00792033i
\(537\) −2.21076 3.04285i −0.0954014 0.131309i
\(538\) 0.195764i 0.00843998i
\(539\) −44.2773 + 5.97976i −1.90716 + 0.257567i
\(540\) 0 0
\(541\) 8.35196 6.06806i 0.359079 0.260886i −0.393589 0.919287i \(-0.628767\pi\)
0.752668 + 0.658400i \(0.228767\pi\)
\(542\) 1.34670 0.437568i 0.0578456 0.0187952i
\(543\) 18.7158 + 6.08113i 0.803171 + 0.260966i
\(544\) 3.04442 + 2.21190i 0.130529 + 0.0948346i
\(545\) 0 0
\(546\) −0.219100 + 0.674320i −0.00937660 + 0.0288582i
\(547\) 39.7702 12.9221i 1.70045 0.552510i 0.711752 0.702431i \(-0.247902\pi\)
0.988698 + 0.149921i \(0.0479020\pi\)
\(548\) −14.6717 20.1939i −0.626746 0.862641i
\(549\) 2.12382 0.0906426
\(550\) 0 0
\(551\) 20.2065 0.860826
\(552\) 1.75444 + 2.41478i 0.0746740 + 0.102780i
\(553\) 48.6392 15.8038i 2.06835 0.672047i
\(554\) −0.238990 + 0.735536i −0.0101537 + 0.0312499i
\(555\) 0 0
\(556\) −18.1153 13.1616i −0.768261 0.558174i
\(557\) 36.5993 + 11.8918i 1.55076 + 0.503874i 0.954321 0.298782i \(-0.0965804\pi\)
0.596442 + 0.802656i \(0.296580\pi\)
\(558\) 0.135173 0.0439203i 0.00572233 0.00185930i
\(559\) 0.243142 0.176653i 0.0102838 0.00747163i
\(560\) 0 0
\(561\) 7.11385 + 14.7872i 0.300347 + 0.624315i
\(562\) 0.228840i 0.00965303i
\(563\) −18.0370 24.8258i −0.760170 1.04628i −0.997200 0.0747817i \(-0.976174\pi\)
0.237030 0.971502i \(-0.423826\pi\)
\(564\) 6.24975 + 19.2347i 0.263162 + 0.809929i
\(565\) 0 0
\(566\) −1.97410 1.43427i −0.0829775 0.0602867i
\(567\) 15.2483 20.9874i 0.640367 0.881389i
\(568\) 3.80877 + 1.23754i 0.159812 + 0.0519262i
\(569\) −4.03220 12.4098i −0.169039 0.520247i 0.830273 0.557357i \(-0.188185\pi\)
−0.999311 + 0.0371104i \(0.988185\pi\)
\(570\) 0 0
\(571\) 16.1300 0.675018 0.337509 0.941322i \(-0.390416\pi\)
0.337509 + 0.941322i \(0.390416\pi\)
\(572\) −3.57834 + 6.64331i −0.149618 + 0.277771i
\(573\) 26.6796i 1.11456i
\(574\) −0.598062 + 0.434517i −0.0249626 + 0.0181364i
\(575\) 0 0
\(576\) 2.04326 6.28850i 0.0851358 0.262021i
\(577\) 8.56487 11.7885i 0.356560 0.490763i −0.592626 0.805478i \(-0.701909\pi\)
0.949186 + 0.314715i \(0.101909\pi\)
\(578\) −0.308972 + 0.425263i −0.0128515 + 0.0176886i
\(579\) −7.11080 + 21.8848i −0.295515 + 0.909501i
\(580\) 0 0
\(581\) −16.4019 + 11.9167i −0.680465 + 0.494387i
\(582\) 0.460364i 0.0190827i
\(583\) −4.69806 0.854511i −0.194574 0.0353902i
\(584\) −2.12036 −0.0877411
\(585\) 0 0
\(586\) 0.388738 + 1.19641i 0.0160586 + 0.0494234i
\(587\) 26.5099 + 8.61360i 1.09418 + 0.355521i 0.799861 0.600185i \(-0.204906\pi\)
0.294321 + 0.955707i \(0.404906\pi\)
\(588\) −23.1263 + 31.8307i −0.953713 + 1.31267i
\(589\) 8.81605 + 6.40524i 0.363259 + 0.263923i
\(590\) 0 0
\(591\) −9.90278 30.4776i −0.407346 1.25368i
\(592\) 3.45455 + 4.75478i 0.141981 + 0.195420i
\(593\) 15.1037i 0.620236i 0.950698 + 0.310118i \(0.100369\pi\)
−0.950698 + 0.310118i \(0.899631\pi\)
\(594\) −1.26590 + 1.20936i −0.0519405 + 0.0496205i
\(595\) 0 0
\(596\) −27.9238 + 20.2878i −1.14380 + 0.831023i
\(597\) −6.34979 + 2.06317i −0.259880 + 0.0844400i
\(598\) 0.554044 + 0.180020i 0.0226566 + 0.00736156i
