Properties

Label 275.2.h.e.26.1
Level $275$
Weight $2$
Character 275.26
Analytic conductor $2.196$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,2,Mod(26,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.26"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.h (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 10 x^{14} - 13 x^{13} + 53 x^{12} - 12 x^{11} + 136 x^{10} + 8 x^{9} + 300 x^{8} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 26.1
Root \(-1.26407 + 0.918397i\) of defining polynomial
Character \(\chi\) \(=\) 275.26
Dual form 275.2.h.e.201.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.07308 - 1.50618i) q^{2} +(0.553942 - 1.70486i) q^{3} +(1.41105 + 4.34277i) q^{4} +(-3.71620 + 2.69998i) q^{6} +(1.17454 + 3.61485i) q^{7} +(2.03208 - 6.25410i) q^{8} +(-0.172643 - 0.125433i) q^{9} +(3.19489 + 0.890336i) q^{11} +8.18545 q^{12} +(3.63862 + 2.64361i) q^{13} +(3.00971 - 9.26295i) q^{14} +(-6.24414 + 4.53663i) q^{16} +(-4.05485 + 2.94602i) q^{17} +(0.168979 + 0.520065i) q^{18} +(-1.06936 + 3.29116i) q^{19} +6.81344 q^{21} +(-5.28226 - 6.65782i) q^{22} +0.105727 q^{23} +(-9.53671 - 6.92883i) q^{24} +(-3.56139 - 10.9608i) q^{26} +(4.04124 - 2.93613i) q^{27} +(-14.0411 + 10.2015i) q^{28} +(-0.726214 - 2.23506i) q^{29} +(-3.83900 - 2.78920i) q^{31} +6.62570 q^{32} +(3.28768 - 4.95364i) q^{33} +12.8433 q^{34} +(0.301117 - 0.926742i) q^{36} +(-1.73077 - 5.32675i) q^{37} +(7.17396 - 5.21219i) q^{38} +(6.52257 - 4.73892i) q^{39} +(0.283345 - 0.872045i) q^{41} +(-14.1248 - 10.2623i) q^{42} -4.46162 q^{43} +(0.641627 + 15.1310i) q^{44} +(-0.219181 - 0.159244i) q^{46} +(0.387384 - 1.19225i) q^{47} +(4.27543 + 13.1584i) q^{48} +(-6.02449 + 4.37704i) q^{49} +(2.77640 + 8.54487i) q^{51} +(-6.34631 + 19.5319i) q^{52} +(4.44847 + 3.23200i) q^{53} -12.8002 q^{54} +24.9944 q^{56} +(5.01860 + 3.64622i) q^{57} +(-1.86090 + 5.72727i) q^{58} +(-0.365582 - 1.12515i) q^{59} +(5.92690 - 4.30614i) q^{61} +(3.75752 + 11.5645i) q^{62} +(0.250645 - 0.771405i) q^{63} +(-1.24734 - 0.906248i) q^{64} +(-14.2767 + 5.31745i) q^{66} +7.84414 q^{67} +(-18.5155 - 13.4523i) q^{68} +(0.0585667 - 0.180250i) q^{69} +(1.76384 - 1.28150i) q^{71} +(-1.13529 + 0.824840i) q^{72} +(2.76651 + 8.51445i) q^{73} +(-4.43504 + 13.6496i) q^{74} -15.8017 q^{76} +(0.534080 + 12.5948i) q^{77} -20.6595 q^{78} +(-11.6357 - 8.45380i) q^{79} +(-2.96491 - 9.12506i) q^{81} +(-1.90086 + 1.38105i) q^{82} +(3.81162 - 2.76930i) q^{83} +(9.61410 + 29.5892i) q^{84} +(9.24930 + 6.72001i) q^{86} -4.21274 q^{87} +(12.0605 - 18.1719i) q^{88} -0.172993 q^{89} +(-5.28256 + 16.2581i) q^{91} +(0.149186 + 0.459148i) q^{92} +(-6.88177 + 4.99990i) q^{93} +(-2.59882 + 1.88815i) q^{94} +(3.67026 - 11.2959i) q^{96} +(3.60857 + 2.62178i) q^{97} +19.0819 q^{98} +(-0.439899 - 0.554454i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{3} - 2 q^{4} - 3 q^{6} - 4 q^{7} - 16 q^{8} + 8 q^{9} - 5 q^{11} + 6 q^{12} - 7 q^{13} + 3 q^{14} - 4 q^{16} - 12 q^{17} - 16 q^{18} - 13 q^{19} + 10 q^{21} - 28 q^{22} + 4 q^{23} - 43 q^{24}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.07308 1.50618i −1.46589 1.06503i −0.981779 0.190025i \(-0.939143\pi\)
−0.484111 0.875006i \(-0.660857\pi\)
\(3\) 0.553942 1.70486i 0.319819 0.984301i −0.653906 0.756575i \(-0.726871\pi\)
0.973725 0.227726i \(-0.0731290\pi\)
\(4\) 1.41105 + 4.34277i 0.705525 + 2.17138i
\(5\) 0 0
\(6\) −3.71620 + 2.69998i −1.51713 + 1.10226i
\(7\) 1.17454 + 3.61485i 0.443933 + 1.36628i 0.883650 + 0.468148i \(0.155079\pi\)
−0.439717 + 0.898136i \(0.644921\pi\)
\(8\) 2.03208 6.25410i 0.718449 2.21116i
\(9\) −0.172643 0.125433i −0.0575478 0.0418109i
\(10\) 0 0
\(11\) 3.19489 + 0.890336i 0.963295 + 0.268446i
\(12\) 8.18545 2.36294
\(13\) 3.63862 + 2.64361i 1.00917 + 0.733205i 0.964035 0.265776i \(-0.0856281\pi\)
0.0451354 + 0.998981i \(0.485628\pi\)
\(14\) 3.00971 9.26295i 0.804380 2.47563i
\(15\) 0 0
\(16\) −6.24414 + 4.53663i −1.56103 + 1.13416i
\(17\) −4.05485 + 2.94602i −0.983445 + 0.714515i −0.958476 0.285174i \(-0.907949\pi\)
−0.0249691 + 0.999688i \(0.507949\pi\)
\(18\) 0.168979 + 0.520065i 0.0398288 + 0.122580i
\(19\) −1.06936 + 3.29116i −0.245329 + 0.755044i 0.750254 + 0.661150i \(0.229931\pi\)
−0.995582 + 0.0938935i \(0.970069\pi\)
\(20\) 0 0
\(21\) 6.81344 1.48681
\(22\) −5.28226 6.65782i −1.12618 1.41945i
