Properties

Label 275.2.l
Level $275$
Weight $2$
Character orbit 275.l
Rep. character $\chi_{275}(31,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $112$
Newform subspaces $4$
Sturm bound $60$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.l (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 275 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 4 \)
Sturm bound: \(60\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(275, [\chi])\).

Total New Old
Modular forms 128 128 0
Cusp forms 112 112 0
Eisenstein series 16 16 0

Trace form

\( 112 q - 6 q^{2} - 4 q^{3} + 98 q^{4} + q^{6} - 9 q^{7} - 18 q^{8} - 28 q^{9} - 12 q^{10} - q^{11} - 42 q^{12} - 13 q^{13} - 3 q^{14} + 16 q^{15} + 46 q^{16} - 2 q^{17} - 21 q^{18} - 30 q^{19} + q^{20}+ \cdots - 63 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(275, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
275.2.l.a 275.l 275.l $4$ $2.196$ \(\Q(\zeta_{10})\) None 275.2.k.c \(-4\) \(-5\) \(-5\) \(-10\) $\mathrm{SU}(2)[C_{5}]$ \(q-q^{2}+(-1-\zeta_{10}+\zeta_{10}^{2}+\zeta_{10}^{3})q^{3}+\cdots\)
275.2.l.b 275.l 275.l $4$ $2.196$ \(\Q(\zeta_{10})\) None 275.2.k.b \(-2\) \(-1\) \(-5\) \(-2\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-1-\zeta_{10}^{2}+\zeta_{10}^{3})q^{2}+(1-2\zeta_{10}+\cdots)q^{3}+\cdots\)
275.2.l.c 275.l 275.l $4$ $2.196$ \(\Q(\zeta_{10})\) None 275.2.k.a \(-2\) \(4\) \(5\) \(-2\) $\mathrm{SU}(2)[C_{5}]$ \(q+(-1-\zeta_{10}^{2}+\zeta_{10}^{3})q^{2}+(2-\zeta_{10}+\cdots)q^{3}+\cdots\)
275.2.l.d 275.l 275.l $100$ $2.196$ None 275.2.k.d \(2\) \(-2\) \(5\) \(5\) $\mathrm{SU}(2)[C_{5}]$