\(599\) −20.9339 15.2093i −0.855334 0.621437i 0.0712774 0.997457i \(-0.477292\pi\)
−0.926612 + 0.376020i \(0.877292\pi\)
\(600\) 0 0
\(601\) −14.5321 + 44.7252i −0.592776 + 1.82438i −0.0272781 + 0.999628i \(0.508684\pi\)
−0.565498 + 0.824750i \(0.691316\pi\)
\(602\) −0.105843 + 0.0343904i −0.00431383 + 0.00140165i
\(603\) −0.257706 0.354702i −0.0104946 0.0144446i
\(604\) −0.0107610 −0.000437861
\(605\) 0 0
\(606\) −1.28033 −0.0520098
\(607\) −20.7041 28.4967i −0.840353 1.15665i −0.985907 0.167297i \(-0.946496\pi\)
0.145553 0.989350i \(-0.453504\pi\)
\(608\) −6.45584 + 2.09763i −0.261819 + 0.0850701i
\(609\) −6.81009 + 20.9593i −0.275959 + 0.849314i
\(610\) 0 0
\(611\) 6.40086 + 4.65049i 0.258951 + 0.188139i
\(612\) −5.42165 1.76160i −0.219157 0.0712085i
\(613\) 22.2658 7.23461i 0.899309 0.292203i 0.177357 0.984147i \(-0.443245\pi\)
0.721952 + 0.691943i \(0.243245\pi\)
\(614\) 2.05653 1.49416i 0.0829948 0.0602993i
\(615\) 0 0
\(616\) 4.04965 3.86876i 0.163165 0.155877i
\(617\) 22.8910i 0.921557i −0.887515 0.460778i \(-0.847570\pi\)
0.887515 0.460778i \(-0.152430\pi\)
\(618\) 1.12187 + 1.54411i 0.0451280 + 0.0621134i
\(619\) −0.657441 2.02339i −0.0264248 0.0813271i 0.936974 0.349398i \(-0.113614\pi\)
−0.963399 + 0.268071i \(0.913614\pi\)
\(620\) 0 0
\(621\) −24.9014 18.0920i −0.999260 0.726005i
\(622\) 0.725468 0.998521i 0.0290886 0.0400370i
\(623\) 57.0916 + 18.5502i 2.28733 + 0.743198i
\(624\) 2.04431 + 6.29173i 0.0818377 + 0.251871i
\(625\) 0 0
\(626\) 1.51223 0.0604410
\(627\) −29.1221 5.29691i −1.16303 0.211538i
\(628\) 1.10482i 0.0440873i
\(629\) 4.06294 2.95190i 0.162000 0.117700i
\(630\) 0 0
\(631\) 4.77702 14.7022i 0.190170 0.585284i −0.809829 0.586666i \(-0.800440\pi\)
0.999999 + 0.00138227i \(0.000439991\pi\)
\(632\) −2.47966 + 3.41296i −0.0986357 + 0.135760i
\(633\) 16.3462 22.4987i 0.649705 0.894242i
\(634\) 0.155494 0.478563i 0.00617547 0.0190062i
\(635\) 0 0
\(636\) −3.40193 + 2.47164i −0.134895 + 0.0980071i
\(637\) 15.3918i 0.609844i
\(638\) 0.488406 0.906743i 0.0193362 0.0358983i
\(639\) −9.10676 −0.360258
\(640\) 0 0
\(641\) 4.38201 + 13.4864i 0.173079 + 0.532682i 0.999541 0.0303108i \(-0.00964970\pi\)
−0.826461 + 0.562993i \(0.809650\pi\)
\(642\) 2.18989 + 0.711537i 0.0864279 + 0.0280821i
\(643\) −7.28504 + 10.0270i −0.287294 + 0.395426i −0.928133 0.372249i \(-0.878587\pi\)
0.640839 + 0.767675i \(0.278587\pi\)
\(644\) 39.7429 + 28.8749i 1.56609 + 1.13783i
\(645\) 0 0
\(646\) 0.593101 + 1.82538i 0.0233352 + 0.0718185i
\(647\) 19.5418 + 26.8970i 0.768267 + 1.05743i 0.996481 + 0.0838181i \(0.0267115\pi\)
−0.228214 + 0.973611i \(0.573289\pi\)
\(648\) 2.13991i 0.0840637i
\(649\) 10.1628 + 21.1248i 0.398923 + 0.829220i
\(650\) 0 0
\(651\) −9.61510 + 6.98578i −0.376846 + 0.273794i
\(652\) 15.0827 4.90068i 0.590685 0.191925i
\(653\) −33.1030 10.7558i −1.29542 0.420908i −0.421435 0.906858i \(-0.638474\pi\)
−0.873986 + 0.485951i \(0.838474\pi\)
\(654\) −0.405329 0.294489i −0.0158496 0.0115154i
\(655\) 0 0
\(656\) −2.13145 + 6.55992i −0.0832191 + 0.256122i
\(657\) 4.58566 1.48997i 0.178904 0.0581293i