\(23\) 0.105727 0.0220456 0.0110228 0.999939i \(-0.496491\pi\)
0.0110228 + 0.999939i \(0.496491\pi\)
\(24\) −9.53671 6.92883i −1.94667 1.41434i
\(25\) 0 0
\(26\) −3.56139 10.9608i −0.698446 2.14960i
\(27\) 4.04124 2.93613i 0.777737 0.565059i
\(28\) −14.0411 + 10.2015i −2.65352 + 1.92790i
\(29\) −0.726214 2.23506i −0.134855 0.415040i 0.860713 0.509091i \(-0.170018\pi\)
−0.995567 + 0.0940512i \(0.970018\pi\)
\(30\) 0 0
\(31\) −3.83900 2.78920i −0.689504 0.500954i 0.186993 0.982361i \(-0.440126\pi\)
−0.876497 + 0.481407i \(0.840126\pi\)
\(32\) 6.62570 1.17127
\(33\) 3.28768 4.95364i 0.572312 0.862318i
\(34\) 12.8433 2.20260
\(35\) 0 0
\(36\) 0.301117 0.926742i 0.0501861 0.154457i
\(37\) −1.73077 5.32675i −0.284536 0.875713i −0.986537 0.163537i \(-0.947710\pi\)
0.702001 0.712176i \(-0.252290\pi\)
\(38\) 7.17396 5.21219i 1.16377 0.845528i
\(39\) 6.52257 4.73892i 1.04445 0.758835i
\(40\) 0 0
\(41\) 0.283345 0.872045i 0.0442510 0.136191i −0.926490 0.376319i \(-0.877190\pi\)
0.970741 + 0.240129i \(0.0771896\pi\)
\(42\) −14.1248 10.2623i −2.17951 1.58350i
\(43\) −4.46162 −0.680390 −0.340195 0.940355i \(-0.610493\pi\)
−0.340195 + 0.940355i \(0.610493\pi\)
\(44\) 0.641627 + 15.1310i 0.0967289 + 2.28108i
\(45\) 0 0
\(46\) −0.219181 0.159244i −0.0323165 0.0234793i
\(47\) 0.387384 1.19225i 0.0565058 0.173907i −0.918820 0.394676i \(-0.870857\pi\)
0.975326 + 0.220769i \(0.0708568\pi\)
\(48\) 4.27543 + 13.1584i 0.617105 + 1.89925i
\(49\) −6.02449 + 4.37704i −0.860641 + 0.625292i
\(50\) 0 0
\(51\) 2.77640 + 8.54487i 0.388773 + 1.19652i
\(52\) −6.34631 + 19.5319i −0.880074 + 2.70859i
\(53\) 4.44847 + 3.23200i 0.611044 + 0.443949i 0.849782 0.527135i \(-0.176734\pi\)
−0.238738 + 0.971084i \(0.576734\pi\)
\(54\) −12.8002 −1.74188
\(55\) 0 0
\(56\) 24.9944 3.34002
\(57\) 5.01860 + 3.64622i 0.664730 + 0.482954i
\(58\) −1.86090 + 5.72727i −0.244348 + 0.752027i
\(59\) −0.365582 1.12515i −0.0475947 0.146481i 0.924435 0.381340i \(-0.124537\pi\)
−0.972030 + 0.234859i \(0.924537\pi\)
\(60\) 0 0
\(61\) 5.92690 4.30614i 0.758861 0.551345i −0.139699 0.990194i \(-0.544614\pi\)
0.898561 + 0.438849i \(0.144614\pi\)
\(62\) 3.75752 + 11.5645i 0.477206 + 1.46869i
\(63\) 0.250645 0.771405i 0.0315783 0.0971879i
\(64\) −1.24734 0.906248i −0.155918 0.113281i
\(65\) 0 0
\(66\) −14.2767 + 5.31745i −1.75734 + 0.654533i
\(67\) 7.84414 0.958315 0.479157 0.877729i \(-0.340942\pi\)
0.479157 + 0.877729i \(0.340942\pi\)
\(68\) −18.5155 13.4523i −2.24533 1.63133i
\(69\) 0.0585667 0.180250i 0.00705060 0.0216995i
\(70\) 0 0
\(71\) 1.76384 1.28150i 0.209329 0.152086i −0.478181 0.878261i \(-0.658704\pi\)
0.687510 + 0.726175i \(0.258704\pi\)
\(72\) −1.13529 + 0.824840i −0.133796 + 0.0972083i
\(73\) 2.76651 + 8.51445i 0.323796 + 0.996541i 0.971981 + 0.235059i \(0.0755282\pi\)
−0.648185 + 0.761483i \(0.724472\pi\)
\(74\) −4.43504 + 13.6496i −0.515563 + 1.58674i
\(75\) 0 0
\(76\) −15.8017 −1.81257
\(77\) 0.534080 + 12.5948i 0.0608640 + 1.43531i
\(78\) −20.6595 −2.33923
\(79\) −11.6357 8.45380i −1.30911 0.951127i −1.00000 0.000102366i \(-0.999967\pi\)
−0.309114 0.951025i \(-0.600033\pi\)
\(80\) 0 0
\(81\) −2.96491 9.12506i −0.329435 1.01390i
\(82\) −1.90086 + 1.38105i −0.209914 + 0.152512i
\(83\) 3.81162 2.76930i 0.418380 0.303971i −0.358606 0.933489i \(-0.616748\pi\)
0.776986 + 0.629518i \(0.216748\pi\)
\(84\) 9.61410 + 29.5892i 1.04898 + 3.22844i
\(85\) 0 0
\(86\) 9.24930 + 6.72001i 0.997378 + 0.724637i
\(87\) −4.21274 −0.451653
\(88\) 12.0605 18.1719i 1.28566 1.93713i
\(89\) −0.172993 −0.0183372 −0.00916862 0.999958i \(-0.502919\pi\)
−0.00916862 + 0.999958i \(0.502919\pi\)
\(90\) 0 0
\(91\) −5.28256 + 16.2581i −0.553763 + 1.70431i
\(92\) 0.149186 + 0.459148i 0.0155537 + 0.0478695i
\(93\) −6.88177 + 4.99990i −0.713606 + 0.518465i
\(94\) −2.59882 + 1.88815i −0.268048 + 0.194748i
\(95\) 0 0
\(96\) 3.67026 11.2959i 0.374594 1.15288i
\(97\) 3.60857 + 2.62178i 0.366394 + 0.266201i 0.755714 0.654902i \(-0.227290\pi\)
−0.389320 + 0.921103i \(0.627290\pi\)
\(98\) 19.0819 1.92756
\(99\) −0.439899 0.554454i −0.0442115 0.0557247i
\(100\) 0 0
\(101\) −7.12354 5.17556i −0.708819 0.514987i 0.173973 0.984750i \(-0.444339\pi\)
−0.882793 + 0.469763i \(0.844339\pi\)
\(102\) 7.11444 21.8960i 0.704434 2.16803i
\(103\) −5.09074 15.6677i −0.501605 1.54378i −0.806403 0.591366i \(-0.798589\pi\)
