Properties

Label 275.2.i
Level $275$
Weight $2$
Character orbit 275.i
Rep. character $\chi_{275}(56,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $104$
Newform subspaces $2$
Sturm bound $60$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.i (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 2 \)
Sturm bound: \(60\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(275, [\chi])\).

Total New Old
Modular forms 128 104 24
Cusp forms 112 104 8
Eisenstein series 16 0 16

Trace form

\( 104 q - 2 q^{2} - 2 q^{3} - 28 q^{4} + 12 q^{8} - 32 q^{9} - 12 q^{10} - 4 q^{11} + 12 q^{12} - 16 q^{13} - 20 q^{14} + 21 q^{15} - 32 q^{16} - 28 q^{17} - 4 q^{18} + 16 q^{20} - 12 q^{21} - 6 q^{23} - 28 q^{24}+ \cdots + 38 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(275, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
275.2.i.a 275.i 25.d $44$ $2.196$ None 275.2.i.a \(-1\) \(0\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{5}]$
275.2.i.b 275.i 25.d $60$ $2.196$ None 275.2.i.b \(-1\) \(-2\) \(6\) \(0\) $\mathrm{SU}(2)[C_{5}]$

Decomposition of \(S_{2}^{\mathrm{old}}(275, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(275, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)