Defining parameters
| Level: | \( N \) | \(=\) | \( 275 = 5^{2} \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 275.l (of order \(5\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 275 \) |
| Character field: | \(\Q(\zeta_{5})\) | ||
| Newform subspaces: | \( 4 \) | ||
| Sturm bound: | \(60\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(275, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 128 | 128 | 0 |
| Cusp forms | 112 | 112 | 0 |
| Eisenstein series | 16 | 16 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(275, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 275.2.l.a | $4$ | $2.196$ | \(\Q(\zeta_{10})\) | None | \(-4\) | \(-5\) | \(-5\) | \(-10\) | \(q-q^{2}+(-1-\zeta_{10}+\zeta_{10}^{2}+\zeta_{10}^{3})q^{3}+\cdots\) |
| 275.2.l.b | $4$ | $2.196$ | \(\Q(\zeta_{10})\) | None | \(-2\) | \(-1\) | \(-5\) | \(-2\) | \(q+(-1-\zeta_{10}^{2}+\zeta_{10}^{3})q^{2}+(1-2\zeta_{10}+\cdots)q^{3}+\cdots\) |
| 275.2.l.c | $4$ | $2.196$ | \(\Q(\zeta_{10})\) | None | \(-2\) | \(4\) | \(5\) | \(-2\) | \(q+(-1-\zeta_{10}^{2}+\zeta_{10}^{3})q^{2}+(2-\zeta_{10}+\cdots)q^{3}+\cdots\) |
| 275.2.l.d | $100$ | $2.196$ | None | \(2\) | \(-2\) | \(5\) | \(5\) | ||