0.304798 0.952417i \(-0.401411\pi\)
\(104\) 23.9274 17.3843i 2.34627 1.70467i
\(105\) 0 0
\(106\) −4.35406 13.4004i −0.422903 1.30156i
\(107\) 5.30657 16.3319i 0.513005 1.57887i −0.273877 0.961765i \(-0.588306\pi\)
0.786882 0.617103i \(-0.211694\pi\)
\(108\) 18.4533 + 13.4071i 1.77567 + 1.29010i
\(109\) 17.9060 1.71508 0.857542 0.514414i \(-0.171991\pi\)
0.857542 + 0.514414i \(0.171991\pi\)
\(110\) 0 0
\(111\) −10.0401 −0.952965
\(112\) −23.7332 17.2432i −2.24258 1.62933i
\(113\) −4.42393 + 13.6155i −0.416168 + 1.28083i 0.495034 + 0.868874i \(0.335156\pi\)
−0.911202 + 0.411960i \(0.864844\pi\)
\(114\) −4.91209 15.1178i −0.460059 1.41592i
\(115\) 0 0
\(116\) 8.68161 6.30756i 0.806067 0.585642i
\(117\) −0.296588 0.912803i −0.0274195 0.0843886i
\(118\) −0.936793 + 2.88315i −0.0862388 + 0.265416i
\(119\) −15.4120 11.1975i −1.41281 1.02647i
\(120\) 0 0
\(121\) 9.41460 + 5.68904i 0.855873 + 0.517186i
\(122\) −18.7728 −1.69961
\(123\) −1.32976 0.966125i −0.119900 0.0871126i
\(124\) 6.69581 20.6076i 0.601301 1.85061i
\(125\) 0 0
\(126\) −1.68148 + 1.22167i −0.149798 + 0.108835i
\(127\) 4.50622 3.27396i 0.399863 0.290517i −0.369622 0.929182i \(-0.620513\pi\)
0.769485 + 0.638665i \(0.220513\pi\)
\(128\) −2.87404 8.84538i −0.254031 0.781828i
\(129\) −2.47148 + 7.60643i −0.217602 + 0.669709i
\(130\) 0 0
\(131\) −13.8367 −1.20892 −0.604458 0.796637i \(-0.706610\pi\)
−0.604458 + 0.796637i \(0.706610\pi\)
\(132\) 26.1516 + 7.28780i 2.27620 + 0.634321i
\(133\) −13.1530 −1.14051
\(134\) −16.2616 11.8147i −1.40478 1.02064i
\(135\) 0 0
\(136\) 10.1849 + 31.3460i 0.873351 + 2.68790i
\(137\) 8.04525 5.84522i 0.687352 0.499390i −0.188437 0.982085i \(-0.560342\pi\)
0.875789 + 0.482695i \(0.160342\pi\)
\(138\) −0.392903 + 0.285461i −0.0334461 + 0.0243000i
\(139\) 0.627493 + 1.93122i 0.0532232 + 0.163804i 0.974135 0.225967i \(-0.0725541\pi\)
−0.920912 + 0.389771i \(0.872554\pi\)
\(140\) 0 0
\(141\) −1.81802 1.32087i −0.153105 0.111237i
\(142\) −5.58676 −0.468830
\(143\) 9.27126 + 11.6856i 0.775302 + 0.977201i
\(144\) 1.64705 0.137254
\(145\) 0 0
\(146\) 7.08911 21.8180i 0.586699 1.80567i
\(147\) 4.12503 + 12.6955i 0.340227 + 1.04711i
\(148\) 20.6907 15.0326i 1.70076 1.23568i
\(149\) −8.59185 + 6.24234i −0.703872 + 0.511393i −0.881191 0.472761i \(-0.843258\pi\)
0.177319 + 0.984153i \(0.443258\pi\)
\(150\) 0 0
\(151\) −1.06131 + 3.26639i −0.0863684 + 0.265815i −0.984908 0.173077i \(-0.944629\pi\)
0.898540 + 0.438892i \(0.144629\pi\)
\(152\) 18.4102 + 13.3758i 1.49327 + 1.08492i
\(153\) 1.06957 0.0864696
\(154\) 17.8628 26.9144i 1.43943 2.16883i
\(155\) 0 0
\(156\) 29.7837 + 21.6391i 2.38460 + 1.73252i
\(157\) −0.0922677 + 0.283971i −0.00736377 + 0.0226633i −0.954671 0.297663i \(-0.903793\pi\)
0.947307 + 0.320327i \(0.103793\pi\)
\(158\) 11.3887 + 35.0509i 0.906038 + 2.78850i
\(159\) 7.97430 5.79367i 0.632403 0.459468i
\(160\) 0 0
\(161\) 0.124180 + 0.382187i 0.00978677 + 0.0301206i
\(162\) −7.59750 + 23.3827i −0.596916 + 1.83712i
\(163\) −11.5364 8.38166i −0.903597 0.656502i 0.0357901 0.999359i \(-0.488605\pi\)
−0.939387 + 0.342857i \(0.888605\pi\)
\(164\) 4.18690 0.326942
\(165\) 0 0
\(166\) −12.0729 −0.937037
\(167\) −14.5604 10.5788i −1.12672 0.818611i −0.141507 0.989937i \(-0.545195\pi\)
−0.985214 + 0.171326i \(0.945195\pi\)
\(168\) 13.8455 42.6119i 1.06820 3.28758i
\(169\) 2.23363 + 6.87441i 0.171818 + 0.528801i
\(170\) 0 0
\(171\) 0.597437 0.434064i 0.0456872 0.0331937i
\(172\) −6.29557 19.3758i −0.480033 1.47739i
\(173\) −2.70499 + 8.32510i −0.205657 + 0.632946i 0.794029 + 0.607880i \(0.207980\pi\)
−0.999686 + 0.0250663i \(0.992020\pi\)
\(174\) 8.73335 + 6.34515i 0.662074 + 0.481025i
\(175\) 0 0
\(176\) −23.9884 + 8.93465i −1.80820 + 0.673474i
\(177\) −2.12073 −0.159404
\(178\) 0.358629 + 0.260559i 0.0268804 + 0.0195297i
\(179\) −7.07647 + 21.7791i −0.528920 + 1.62785i 0.227511 + 0.973776i \(0.426941\pi\)
−0.756431 + 0.654073i \(0.773059\pi\)
\(180\) 0 0
\(181\) −13.9721 + 10.1513i −1.03854 + 0.754542i −0.970000 0.243106i \(-0.921834\pi\)
−0.0685389 + 0.997648i \(0.521834\pi\)
\(182\) 35.4388 25.7478i 2.62690 1.90855i
\(183\) −4.05821 12.4899i −0.299991 0.923279i
\(184\) 0.214846 0.661228i 0.0158387 0.0487464i
\(185\) 0 0
\(186\) 21.7972 1.59825
\(187\) −15.5777 + 5.80202i −1.13916 + 0.424286i