\(658\) −1.72207 2.37023i −0.0671334 0.0924011i
\(659\) 34.4953 1.34375 0.671873 0.740666i \(-0.265490\pi\)
0.671873 + 0.740666i \(0.265490\pi\)
\(660\) 0 0
\(661\) 1.77827 0.0691668 0.0345834 0.999402i \(-0.488990\pi\)
0.0345834 + 0.999402i \(0.488990\pi\)
\(662\) −1.02069 1.40486i −0.0396702 0.0546014i
\(663\) 5.37626 1.74685i 0.208797 0.0678421i
\(664\) 0.516788 1.59051i 0.0200553 0.0617238i
\(665\) 0 0
\(666\) 0.0955887 + 0.0694493i 0.00370399 + 0.00269110i
\(667\) 17.2209 + 5.59541i 0.666796 + 0.216655i
\(668\) 6.48896 2.10839i 0.251065 0.0815761i
\(669\) 5.79009 4.20675i 0.223858 0.162642i
\(670\) 0 0
\(671\) 8.22502 1.11081i 0.317523 0.0428823i
\(672\) 7.40331i 0.285589i
\(673\) −11.3422 15.6111i −0.437208 0.601765i 0.532381 0.846505i \(-0.321297\pi\)
−0.969589 + 0.244740i \(0.921297\pi\)
\(674\) −0.260243 0.800945i −0.0100242 0.0308513i
\(675\) 0 0
\(676\) −18.8395 13.6877i −0.724595 0.526449i
\(677\) 9.93949 13.6805i 0.382006 0.525786i −0.574109 0.818779i \(-0.694651\pi\)
0.956114 + 0.292993i \(0.0946514\pi\)
\(678\) −1.55255 0.504455i −0.0596255 0.0193735i
\(679\) 4.69298 + 14.4435i 0.180100 + 0.554291i
\(680\) 0 0
\(681\) 23.9412 0.917430
\(682\) 0.500518 0.240791i 0.0191658 0.00922035i
\(683\) 4.14018i 0.158420i 0.996858 + 0.0792098i \(0.0252397\pi\)
−0.996858 + 0.0792098i \(0.974760\pi\)
\(684\) 8.31920 6.04425i 0.318093 0.231108i
\(685\) 0 0
\(686\) 0.846069 2.60393i 0.0323031 0.0994186i
\(687\) 4.16549 5.73331i 0.158923 0.218739i
\(688\) −0.610348 + 0.840072i −0.0232693 + 0.0320274i
\(689\) −0.508335 + 1.56450i −0.0193660 + 0.0596025i
\(690\) 0 0
\(691\) 37.4996 27.2450i 1.42655 1.03645i 0.435904 0.899993i \(-0.356429\pi\)
0.990646 0.136457i \(-0.0435714\pi\)
\(692\) 40.9539i 1.55684i
\(693\) −6.03952 + 11.2126i −0.229422 + 0.425931i
\(694\) −0.960437 −0.0364577
\(695\) 0 0
\(696\) −0.561756 1.72891i −0.0212933 0.0655340i
\(697\) 5.60543 + 1.82132i 0.212321 + 0.0689872i
\(698\) 0.948743 1.30583i 0.0359105 0.0494265i
\(699\) −9.99096 7.25886i −0.377893 0.274555i
\(700\) 0 0
\(701\) −14.0465 43.2306i −0.530528 1.63280i −0.753119 0.657884i \(-0.771452\pi\)
0.222591 0.974912i \(-0.428548\pi\)
\(702\) 0.354502 + 0.487931i 0.0133798 + 0.0184158i
\(703\) 9.05904i 0.341668i
\(704\) 4.62398 25.4224i 0.174273 0.958143i
\(705\) 0 0
\(706\) 1.72557 1.25370i 0.0649428 0.0471837i
\(707\) −40.1692 + 13.0518i −1.51072 + 0.490862i
\(708\) 19.6330 + 6.37915i 0.737853 + 0.239743i
\(709\) −11.3458 8.24318i −0.426099 0.309579i 0.353988 0.935250i \(-0.384825\pi\)
−0.780087 + 0.625671i \(0.784825\pi\)
\(710\) 0 0
\(711\) 2.96444 9.12360i 0.111175 0.342162i
\(712\) −4.70941 + 1.53018i −0.176493 + 0.0573460i
\(713\) 5.73976 + 7.90010i 0.214956 + 0.295861i
\(714\) −2.09327 −0.0783388
\(715\) 0 0
\(716\) 5.10622 0.190829
\(717\) −19.5640 26.9275i −0.730630 1.00563i
\(718\) 1.42957 0.464497i 0.0533512 0.0173349i
\(719\) −4.05999 + 12.4954i −0.151412 + 0.465998i −0.997780 0.0666007i \(-0.978785\pi\)
0.846368 + 0.532599i \(0.178785\pi\)
\(720\) 0 0
\(721\) 50.9383 + 37.0088i 1.89704 + 1.37828i
