Properties

Label 275.2.k.a
Level $275$
Weight $2$
Character orbit 275.k
Analytic conductor $2.196$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,2,Mod(36,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.36"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([8, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.k (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2,-6,-2,-5,3,-2,-5,2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{10}^{3} + \zeta_{10} - 1) q^{2} + (\zeta_{10}^{3} - \zeta_{10}^{2} - 2) q^{3} + ( - \zeta_{10}^{2} + \zeta_{10} - 1) q^{4} + (\zeta_{10}^{3} + \zeta_{10}^{2} + \cdots - 1) q^{5} + ( - 3 \zeta_{10}^{3} - 2 \zeta_{10} + 2) q^{6}+ \cdots + ( - 8 \zeta_{10}^{3} + 3 \zeta_{10}^{2} + \cdots + 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 6 q^{3} - 2 q^{4} - 5 q^{5} + 3 q^{6} - 2 q^{7} - 5 q^{8} + 2 q^{9} - q^{11} + 3 q^{12} - 6 q^{13} - 4 q^{14} + 10 q^{15} - 6 q^{16} + 3 q^{17} - q^{18} - 5 q^{19} + 10 q^{20} + 3 q^{21}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(-\zeta_{10}^{3}\) \(-\zeta_{10}^{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
36.1
0.809017 + 0.587785i
−0.309017 + 0.951057i
0.809017 0.587785i
−0.309017 0.951057i
−0.500000 + 1.53884i −2.61803 −0.500000 0.363271i −1.80902 + 1.31433i 1.30902 4.02874i −0.500000 + 1.53884i −1.80902 + 1.31433i 3.85410 −1.11803 3.44095i
181.1 −0.500000 + 0.363271i −0.381966 −0.500000 + 1.53884i −0.690983 2.12663i 0.190983 0.138757i −0.500000 + 0.363271i −0.690983 2.12663i −2.85410 1.11803 + 0.812299i
191.1 −0.500000 1.53884i −2.61803 −0.500000 + 0.363271i −1.80902 1.31433i 1.30902 + 4.02874i −0.500000 1.53884i −1.80902 1.31433i 3.85410 −1.11803 + 3.44095i
196.1 −0.500000 0.363271i −0.381966 −0.500000 1.53884i −0.690983 + 2.12663i 0.190983 + 0.138757i −0.500000 0.363271i −0.690983 + 2.12663i −2.85410 1.11803 0.812299i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
275.k even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 275.2.k.a 4
11.c even 5 1 275.2.l.c yes 4
25.d even 5 1 275.2.l.c yes 4
275.k even 5 1 inner 275.2.k.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
275.2.k.a 4 1.a even 1 1 trivial
275.2.k.a 4 275.k even 5 1 inner
275.2.l.c yes 4 11.c even 5 1
275.2.l.c yes 4 25.d even 5 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(275, [\chi])\):

\( T_{2}^{4} + 2T_{2}^{3} + 4T_{2}^{2} + 3T_{2} + 1 \) Copy content Toggle raw display
\( T_{7}^{4} + 2T_{7}^{3} + 4T_{7}^{2} + 3T_{7} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( (T^{2} + 3 T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 5 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$7$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{4} + T^{3} + \cdots + 121 \) Copy content Toggle raw display
$13$ \( (T^{2} + 3 T - 9)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{4} + 5 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$23$ \( T^{4} + 11 T^{3} + \cdots + 841 \) Copy content Toggle raw display
$29$ \( T^{4} + 10 T^{3} + \cdots + 400 \) Copy content Toggle raw display
$31$ \( T^{4} + 2 T^{3} + \cdots + 361 \) Copy content Toggle raw display
$37$ \( T^{4} - 3 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$41$ \( T^{4} + 7 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$43$ \( (T^{2} + 13 T + 11)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + T - 61)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} - 4 T^{3} + \cdots + 5776 \) Copy content Toggle raw display
$59$ \( T^{4} + 15 T^{3} + \cdots + 2025 \) Copy content Toggle raw display
$61$ \( (T^{2} - 4 T - 16)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 12 T^{3} + \cdots + 1296 \) Copy content Toggle raw display
$71$ \( T^{4} - 3 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$73$ \( T^{4} + 11 T^{3} + \cdots + 14641 \) Copy content Toggle raw display
$79$ \( T^{4} + 25 T^{3} + \cdots + 9025 \) Copy content Toggle raw display
$83$ \( T^{4} + 6 T^{3} + \cdots + 1296 \) Copy content Toggle raw display
$89$ \( T^{4} - 5 T^{3} + \cdots + 625 \) Copy content Toggle raw display
$97$ \( T^{4} - 33 T^{3} + \cdots + 44521 \) Copy content Toggle raw display
show more
show less