\(188\) 5.72427 0.417485
\(189\) 15.3603 + 11.1599i 1.11729 + 0.811762i
\(190\) 0 0
\(191\) −5.62462 17.3108i −0.406984 1.25257i −0.919228 0.393727i \(-0.871186\pi\)
0.512244 0.858840i \(-0.328814\pi\)
\(192\) −2.23598 + 1.62454i −0.161368 + 0.117241i
\(193\) 8.92841 6.48687i 0.642681 0.466935i −0.218089 0.975929i \(-0.569982\pi\)
0.860770 + 0.508994i \(0.169982\pi\)
\(194\) −3.53198 10.8703i −0.253581 0.780443i
\(195\) 0 0
\(196\) −27.5093 19.9867i −1.96495 1.42762i
\(197\) −15.7213 −1.12009 −0.560047 0.828461i \(-0.689217\pi\)
−0.560047 + 0.828461i \(0.689217\pi\)
\(198\) 0.0768375 + 1.81200i 0.00546060 + 0.128773i
\(199\) 4.44523 0.315114 0.157557 0.987510i \(-0.449638\pi\)
0.157557 + 0.987510i \(0.449638\pi\)
\(200\) 0 0
\(201\) 4.34521 13.3732i 0.306487 0.943270i
\(202\) 6.97236 + 21.4587i 0.490573 + 1.50983i
\(203\) 7.22643 5.25031i 0.507196 0.368499i
\(204\) −33.1908 + 24.1145i −2.32382 + 1.68835i
\(205\) 0 0
\(206\) −13.0449 + 40.1480i −0.908879 + 2.79724i
\(207\) −0.0182531 0.0132616i −0.00126868 0.000921747i
\(208\) −34.7131 −2.40692
\(209\) −6.34673 + 9.56279i −0.439012 + 0.661472i
\(210\) 0 0
\(211\) −1.87055 1.35903i −0.128774 0.0935597i 0.521534 0.853231i \(-0.325360\pi\)
−0.650308 + 0.759671i \(0.725360\pi\)
\(212\) −7.75881 + 23.8792i −0.532877 + 1.64003i
\(213\) −1.20772 3.71698i −0.0827515 0.254683i
\(214\) −35.5998 + 25.8648i −2.43355 + 1.76808i
\(215\) 0 0
\(216\) −10.1508 31.2408i −0.690671 2.12567i
\(217\) 5.57348 17.1534i 0.378353 1.16445i
\(218\) −37.1206 26.9697i −2.51413 1.82662i
\(219\) 16.0484 1.08445
\(220\) 0 0
\(221\) −22.5422 −1.51635
\(222\) 20.8140 + 15.1222i 1.39694 + 1.01494i
\(223\) 3.18203 9.79327i 0.213084 0.655806i −0.786200 0.617972i \(-0.787954\pi\)
0.999284 0.0378334i \(-0.0120456\pi\)
\(224\) 7.78212 + 23.9509i 0.519965 + 1.60029i
\(225\) 0 0
\(226\) 29.6785 21.5627i 1.97419 1.43433i
\(227\) −2.21823 6.82700i −0.147229 0.453124i 0.850062 0.526682i \(-0.176564\pi\)
−0.997291 + 0.0735589i \(0.976564\pi\)
\(228\) −8.75321 + 26.9396i −0.579696 + 1.78412i
\(229\) −1.66606 1.21047i −0.110097 0.0799899i 0.531375 0.847137i \(-0.321676\pi\)
−0.641471 + 0.767147i \(0.721676\pi\)
\(230\) 0 0
\(231\) 21.7682 + 6.06625i 1.43224 + 0.399130i
\(232\) −15.4540 −1.01461
\(233\) −14.2278 10.3371i −0.932093 0.677205i 0.0144113 0.999896i \(-0.495413\pi\)
−0.946504 + 0.322691i \(0.895413\pi\)
\(234\) −0.759997 + 2.33903i −0.0496826 + 0.152907i
\(235\) 0 0
\(236\) 4.37039 3.17527i 0.284488 0.206693i
\(237\) −20.8580 + 15.1543i −1.35488 + 0.984374i
\(238\) 15.0849 + 46.4265i 0.977808 + 3.00938i
\(239\) 5.77519 17.7742i 0.373566 1.14972i −0.570875 0.821037i \(-0.693396\pi\)
0.944441 0.328680i \(-0.106604\pi\)
\(240\) 0 0
\(241\) 30.1916 1.94481 0.972406 0.233296i \(-0.0749510\pi\)
0.972406 + 0.233296i \(0.0749510\pi\)
\(242\) −10.9485 25.9740i −0.703797 1.66967i
\(243\) −2.21359 −0.142002
\(244\) 27.0637 + 19.6629i 1.73258 + 1.25879i
\(245\) 0 0
\(246\) 1.30154 + 4.00571i 0.0829829 + 0.255395i
\(247\) −12.5915 + 9.14828i −0.801180 + 0.582091i
\(248\) −25.2451 + 18.3416i −1.60306 + 1.16469i
\(249\) −2.60986 8.03231i −0.165393 0.509027i
\(250\) 0 0
\(251\) 20.6391 + 14.9952i 1.30273 + 0.946489i 0.999978 0.00657998i \(-0.00209449\pi\)
0.302752 + 0.953069i \(0.402094\pi\)
\(252\) 3.70370 0.233311
\(253\) 0.337786 + 0.0941326i 0.0212364 + 0.00591806i
\(254\) −14.2730 −0.895565
\(255\) 0 0
\(256\) −8.31752 + 25.5987i −0.519845 + 1.59992i
\(257\) 7.39839 + 22.7699i 0.461499 + 1.42035i 0.863333 + 0.504635i \(0.168373\pi\)
−0.401834 + 0.915713i \(0.631627\pi\)
\(258\) 16.5803 12.0463i 1.03224 0.749967i
\(259\) 17.2226 12.5129i 1.07016 0.777515i
\(260\) 0 0
\(261\) −0.154973 + 0.476959i −0.00959260 + 0.0295230i
\(262\) 28.6846 + 20.8406i 1.77214 + 1.28753i
\(263\) 26.7696 1.65069 0.825343 0.564631i \(-0.190982\pi\)
0.825343 + 0.564631i \(0.190982\pi\)
\(264\) −24.2997 30.6277i −1.49555 1.88500i
\(265\) 0 0
\(266\) 27.2673 + 19.8109i 1.67187 + 1.21468i
\(267\) −0.0958283 + 0.294929i −0.00586459 + 0.0180494i
\(268\) 11.0685 + 34.0653i 0.676115 + 2.08087i
\(269\) 4.82647 3.50664i 0.294275 0.213803i −0.430845 0.902426i \(-0.641784\pi\)
0.725120 + 0.688623i \(0.241784\pi\)
\(270\) 0 0
\(271\) −2.31566 7.12688i −0.140667 0.432927i 0.855762 0.517370i \(-0.173089\pi\)
−0.996428 + 0.0844429i \(0.973089\pi\)