\(722\) −1.60297 0.520835i −0.0596562 0.0193835i
\(723\) −16.1904 + 5.26057i −0.602126 + 0.195643i
\(724\) −21.6140 + 15.7035i −0.803279 + 0.583616i
\(725\) 0 0
\(726\) −0.941597 + 1.17879i −0.0349459 + 0.0437491i
\(727\) 18.3635i 0.681063i 0.940233 + 0.340532i \(0.110607\pi\)
−0.940233 + 0.340532i \(0.889393\pi\)
\(728\) −1.13406 1.56090i −0.0420312 0.0578509i
\(729\) −9.17943 28.2514i −0.339979 1.04635i
\(730\) 0 0
\(731\) 0.717839 + 0.521540i 0.0265502 + 0.0192899i
\(732\) 4.29598 5.91290i 0.158784 0.218547i
\(733\) −35.1869 11.4329i −1.29966 0.422284i −0.424195 0.905571i \(-0.639443\pi\)
−0.875462 + 0.483287i \(0.839443\pi\)
\(734\) −0.635642 1.95631i −0.0234620 0.0722086i
\(735\) 0 0
\(736\) −6.08282 −0.224216
\(737\) −1.18354 1.23888i −0.0435964 0.0456348i
\(738\) 0.138666i 0.00510435i
\(739\) 7.96909 5.78988i 0.293148 0.212984i −0.431484 0.902121i \(-0.642010\pi\)
0.724632 + 0.689136i \(0.242010\pi\)
\(740\) 0 0
\(741\) −3.15105 + 9.69793i −0.115757 + 0.356262i
\(742\) 0.358046 0.492808i 0.0131443 0.0180915i
\(743\) 16.1330 22.2052i 0.591862 0.814629i −0.403071 0.915169i \(-0.632057\pi\)
0.994933 + 0.100540i \(0.0320571\pi\)
\(744\) 0.302951 0.932388i 0.0111067 0.0341830i
\(745\) 0 0
\(746\) 1.53272 1.11359i 0.0561170 0.0407714i
\(747\) 3.80291i 0.139141i
\(748\) −21.9180 3.98658i −0.801401 0.145764i
\(749\) 75.9591 2.77549
\(750\) 0 0
\(751\) 4.24232 + 13.0565i 0.154804 + 0.476439i 0.998141 0.0609469i \(-0.0194120\pi\)
−0.843337 + 0.537385i \(0.819412\pi\)
\(752\) −25.9982 8.44732i −0.948056 0.308042i
\(753\) 2.85626 3.93131i 0.104088 0.143265i
\(754\) −0.287039 0.208546i −0.0104533 0.00759479i
\(755\) 0 0
\(756\) 15.7162 + 48.3694i 0.571592 + 1.75918i
\(757\) −13.4779 18.5507i −0.489861 0.674236i 0.490501 0.871440i \(-0.336814\pi\)
−0.980362 + 0.197205i \(0.936814\pi\)
\(758\) 0.348578i 0.0126609i
\(759\) −23.3524 12.5785i −0.847640 0.456571i
\(760\) 0 0
\(761\) 16.7319 12.1565i 0.606533 0.440672i −0.241659 0.970361i \(-0.577692\pi\)
0.848192 + 0.529689i \(0.177692\pi\)
\(762\) 2.57786 0.837599i 0.0933861 0.0303430i
\(763\) −15.7189 5.10737i −0.569061 0.184899i
\(764\) −29.3031 21.2899i −1.06015 0.770243i
\(765\) 0 0
\(766\) −0.317783 + 0.978034i −0.0114819 + 0.0353378i
\(767\) 7.68046 2.49553i 0.277325 0.0901084i
\(768\) −13.1948 18.1611i −0.476128 0.655334i
\(769\) −38.4306 −1.38584 −0.692922 0.721013i \(-0.743677\pi\)
−0.692922 + 0.721013i \(0.743677\pi\)
\(770\) 0 0
\(771\) −39.3768 −1.41812
\(772\) −18.3625 25.2738i −0.660880 0.909624i
\(773\) −47.4964 + 15.4325i −1.70833 + 0.555069i −0.990053 0.140693i \(-0.955067\pi\)
−0.718272 + 0.695762i \(0.755067\pi\)
\(774\) −0.00645085 + 0.0198537i −0.000231871 + 0.000713626i
\(775\) 0 0
\(776\) −1.01349 0.736341i −0.0363821 0.0264331i
\(777\) −9.39654 3.05312i −0.337099 0.109530i
\(778\) −0.834389 + 0.271109i −0.0299143 + 0.00971975i
\(779\) −8.60121 + 6.24914i −0.308170 + 0.223899i
\(780\) 0 0
\(781\) −35.2681 + 4.76305i −1.26199 + 0.170435i
\(782\) 1.71991i 0.0615037i
\(783\) 11.0187 + 15.1659i 0.393776 + 0.541986i
\(784\) −16.4334 50.5767i −0.586906 1.80631i
