gp: [N,k,chi] = [275,2,Mod(31,275)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("275.31");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(275, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([4, 6]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [100,2,-2]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(275, [\chi])\):
\( T_{2}^{50} - T_{2}^{49} - 76 T_{2}^{48} + 80 T_{2}^{47} + 2697 T_{2}^{46} - 2975 T_{2}^{45} + \cdots + 2299 \)
T2^50 - T2^49 - 76*T2^48 + 80*T2^47 + 2697*T2^46 - 2975*T2^45 - 59367*T2^44 + 68347*T2^43 + 908272*T2^42 - 1087289*T2^41 - 10256891*T2^40 + 12723210*T2^39 + 88630801*T2^38 - 113549540*T2^37 - 599606527*T2^36 + 790818518*T2^35 + 3223308691*T2^34 - 4361841965*T2^33 - 13898701011*T2^32 + 19227100874*T2^31 + 48335096271*T2^30 - 68064082690*T2^29 - 135909152774*T2^28 + 193770090839*T2^27 + 309024682833*T2^26 - 442875778904*T2^25 - 567216488767*T2^24 + 808835539044*T2^23 + 837811390159*T2^22 - 1171104395595*T2^21 - 991627052832*T2^20 + 1328826686456*T2^19 + 935608492990*T2^18 - 1162676660520*T2^17 - 698874785654*T2^16 + 767012320898*T2^15 + 408774520570*T2^14 - 369452869489*T2^13 - 183417214407*T2^12 + 123768746944*T2^11 + 60740345774*T2^10 - 26561424063*T2^9 - 13857369594*T2^8 + 3070886466*T2^7 + 1929992449*T2^6 - 93749905*T2^5 - 128497915*T2^4 - 9527350*T2^3 + 1547936*T2^2 + 150282*T2 + 2299
\( T_{3}^{100} + 2 T_{3}^{99} + 52 T_{3}^{98} + 102 T_{3}^{97} + 1505 T_{3}^{96} + 2930 T_{3}^{95} + \cdots + 202471413270025 \)
T3^100 + 2*T3^99 + 52*T3^98 + 102*T3^97 + 1505*T3^96 + 2930*T3^95 + 32304*T3^94 + 62606*T3^93 + 576450*T3^92 + 1109555*T3^91 + 8842286*T3^90 + 16791950*T3^89 + 118377984*T3^88 + 220153747*T3^87 + 1403711157*T3^86 + 2540432542*T3^85 + 14944333290*T3^84 + 26186341435*T3^83 + 143790775173*T3^82 + 242556504319*T3^81 + 1255102351219*T3^80 + 2023058595897*T3^79 + 9975174209137*T3^78 + 15235288455409*T3^77 + 72445093191587*T3^76 + 103888426036338*T3^75 + 481406190179021*T3^74 + 640402632221856*T3^73 + 2929163535587456*T3^72 + 3554377341677475*T3^71 + 16337488237027043*T3^70 + 17718598327884382*T3^69 + 83718415400638714*T3^68 + 79170139864082334*T3^67 + 395018427072330984*T3^66 + 314433818386673979*T3^65 + 1720362779962511530*T3^64 + 1091421407477169805*T3^63 + 6924337498966072681*T3^62 + 3223795724895181558*T3^61 + 25830189077192981279*T3^60 + 7567878544685561531*T3^59 + 89621345820495977176*T3^58 + 10902433016410776975*T3^57 + 289516198798234574164*T3^56 - 12123524581775605319*T3^55 + 869964678491265342356*T3^54 - 166284936303366823397*T3^53 + 2429400361577075821467*T3^52 - 780636323250136395870*T3^51 + 6289447323250061614478*T3^50 - 2684297216738502864774*T3^49 + 15003976311252387386309*T3^48 - 7564429638594597126138*T3^47 + 32754514790639796375650*T3^46 - 18123315792225282880715*T3^45 + 65089478510837349097619*T3^44 - 37503919216193573436219*T3^43 + 116992025246300137069115*T3^42 - 66998576810262887308530*T3^41 + 188154428523302529879912*T3^40 - 101917993772365150062488*T3^39 + 267612481762304024465611*T3^38 - 129335507415697117806191*T3^37 + 335063911123558032744467*T3^36 - 135437447962692499990348*T3^35 + 371426491622519610453214*T3^34 - 116901293700054436762689*T3^33 + 368777461562318373942268*T3^32 - 81772170276345983498216*T3^31 + 329895273573334033265528*T3^30 - 40393480614802034188132*T3^29 + 265190935837235360250302*T3^28 - 5622383760353430151348*T3^27 + 190390834689615729201379*T3^26 + 13303848083756130126195*T3^25 + 122484439011079671797288*T3^24 + 17247072645634753726459*T3^23 + 70178786312661118029679*T3^22 + 13841417829790773650744*T3^21 + 34790747719391570202538*T3^20 + 7526771912928236417005*T3^19 + 13979160080274031209579*T3^18 + 2647046266530452674090*T3^17 + 4428510914981637049737*T3^16 + 585773947390730520513*T3^15 + 1113960957970406249543*T3^14 + 104398116478248785494*T3^13 + 233815879001683328736*T3^12 + 25113521765287703740*T3^11 + 38962924422908018766*T3^10 + 5628376020881642077*T3^9 + 5246213287680962011*T3^8 + 801221627124015670*T3^7 + 584581872336647645*T3^6 + 83494325139708835*T3^5 + 63695051349344410*T3^4 + 11457185645293400*T3^3 + 3803453906254750*T3^2 + 760292394335375*T3 + 202471413270025