\(272\) 11.9540 36.7907i 0.724819 2.23076i
\(273\) 24.7915 + 18.0121i 1.50045 + 1.09014i
\(274\) −25.4824 −1.53945
\(275\) 0 0
\(276\) 0.865424 0.0520924
\(277\) −1.16704 0.847908i −0.0701209 0.0509458i 0.552173 0.833730i \(-0.313799\pi\)
−0.622293 + 0.782784i \(0.713799\pi\)
\(278\) 1.60793 4.94871i 0.0964373 0.296804i
\(279\) 0.312921 + 0.963072i 0.0187341 + 0.0576576i
\(280\) 0 0
\(281\) 0.193576 0.140641i 0.0115478 0.00838994i −0.581996 0.813191i \(-0.697728\pi\)
0.593544 + 0.804801i \(0.297728\pi\)
\(282\) 1.77944 + 5.47655i 0.105964 + 0.326124i
\(283\) 1.63126 5.02049i 0.0969680 0.298437i −0.890794 0.454408i \(-0.849851\pi\)
0.987762 + 0.155971i \(0.0498507\pi\)
\(284\) 8.05414 + 5.85167i 0.477925 + 0.347233i
\(285\) 0 0
\(286\) −1.61942 38.1895i −0.0957583 2.25819i
\(287\) 3.48511 0.205720
\(288\) −1.14388 0.831079i −0.0674039 0.0489718i
\(289\) 2.50947 7.72336i 0.147616 0.454315i
\(290\) 0 0
\(291\) 6.46870 4.69979i 0.379202 0.275506i
\(292\) −33.0726 + 24.0287i −1.93543 + 1.40617i
\(293\) 4.63398 + 14.2619i 0.270720 + 0.833191i 0.990320 + 0.138802i \(0.0443252\pi\)
−0.719600 + 0.694389i \(0.755675\pi\)
\(294\) 10.5703 32.5319i 0.616470 1.89730i
\(295\) 0 0
\(296\) −36.8311 −2.14077
\(297\) 15.5255 5.78255i 0.900878 0.335538i
\(298\) 27.2137 1.57645
\(299\) 0.384700 + 0.279501i 0.0222478 + 0.0161640i
\(300\) 0 0
\(301\) −5.24033 16.1281i −0.302048 0.929607i
\(302\) 7.11996 5.17296i 0.409708 0.297670i
\(303\) −12.7696 + 9.27768i −0.733596 + 0.532989i
\(304\) −8.25353 25.4018i −0.473372 1.45689i
\(305\) 0 0
\(306\) −2.21731 1.61097i −0.126755 0.0920929i
\(307\) −2.11034 −0.120443 −0.0602217 0.998185i \(-0.519181\pi\)
−0.0602217 + 0.998185i \(0.519181\pi\)
\(308\) −53.9425 + 20.0912i −3.07366 + 1.14480i
\(309\) −29.5312 −1.67997
\(310\) 0 0
\(311\) −5.14858 + 15.8457i −0.291949 + 0.898528i 0.692280 + 0.721629i \(0.256606\pi\)
−0.984229 + 0.176898i \(0.943394\pi\)
\(312\) −16.3833 50.4227i −0.927523 2.85462i
\(313\) −23.5261 + 17.0927i −1.32977 + 0.966137i −0.330020 + 0.943974i \(0.607055\pi\)
−0.999754 + 0.0221632i \(0.992945\pi\)
\(314\) 0.618991 0.449723i 0.0349317 0.0253793i
\(315\) 0 0
\(316\) 20.2944 62.4597i 1.14165 3.51363i
\(317\) −14.8184 10.7662i −0.832282 0.604689i 0.0879217 0.996127i \(-0.471977\pi\)
−0.920204 + 0.391439i \(0.871977\pi\)
\(318\) −25.2577 −1.41638
\(319\) −0.330221 7.78733i −0.0184888 0.436007i
\(320\) 0 0
\(321\) −24.9041 18.0939i −1.39001 1.00990i
\(322\) 0.318208 0.979344i 0.0177330 0.0545767i
\(323\) −5.35972 16.4955i −0.298223 0.917835i
\(324\) 35.4444 25.7518i 1.96913 1.43066i
\(325\) 0 0
\(326\) 11.2915 + 34.7517i 0.625379 + 1.92472i
\(327\) 9.91890 30.5272i 0.548516 1.68816i
\(328\) −4.87808 3.54413i −0.269347 0.195692i
\(329\) 4.76479 0.262691
\(330\) 0 0
\(331\) 21.5599 1.18504 0.592520 0.805556i \(-0.298133\pi\)
0.592520 + 0.805556i \(0.298133\pi\)
\(332\) 17.4048 + 12.6454i 0.955214 + 0.694004i
\(333\) −0.369344 + 1.13672i −0.0202399 + 0.0622921i
\(334\) 14.2514 + 43.8614i 0.779803 + 2.39999i
\(335\) 0 0
\(336\) −42.5440 + 30.9101i −2.32097 + 1.68628i
\(337\) −4.34521 13.3732i −0.236699 0.728484i −0.996892 0.0787861i \(-0.974896\pi\)
0.760193 0.649697i \(-0.225104\pi\)
\(338\) 5.72362 17.6155i 0.311324 0.958156i
\(339\) 20.7618 + 15.0844i 1.12763 + 0.819270i
\(340\) 0 0
\(341\) −9.78185 12.3292i −0.529717 0.667662i
\(342\) −1.89232 −0.102325
\(343\) −1.37351 0.997912i −0.0741625 0.0538822i
\(344\) −9.06637 + 27.9034i −0.488826 + 1.50445i
\(345\) 0 0
\(346\) 18.1468 13.1844i 0.975578 0.708799i
\(347\) −23.1781 + 16.8399i −1.24427 + 0.904013i −0.997875 0.0651572i \(-0.979245\pi\)
−0.246392 + 0.969170i \(0.579245\pi\)
\(348\) −5.94439 18.2949i −0.318653 0.980712i
\(349\) −5.53826 + 17.0450i −0.296456 + 0.912399i 0.686272 + 0.727345i \(0.259246\pi\)
−0.982728 + 0.185054i \(0.940754\pi\)
\(350\) 0 0
\(351\) 22.4665 1.19917
\(352\) 21.1684 + 5.89910i 1.12828 + 0.314423i
\(353\) 24.7757 1.31868 0.659339 0.751845i \(-0.270836\pi\)
0.659339 + 0.751845i \(0.270836\pi\)
\(354\) 4.39644 + 3.19420i 0.233668 + 0.169770i
\(355\) 0 0
\(356\) −0.244102 0.751269i −0.0129374 0.0398172i
\(357\) −27.6274 + 20.0725i −1.46220 + 1.06235i
\(358\) 47.4735 34.4915i 2.50905 1.82293i
\(359\) −3.22994 9.94073i −0.170470 0.524652i 0.828928 0.559355i \(-0.188951\pi\)
−0.999398 + 0.0347037i \(0.988951\pi\)