\(785\) 0 0
\(786\) 0.214684 + 0.155977i 0.00765751 + 0.00556351i
\(787\) 9.14241 12.5834i 0.325892 0.448551i −0.614363 0.789024i \(-0.710587\pi\)
0.940255 + 0.340472i \(0.110587\pi\)
\(788\) 41.3769 + 13.4442i 1.47399 + 0.478928i
\(789\) −5.51518 16.9740i −0.196346 0.604290i
\(790\) 0 0
\(791\) −53.8524 −1.91477
\(792\) −0.140603 1.04110i −0.00499610 0.0369938i
\(793\) 2.85919i 0.101533i
\(794\) 1.68805 1.22644i 0.0599067 0.0435248i
\(795\) 0 0
\(796\) 2.80099 8.62057i 0.0992786 0.305548i
\(797\) −27.1009 + 37.3012i −0.959962 + 1.32127i −0.0130049 + 0.999915i \(0.504140\pi\)
−0.946957 + 0.321359i \(0.895860\pi\)
\(798\) 2.21944 3.05480i 0.0785674 0.108139i
\(799\) −7.21821 + 22.2154i −0.255362 + 0.785923i
\(800\) 0 0
\(801\) 9.10970 6.61858i 0.321875 0.233856i
\(802\) 2.30803i 0.0814994i
\(803\) 16.9798 8.16868i 0.599203 0.288266i
\(804\) −1.50879 −0.0532111
\(805\) 0 0
\(806\) −0.0591277 0.181976i −0.00208268 0.00640984i
\(807\) 2.92033 + 0.948873i 0.102801 + 0.0334019i
\(808\) 2.04786 2.81863i 0.0720433 0.0991591i
\(809\) −30.3700 22.0651i −1.06775 0.775767i −0.0922454 0.995736i \(-0.529404\pi\)
−0.975507 + 0.219969i \(0.929404\pi\)
\(810\) 0 0
\(811\) 2.22661 + 6.85281i 0.0781870 + 0.240635i 0.982509 0.186217i \(-0.0596227\pi\)
−0.904322 + 0.426852i \(0.859623\pi\)
\(812\) −17.5859 24.2050i −0.617146 0.849428i
\(813\) 22.2104i 0.778953i
\(814\) 0.406514 + 0.218964i 0.0142483 + 0.00767468i
\(815\) 0 0
\(816\) −15.8011 + 11.4802i −0.553150 + 0.401887i
\(817\) −1.52221 + 0.494596i −0.0532554 + 0.0173037i
\(818\) 2.62402 + 0.852597i 0.0917469 + 0.0298104i
\(819\) 3.54946 + 2.57883i 0.124028 + 0.0901117i
\(820\) 0 0
\(821\) −2.66807 + 8.21147i −0.0931163 + 0.286582i −0.986758 0.162198i \(-0.948142\pi\)
0.893642 + 0.448781i \(0.148142\pi\)
\(822\) −1.63512 + 0.531284i −0.0570315 + 0.0185306i
\(823\) 14.7017 + 20.2352i 0.512470 + 0.705354i 0.984333 0.176318i \(-0.0564186\pi\)
−0.471864 + 0.881672i \(0.656419\pi\)
\(824\) −5.19375 −0.180933
\(825\) 0 0
\(826\) −2.99042 −0.104050
\(827\) 28.7265 + 39.5387i 0.998919 + 1.37489i 0.925986 + 0.377558i \(0.123236\pi\)
0.0729332 + 0.997337i \(0.476764\pi\)
\(828\) 8.76373 2.84751i 0.304561 0.0989577i
\(829\) −1.63522 + 5.03270i −0.0567937 + 0.174793i −0.975429 0.220313i \(-0.929292\pi\)
0.918636 + 0.395106i \(0.129292\pi\)
\(830\) 0 0
\(831\) −9.81405 7.13033i −0.340446 0.247348i
\(832\) −8.46589 2.75073i −0.293502 0.0953645i
\(833\) −43.2177 + 14.0423i −1.49740 + 0.486536i
\(834\) −1.24775 + 0.906543i −0.0432060 + 0.0313910i
\(835\) 0 0
\(836\) 29.0568 27.7590i 1.00495 0.960064i
\(837\) 10.1097i 0.349441i
\(838\) −0.496633 0.683556i −0.0171559 0.0236131i
\(839\) 4.09196 + 12.5938i 0.141270 + 0.434785i 0.996513 0.0834435i \(-0.0265918\pi\)
−0.855242 + 0.518228i \(0.826592\pi\)
\(840\) 0 0
\(841\) 14.5397 + 10.5637i 0.501369 + 0.364266i
\(842\) −0.781592 + 1.07577i −0.0269354 + 0.0370734i
\(843\) 3.41375 + 1.10919i 0.117576 + 0.0382026i
\(844\) 11.6670 + 35.9072i 0.401593 + 1.23598i
\(845\) 0 0
\(846\) −0.549557 −0.0188942
\(847\) −17.5251 + 46.5822i −0.602168 + 1.60058i