\(360\) 0 0
\(361\) 5.68314 + 4.12904i 0.299112 + 0.217318i
\(362\) 44.2551 2.32600
\(363\) 14.9142 12.8992i 0.782791 0.677031i
\(364\) −78.0589 −4.09140
\(365\) 0 0
\(366\) −10.3990 + 32.0050i −0.543567 + 1.67293i
\(367\) −4.69553 14.4514i −0.245105 0.754355i −0.995619 0.0935010i \(-0.970194\pi\)
0.750514 0.660854i \(-0.229806\pi\)
\(368\) −0.660174 + 0.479645i −0.0344140 + 0.0250032i
\(369\) −0.158300 + 0.115012i −0.00824079 + 0.00598729i
\(370\) 0 0
\(371\) −6.45831 + 19.8766i −0.335299 + 1.03194i
\(372\) −31.4239 22.8308i −1.62925 1.18372i
\(373\) −21.1774 −1.09653 −0.548263 0.836306i \(-0.684711\pi\)
−0.548263 + 0.836306i \(0.684711\pi\)
\(374\) 41.0328 + 11.4348i 2.12176 + 0.591281i
\(375\) 0 0
\(376\) −6.66924 4.84548i −0.343940 0.249887i
\(377\) 3.26620 10.0523i 0.168218 0.517722i
\(378\) −15.0343 46.2707i −0.773279 2.37991i
\(379\) 28.4486 20.6691i 1.46131 1.06170i 0.478287 0.878204i \(-0.341258\pi\)
0.983020 0.183498i \(-0.0587422\pi\)
\(380\) 0 0
\(381\) −3.08546 9.49606i −0.158073 0.486498i
\(382\) −14.4129 + 44.3584i −0.737430 + 2.26958i
\(383\) 1.60983 + 1.16961i 0.0822584 + 0.0597642i 0.628154 0.778089i \(-0.283811\pi\)
−0.545896 + 0.837853i \(0.683811\pi\)
\(384\) −16.6722 −0.850799
\(385\) 0 0
\(386\) −28.2797 −1.43940
\(387\) 0.770268 + 0.559633i 0.0391549 + 0.0284477i
\(388\) −6.29390 + 19.3706i −0.319524 + 0.983394i
\(389\) −1.87218 5.76197i −0.0949231 0.292143i 0.892311 0.451422i \(-0.149083\pi\)
−0.987234 + 0.159279i \(0.949083\pi\)
\(390\) 0 0
\(391\) −0.428707 + 0.311474i −0.0216807 + 0.0157519i
\(392\) 15.1322 + 46.5723i 0.764294 + 2.35226i
\(393\) −7.66473 + 23.5896i −0.386634 + 1.18994i
\(394\) 32.5915 + 23.6791i 1.64194 + 1.19294i
\(395\) 0 0
\(396\) 1.78714 2.69274i 0.0898074 0.135315i
\(397\) 35.0663 1.75993 0.879964 0.475040i \(-0.157566\pi\)
0.879964 + 0.475040i \(0.157566\pi\)
\(398\) −9.21534 6.69533i −0.461923 0.335607i
\(399\) −7.28603 + 22.4241i −0.364758 + 1.12261i
\(400\) 0 0
\(401\) −13.3283 + 9.68359i −0.665585 + 0.483576i −0.868544 0.495612i \(-0.834944\pi\)
0.202960 + 0.979187i \(0.434944\pi\)
\(402\) −29.1504 + 21.1790i −1.45389 + 1.05631i
\(403\) −6.59510 20.2976i −0.328525 1.01110i
\(404\) 12.4246 38.2389i 0.618145 1.90245i
\(405\) 0 0
\(406\) −22.8889 −1.13596
\(407\) −0.787007 18.5593i −0.0390105 0.919952i
\(408\) 59.0824 2.92501
\(409\) −3.48714 2.53356i −0.172428 0.125276i 0.498224 0.867048i \(-0.333986\pi\)
−0.670652 + 0.741772i \(0.733986\pi\)
\(410\) 0 0
\(411\) −5.50867 16.9539i −0.271722 0.836276i
\(412\) 60.8578 44.2158i 2.99825 2.17836i
\(413\) 3.63784 2.64305i 0.179007 0.130056i
\(414\) 0.0178657 + 0.0549849i 0.000878050 + 0.00270236i
\(415\) 0 0
\(416\) 24.1084 + 17.5158i 1.18201 + 0.858781i
\(417\) 3.64006 0.178255
\(418\) 27.5606 10.2651i 1.34803 0.502083i
\(419\) −18.7114 −0.914110 −0.457055 0.889438i \(-0.651096\pi\)
−0.457055 + 0.889438i \(0.651096\pi\)
\(420\) 0 0
\(421\) −9.42742 + 29.0146i −0.459465 + 1.41409i 0.406348 + 0.913718i \(0.366802\pi\)
−0.865813 + 0.500368i \(0.833198\pi\)
\(422\) 1.83085 + 5.63477i 0.0891244 + 0.274297i
\(423\) −0.216426 + 0.157243i −0.0105230 + 0.00764540i
\(424\) 29.2529 21.2535i 1.42065 1.03216i
\(425\) 0 0
\(426\) −3.09474 + 9.52464i −0.149941 + 0.461470i
\(427\) 22.5274 + 16.3671i 1.09018 + 0.792061i
\(428\) 78.4136 3.79027
\(429\) 25.0581 9.33304i 1.20982 0.450604i
\(430\) 0 0
\(431\) −6.72568 4.88649i −0.323965 0.235374i 0.413901 0.910322i \(-0.364166\pi\)
−0.737865 + 0.674948i \(0.764166\pi\)
\(432\) −11.9139 + 36.6673i −0.573208 + 1.76415i
\(433\) −8.48242 26.1062i −0.407639 1.25458i −0.918671 0.395023i \(-0.870737\pi\)
0.511032 0.859561i \(-0.329263\pi\)
\(434\) −37.3905 + 27.1658i −1.79480 + 1.30400i
\(435\) 0 0
\(436\) 25.2663 + 77.7616i 1.21004 + 3.72411i
\(437\) −0.113061 + 0.347964i −0.00540842 + 0.0166454i
\(438\) −33.2697 24.1719i −1.58969 1.15498i
\(439\) −23.1527 −1.10502 −0.552510 0.833506i \(-0.686330\pi\)
−0.552510 + 0.833506i \(0.686330\pi\)
\(440\) 0 0
\(441\) 1.58911 0.0756720
\(442\) 46.7317 + 33.9526i 2.22280 + 1.61496i
\(443\) −6.23705 + 19.1957i −0.296331 + 0.912013i 0.686440 + 0.727186i \(0.259172\pi\)
−0.982771 + 0.184827i \(0.940828\pi\)
\(444\) −14.1671 43.6019i −0.672341 2.06925i
\(445\) 0 0
\(446\) −21.3471 + 15.5095i −1.01081 + 0.734398i
\(447\) 5.88293 + 18.1058i 0.278253 + 0.856375i