\(848\) 5.68361i 0.195176i
\(849\) 30.9643 22.4969i 1.06269 0.772092i
\(850\) 0 0
\(851\) −2.50855 + 7.72053i −0.0859920 + 0.264656i
\(852\) −18.4208 + 25.3540i −0.631085 + 0.868614i
\(853\) 1.30421 1.79509i 0.0446552 0.0614626i −0.786106 0.618092i \(-0.787906\pi\)
0.830761 + 0.556630i \(0.187906\pi\)
\(854\) −0.327174 + 1.00694i −0.0111956 + 0.0344567i
\(855\) 0 0
\(856\) −5.06911 + 3.68292i −0.173259 + 0.125880i
\(857\) 31.4625i 1.07474i −0.843348 0.537368i \(-0.819418\pi\)
0.843348 0.537368i \(-0.180582\pi\)
\(858\) 0.359020 + 0.375806i 0.0122567 + 0.0128298i
\(859\) −9.07676 −0.309695 −0.154848 0.987938i \(-0.549489\pi\)
−0.154848 + 0.987938i \(0.549489\pi\)
\(860\) 0 0
\(861\) −3.58314 11.0278i −0.122113 0.375826i
\(862\) 0.153993 + 0.0500352i 0.00524501 + 0.00170421i
\(863\) 24.9716 34.3704i 0.850042 1.16998i −0.133811 0.991007i \(-0.542721\pi\)
0.983853 0.178976i \(-0.0572785\pi\)
\(864\) −5.09477 3.70157i −0.173328 0.125930i
\(865\) 0 0
\(866\) 0.533065 + 1.64060i 0.0181143 + 0.0557500i
\(867\) −4.84632 6.67038i −0.164590 0.226538i
\(868\) 16.1351i 0.547662i
\(869\) 6.70865 36.8838i 0.227575 1.25120i
\(870\) 0 0
\(871\) −0.477516 + 0.346936i −0.0161800 + 0.0117555i
\(872\) 1.29663 0.421300i 0.0439094 0.0142670i
\(873\) 2.70927 + 0.880296i 0.0916950 + 0.0297935i
\(874\) −2.50993 1.82357i −0.0848996 0.0616832i
\(875\) 0 0
\(876\) 5.12746 15.7807i 0.173241 0.533181i
\(877\) −29.7777 + 9.67537i −1.00552 + 0.326714i −0.765070 0.643947i \(-0.777296\pi\)
−0.240452 + 0.970661i \(0.577296\pi\)
\(878\) 0.943750 + 1.29896i 0.0318500 + 0.0438378i
\(879\) −19.7319 −0.665539
\(880\) 0 0
\(881\) 21.5189 0.724990 0.362495 0.931986i \(-0.381925\pi\)
0.362495 + 0.931986i \(0.381925\pi\)
\(882\) −0.628405 0.864925i −0.0211595 0.0291235i
\(883\) 0.620614 0.201650i 0.0208853 0.00678605i −0.298556 0.954392i \(-0.596505\pi\)
0.319441 + 0.947606i \(0.396505\pi\)
\(884\) −2.37155 + 7.29889i −0.0797639 + 0.245488i
\(885\) 0 0
\(886\) −2.76877 2.01163i −0.0930187 0.0675820i
\(887\) 13.9294 + 4.52593i 0.467702 + 0.151966i 0.533381 0.845875i \(-0.320921\pi\)
−0.0656786 + 0.997841i \(0.520921\pi\)
\(888\) 0.775108 0.251848i 0.0260109 0.00845146i
\(889\) 72.3396 52.5578i 2.42619 1.76273i
\(890\) 0 0
\(891\) −8.24400 17.1364i −0.276184 0.574089i
\(892\) 9.71637i 0.325328i
\(893\) −24.7665 34.0882i −0.828780 1.14072i
\(894\) 0.734651 + 2.26102i 0.0245704 + 0.0756199i
\(895\) 0 0
\(896\) 10.8337 + 7.87116i 0.361929 + 0.262957i
\(897\) −5.37094 + 7.39246i −0.179330 + 0.246827i
\(898\) −1.47655 0.479760i −0.0492731 0.0160098i
\(899\) −1.83782 5.65622i −0.0612946 0.188645i
\(900\) 0 0
\(901\) −4.85662 −0.161798
\(902\) 0.0725252 + 0.537016i 0.00241483 + 0.0178807i
\(903\) 1.74561i 0.0580903i
\(904\) 3.59382 2.61107i 0.119529 0.0868428i
\(905\) 0 0
\(906\) −0.000229044 0 0.000704924i −7.60946e−6 0 2.34195e-5i
\(907\) −16.8959 + 23.2552i −0.561018 + 0.772175i −0.991456 0.130445i \(-0.958359\pi\)
0.430437 + 0.902620i \(0.358359\pi\)
\(908\) −19.1048 + 26.2955i −0.634014 + 0.872645i
\(909\) −2.44821 + 7.53482i −0.0812020 + 0.249914i
\(910\) 0 0
\(911\) −13.9813 + 10.1580i −0.463222 + 0.336550i −0.794794 0.606880i \(-0.792421\pi\)
0.331572 + 0.943430i \(0.392421\pi\)
\(912\) 35.2313i 1.16663i
\(913\) 1.98901 + 14.7277i 0.0658266 + 0.487416i
\(914\) 2.96102 0.0979418
\(915\) 0 0
\(916\) 2.97308 + 9.15020i 0.0982333 + 0.302331i
\(917\) 8.32554 + 2.70513i 0.274933 + 0.0893313i
\(918\) −1.04661 + 1.44054i −0.0345433 + 0.0475448i
\(919\) −1.77859 1.29222i −0.0586701 0.0426263i 0.558064 0.829798i \(-0.311544\pi\)
−0.616734 + 0.787172i \(0.711544\pi\)
\(920\) 0 0
\(921\) 12.3212 + 37.9208i 0.405997 + 1.24953i
\(922\) −1.39801 1.92419i −0.0460409 0.0633699i
\(923\) 12.2600i 0.403542i
\(924\) 19.0003 + 39.4948i 0.625063 + 1.29928i
\(925\) 0 0
\(926\) 1.23552 0.897661i 0.0406019 0.0294990i
\(927\) 11.2324 3.64963i 0.368921 0.119870i
\(928\) 3.52335 + 1.14481i 0.115660 + 0.0375801i
\(929\) 19.5866 + 14.2305i 0.642616 + 0.466888i 0.860748 0.509031i \(-0.169996\pi\)
−0.218132 + 0.975919i \(0.569996\pi\)
\(930\) 0 0
\(931\) 25.3301 77.9579i 0.830159 2.55497i
\(932\) 15.9453 5.18094i 0.522305 0.169707i
\(933\) 11.3792 + 15.6621i 0.372538 + 0.512754i
\(934\) −0.797556 −0.0260968
\(935\) 0 0
\(936\) −0.361908 −0.0118293
\(937\) −12.2393 16.8459i −0.399840 0.550333i 0.560864 0.827908i \(-0.310469\pi\)
−0.960704 + 0.277575i \(0.910469\pi\)
\(938\) 0.207869 0.0675407i 0.00678716 0.00220528i
\(939\) −7.32984 + 22.5589i −0.239200 + 0.736183i
\(940\) 0 0
\(941\) −27.6787 20.1098i −0.902301 0.655560i 0.0367552 0.999324i \(-0.488298\pi\)
−0.939056 + 0.343764i \(0.888298\pi\)
\(942\) −0.0723736 0.0235156i −0.00235806 0.000766180i
\(943\) −9.06080 + 2.94403i −0.295060 + 0.0958709i
\(944\) −22.5733 + 16.4004i −0.734697 + 0.533789i
\(945\) 0 0
\(946\) −0.0145986 + 0.0802621i −0.000474640 + 0.00260955i
\(947\) 33.8128i 1.09877i −0.835570 0.549383i \(-0.814863\pi\)
0.835570 0.549383i \(-0.185137\pi\)
\(948\) −19.4045 26.7081i −0.630230 0.867438i
\(949\) −2.00587 6.17344i −0.0651133 0.200398i
\(950\) 0 0
\(951\) 6.38533 + 4.63921i 0.207058 + 0.150437i
\(952\) 3.34814 4.60832i 0.108514 0.149356i
\(953\) 24.3453 + 7.91027i 0.788622 + 0.256239i 0.675517 0.737344i \(-0.263920\pi\)
0.113105 + 0.993583i \(0.463920\pi\)
\(954\) −0.0353088 0.108669i −0.00114316 0.00351830i
\(955\) 0 0
\(956\) 45.1871 1.46146
\(957\) 11.1591 + 11.6809i 0.360723 + 0.377589i
\(958\) 2.80042i 0.0904774i
\(959\) −45.8845 + 33.3371i −1.48169 + 1.07651i
\(960\) 0 0
\(961\) −8.58840 + 26.4324i −0.277045 + 0.852658i
\(962\) 0.0934959 0.128686i 0.00301443 0.00414901i
\(963\) 8.37488 11.5270i 0.269877 0.371454i
\(964\) 7.14182 21.9803i 0.230023 0.707937i
\(965\) 0 0
\(966\) 2.73742 1.98885i 0.0880750 0.0639902i
\(967\) 43.8942i 1.41154i −0.708439 0.705772i \(-0.750600\pi\)
0.708439 0.705772i \(-0.249400\pi\)
\(968\) −1.08904 3.95836i −0.0350029 0.127227i
\(969\) −30.1051 −0.967114
\(970\) 0 0
\(971\) 11.2392 + 34.5906i 0.360682 + 1.11006i 0.952641 + 0.304097i \(0.0983547\pi\)
−0.591959 + 0.805968i \(0.701645\pi\)
\(972\) 16.1453 + 5.24591i 0.517860 + 0.168263i
\(973\) −29.9056 + 41.1616i −0.958730 + 1.31958i