\(448\) 1.81090 5.57338i 0.0855570 0.263317i
\(449\) −11.3539 8.24906i −0.535822 0.389297i 0.286709 0.958018i \(-0.407439\pi\)
−0.822531 + 0.568720i \(0.807439\pi\)
\(450\) 0 0
\(451\) 1.68167 2.53381i 0.0791866 0.119313i
\(452\) −65.3711 −3.07480
\(453\) 4.98082 + 3.61878i 0.234019 + 0.170025i
\(454\) −5.68414 + 17.4940i −0.266770 + 0.821033i
\(455\) 0 0
\(456\) 33.0021 23.9774i 1.54546 1.12285i
\(457\) 12.6398 9.18334i 0.591264 0.429579i −0.251503 0.967856i \(-0.580925\pi\)
0.842767 + 0.538278i \(0.180925\pi\)
\(458\) 1.63071 + 5.01879i 0.0761979 + 0.234513i
\(459\) −7.73671 + 23.8111i −0.361119 + 1.11141i
\(460\) 0 0
\(461\) 29.6082 1.37899 0.689496 0.724289i \(-0.257832\pi\)
0.689496 + 0.724289i \(0.257832\pi\)
\(462\) −35.9903 45.3626i −1.67442 2.11046i
\(463\) 1.31629 0.0611730 0.0305865 0.999532i \(-0.490262\pi\)
0.0305865 + 0.999532i \(0.490262\pi\)
\(464\) 14.6742 + 10.6614i 0.681233 + 0.494945i
\(465\) 0 0
\(466\) 13.9258 + 42.8593i 0.645101 + 1.98542i
\(467\) −9.78870 + 7.11191i −0.452967 + 0.329100i −0.790766 0.612118i \(-0.790318\pi\)
0.337799 + 0.941218i \(0.390318\pi\)
\(468\) 3.54559 2.57602i 0.163895 0.119077i
\(469\) 9.21323 + 28.3554i 0.425427 + 1.30933i
\(470\) 0 0
\(471\) 0.433019 + 0.314607i 0.0199525 + 0.0144963i
\(472\) −7.77967 −0.358088
\(473\) −14.2544 3.97234i −0.655416 0.182648i
\(474\) 66.0655 3.03449
\(475\) 0 0
\(476\) 26.8809 82.7308i 1.23208 3.79196i
\(477\) −0.362599 1.11597i −0.0166023 0.0510966i
\(478\) −38.7436 + 28.1489i −1.77209 + 1.28750i
\(479\) −2.47074 + 1.79509i −0.112891 + 0.0820200i −0.642798 0.766036i \(-0.722227\pi\)
0.529907 + 0.848055i \(0.322227\pi\)
\(480\) 0 0
\(481\) 7.78426 23.9575i 0.354932 1.09237i
\(482\) −62.5897 45.4741i −2.85088 2.07129i
\(483\) 0.720365 0.0327777
\(484\) −11.4217 + 48.9130i −0.519168 + 2.22332i
\(485\) 0 0
\(486\) 4.58896 + 3.33408i 0.208160 + 0.151237i
\(487\) −7.49051 + 23.0534i −0.339427 + 1.04465i 0.625073 + 0.780566i \(0.285069\pi\)
−0.964500 + 0.264083i \(0.914931\pi\)
\(488\) −14.8871 45.8179i −0.673909 2.07408i
\(489\) −20.6800 + 15.0249i −0.935183 + 0.679450i
\(490\) 0 0
\(491\) −10.0985 31.0801i −0.455741 1.40263i −0.870263 0.492587i \(-0.836051\pi\)
0.414522 0.910039i \(-0.363949\pi\)
\(492\) 2.31930 7.13808i 0.104562 0.321809i
\(493\) 9.52921 + 6.92337i 0.429174 + 0.311813i
\(494\) 39.8823 1.79439
\(495\) 0 0
\(496\) 36.6248 1.64450
\(497\) 6.70413 + 4.87084i 0.300721 + 0.218487i
\(498\) −6.68768 + 20.5826i −0.299682 + 0.922327i
\(499\) −9.27234 28.5373i −0.415087 1.27751i −0.912173 0.409805i \(-0.865597\pi\)
0.497086 0.867701i \(-0.334403\pi\)
\(500\) 0 0
\(501\) −26.1010 + 18.9635i −1.16611 + 0.847226i
\(502\) −20.2011 62.1726i −0.901619 2.77490i
\(503\) −4.18767 + 12.8883i −0.186719 + 0.574662i −0.999974 0.00724562i \(-0.997694\pi\)
0.813255 + 0.581908i \(0.197694\pi\)
\(504\) −4.31512 3.13512i −0.192211 0.139649i
\(505\) 0 0
\(506\) −0.558477 0.703912i −0.0248273 0.0312927i
\(507\) 12.9572 0.575450
\(508\) 20.5766 + 14.9497i 0.912937 + 0.663288i
\(509\) 11.7687 36.2203i 0.521638 1.60544i −0.249232 0.968444i \(-0.580178\pi\)
0.770870 0.636993i \(-0.219822\pi\)
\(510\) 0 0
\(511\) −27.5291 + 20.0011i −1.21782 + 0.884795i
\(512\) 40.7506 29.6070i 1.80094 1.30846i
\(513\) 5.34173 + 16.4402i 0.235843 + 0.725851i
\(514\) 18.9582 58.3472i 0.836209 2.57359i
\(515\) 0 0
\(516\) −36.5203 −1.60772
\(517\) 2.29915 3.46419i 0.101116 0.152355i
\(518\) −54.5505 −2.39681
\(519\) 12.6947 + 9.22326i 0.557237 + 0.404856i
\(520\) 0 0
\(521\) 0.682532 + 2.10062i 0.0299023 + 0.0920298i 0.964894 0.262640i \(-0.0845932\pi\)
−0.934992 + 0.354670i \(0.884593\pi\)
\(522\) 1.03966 0.755356i 0.0455046 0.0330610i
\(523\) −1.94375 + 1.41222i −0.0849944 + 0.0617521i −0.629471 0.777024i \(-0.716728\pi\)
0.544477 + 0.838776i \(0.316728\pi\)
\(524\) −19.5243 60.0895i −0.852921 2.62502i
\(525\) 0 0
\(526\) −55.4957 40.3200i −2.41973 1.75803i
\(527\) 23.7836 1.03603
\(528\) 1.94410 + 45.8462i 0.0846063 + 1.99520i
\(529\) −22.9888 −0.999514
\(530\) 0 0
\(531\) −0.0780148 + 0.240105i −0.00338555 + 0.0104197i
\(532\) −18.5596 57.1206i −0.804661 2.47649i
\(533\) 3.33633 2.42398i 0.144512 0.104994i
\(534\) 0.642877 0.467077i 0.0278200 0.0202124i
\(535\) 0 0
\(536\) 15.9399 49.0581i 0.688501 2.11899i
\(537\) 33.2104 + 24.1288i 1.43314 + 1.04123i