\(974\) −1.48299 1.07746i −0.0475182 0.0345240i
\(975\) 0 0
\(976\) 3.05269 + 9.39520i 0.0977141 + 0.300733i
\(977\) 6.08452 + 8.37462i 0.194661 + 0.267928i 0.895179 0.445707i \(-0.147048\pi\)
−0.700518 + 0.713635i \(0.747048\pi\)
\(978\) 1.09233i 0.0349289i
\(979\) 31.8178 30.3966i 1.01690 0.971481i
\(980\) 0 0
\(981\) −2.50814 + 1.82227i −0.0800789 + 0.0581807i
\(982\) −1.40418 + 0.456245i −0.0448091 + 0.0145594i
\(983\) −21.0334 6.83416i −0.670861 0.217976i −0.0462712 0.998929i \(-0.514734\pi\)
−0.624590 + 0.780953i \(0.714734\pi\)
\(984\) 0.773808 + 0.562205i 0.0246681 + 0.0179224i
\(985\) 0 0
\(986\) 0.323692 0.996222i 0.0103085 0.0317262i
\(987\) 43.7051 14.2006i 1.39115 0.452012i
\(988\) −8.13707 11.1997i −0.258875 0.356310i
\(989\) −1.43426 −0.0456067
\(990\) 0 0
\(991\) −55.5911 −1.76591 −0.882955 0.469457i \(-0.844450\pi\)
−0.882955 + 0.469457i \(0.844450\pi\)
\(992\) 1.17434 + 1.61634i 0.0372853 + 0.0513189i
\(993\) 25.9044 8.41687i 0.822053 0.267101i
\(994\) 1.40289 4.31765i 0.0444970 0.136948i
\(995\) 0 0
\(996\) 10.5876 + 7.69236i 0.335482 + 0.243742i
\(997\) −10.2630 3.33465i −0.325032 0.105609i 0.141956 0.989873i \(-0.454661\pi\)
−0.466988 + 0.884264i \(0.654661\pi\)
\(998\) −0.996775 + 0.323872i −0.0315524 + 0.0102520i
\(999\) −6.79924 + 4.93994i −0.215118 + 0.156293i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.z.b.124.3 16
5.2 odd 4 55.2.g.a.36.2 yes 8
5.3 odd 4 275.2.h.b.201.1 8
5.4 even 2 inner 275.2.z.b.124.2 16
11.4 even 5 inner 275.2.z.b.224.2 16
15.2 even 4 495.2.n.f.91.1 8
20.7 even 4 880.2.bo.e.641.1 8
55.2 even 20 605.2.a.i.1.3 4
55.4 even 10 inner 275.2.z.b.224.3 16
55.7 even 20 605.2.g.n.81.1 8
55.13 even 20 3025.2.a.be.1.2 4
55.17 even 20 605.2.g.g.251.2 8
55.27 odd 20 605.2.g.j.251.1 8
55.32 even 4 605.2.g.n.366.1 8
55.37 odd 20 55.2.g.a.26.2 8
55.42 odd 20 605.2.a.l.1.2 4
55.47 odd 20 605.2.g.j.511.1 8
55.48 odd 20 275.2.h.b.26.1 8
55.52 even 20 605.2.g.g.511.2 8
55.53 odd 20 3025.2.a.v.1.3 4
165.2 odd 20 5445.2.a.bu.1.2 4
165.92 even 20 495.2.n.f.136.1 8
165.152 even 20 5445.2.a.bg.1.3 4
220.147 even 20 880.2.bo.e.81.1 8
220.167 odd 20 9680.2.a.cv.1.1 4
220.207 even 20 9680.2.a.cs.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.g.a.26.2 8 55.37 odd 20
55.2.g.a.36.2 yes 8 5.2 odd 4
275.2.h.b.26.1 8 55.48 odd 20
275.2.h.b.201.1 8 5.3 odd 4
275.2.z.b.124.2 16 5.4 even 2 inner
275.2.z.b.124.3 16 1.1 even 1 trivial
275.2.z.b.224.2 16 11.4 even 5 inner
275.2.z.b.224.3 16 55.4 even 10 inner
495.2.n.f.91.1 8 15.2 even 4
495.2.n.f.136.1 8 165.92 even 20
605.2.a.i.1.3 4 55.2 even 20
605.2.a.l.1.2 4 55.42 odd 20
605.2.g.g.251.2 8 55.17 even 20
605.2.g.g.511.2 8 55.52 even 20
605.2.g.j.251.1 8 55.27 odd 20
605.2.g.j.511.1 8 55.47 odd 20
605.2.g.n.81.1 8 55.7 even 20
605.2.g.n.366.1 8 55.32 even 4
880.2.bo.e.81.1 8 220.147 even 20
880.2.bo.e.641.1 8 20.7 even 4
3025.2.a.v.1.3 4 55.53 odd 20
3025.2.a.be.1.2 4 55.13 even 20
5445.2.a.bg.1.3 4 165.152 even 20
5445.2.a.bu.1.2 4 165.2 odd 20
9680.2.a.cs.1.1 4 220.207 even 20
9680.2.a.cv.1.1 4 220.167 odd 20