\(538\) −15.2873 −0.659083
\(539\) −23.1446 + 8.62035i −0.996908 + 0.371305i
\(540\) 0 0
\(541\) 19.0200 + 13.8189i 0.817735 + 0.594119i 0.916063 0.401035i \(-0.131349\pi\)
−0.0983277 + 0.995154i \(0.531349\pi\)
\(542\) −5.93382 + 18.2624i −0.254879 + 0.784438i
\(543\) 9.56685 + 29.4437i 0.410553 + 1.26355i
\(544\) −26.8662 + 19.5194i −1.15188 + 0.836889i
\(545\) 0 0
\(546\) −24.2653 74.6810i −1.03846 3.19605i
\(547\) 0.437026 1.34503i 0.0186859 0.0575093i −0.941279 0.337630i \(-0.890375\pi\)
0.959965 + 0.280121i \(0.0903746\pi\)
\(548\) 36.7367 + 26.6907i 1.56931 + 1.14017i
\(549\) −1.56337 −0.0667230
\(550\) 0 0
\(551\) 8.13251 0.346457
\(552\) −1.00829 0.732565i −0.0429156 0.0311800i
\(553\) 16.8927 51.9905i 0.718352 2.21086i
\(554\) 1.14228 + 3.51556i 0.0485307 + 0.149362i
\(555\) 0 0
\(556\) −7.50143 + 5.45011i −0.318132 + 0.231136i
\(557\) 1.53415 + 4.72163i 0.0650041 + 0.200062i 0.978283 0.207272i \(-0.0664585\pi\)
−0.913279 + 0.407334i \(0.866458\pi\)
\(558\) 0.801851 2.46784i 0.0339451 0.104472i
\(559\) −16.2341 11.7948i −0.686630 0.498866i
\(560\) 0 0
\(561\) 1.26247 + 29.7718i 0.0533016 + 1.25697i
\(562\) −0.613129 −0.0258633
\(563\) −13.4316 9.75863i −0.566075 0.411277i 0.267603 0.963529i \(-0.413769\pi\)
−0.833677 + 0.552252i \(0.813769\pi\)
\(564\) 3.17091 9.75907i 0.133520 0.410931i
\(565\) 0 0
\(566\) −10.9435 + 7.95091i −0.459989 + 0.334202i
\(567\) 29.5033 21.4354i 1.23902 0.900203i
\(568\) −4.43039 13.6353i −0.185895 0.572126i
\(569\) −8.37027 + 25.7610i −0.350900 + 1.07996i 0.607449 + 0.794359i \(0.292193\pi\)
−0.958349 + 0.285600i \(0.907807\pi\)
\(570\) 0 0
\(571\) −25.9648 −1.08659 −0.543296 0.839541i \(-0.682824\pi\)
−0.543296 + 0.839541i \(0.682824\pi\)
\(572\) −37.6657 + 56.7519i −1.57488 + 2.37292i
\(573\) −32.6282 −1.36306
\(574\) −7.22492 5.24921i −0.301562 0.219098i
\(575\) 0 0
\(576\) 0.101672 + 0.312915i 0.00423635 + 0.0130381i
\(577\) 0.603937 0.438786i 0.0251422 0.0182669i −0.575143 0.818053i \(-0.695054\pi\)
0.600285 + 0.799786i \(0.295054\pi\)
\(578\) −16.8351 + 12.2314i −0.700249 + 0.508761i
\(579\) −6.11338 18.8150i −0.254063 0.781926i
\(580\) 0 0
\(581\) 14.4875 + 10.5258i 0.601043 + 0.436683i
\(582\) −20.4889 −0.849291
\(583\) 11.3348 + 14.2865i 0.469439 + 0.591687i
\(584\) 58.8721 2.43614
\(585\) 0 0
\(586\) 11.8744 36.5458i 0.490529 1.50969i
\(587\) 5.53146 + 17.0241i 0.228308 + 0.702659i 0.997939 + 0.0641701i \(0.0204400\pi\)
−0.769631 + 0.638488i \(0.779560\pi\)
\(588\) −49.3131 + 35.8281i −2.03364 + 1.47753i
\(589\) 13.2850 9.65209i 0.547397 0.397708i
\(590\) 0 0
\(591\) −8.70868 + 26.8026i −0.358227 + 1.10251i
\(592\) 34.9727 + 25.4091i 1.43737 + 1.04431i
\(593\) 11.1992 0.459895 0.229948 0.973203i \(-0.426145\pi\)
0.229948 + 0.973203i \(0.426145\pi\)
\(594\) −40.8951 11.3965i −1.67795 0.467602i
\(595\) 0 0
\(596\) −39.2326 28.5041i −1.60703 1.16758i
\(597\) 2.46240 7.57850i 0.100780 0.310167i
\(598\) −0.376535 1.15886i −0.0153977 0.0473892i
\(599\) 1.46910 1.06736i 0.0600257 0.0436112i −0.557368 0.830266i \(-0.688189\pi\)
0.617393 + 0.786654i \(0.288189\pi\)
\(600\) 0 0
\(601\) 14.4659 + 44.5214i 0.590075 + 1.81606i 0.577856 + 0.816139i \(0.303889\pi\)
0.0122187 + 0.999925i \(0.496111\pi\)
\(602\) −13.4282 + 41.3277i −0.547292 + 1.68439i
\(603\) −1.35424 0.983912i −0.0551489 0.0400680i
\(604\) −15.6827 −0.638121
\(605\) 0 0
\(606\) 40.4464 1.64302
\(607\) −26.6166 19.3381i −1.08033 0.784908i −0.102593 0.994723i \(-0.532714\pi\)
−0.977741 + 0.209815i \(0.932714\pi\)
\(608\) −7.08527 + 21.8062i −0.287346 + 0.884359i
\(609\) −4.94801 15.2284i −0.200504 0.617087i
\(610\) 0 0
\(611\) 4.56137 3.31403i 0.184533 0.134071i
\(612\) 1.50922 + 4.64489i 0.0610065 + 0.187759i
\(613\) 4.60003 14.1574i 0.185793 0.571813i −0.814168 0.580630i \(-0.802806\pi\)
0.999961 + 0.00881636i \(0.00280637\pi\)
\(614\) 4.37490 + 3.17855i 0.176557 + 0.128276i
\(615\) 0 0
\(616\) 79.8543 + 22.2534i 3.21742 + 0.896615i
\(617\) 37.4741 1.50865 0.754324 0.656502i \(-0.227965\pi\)
0.754324 + 0.656502i \(0.227965\pi\)
\(618\) 61.2206 + 44.4793i 2.46265 + 1.78922i
\(619\) −3.82934 + 11.7855i −0.153914 + 0.473700i −0.998049 0.0624311i \(-0.980115\pi\)
0.844135 + 0.536131i \(0.180115\pi\)
\(620\) 0 0
\(621\) 0.427269 0.310429i 0.0171457 0.0124571i
\(622\) 34.5400 25.0948i 1.38493 1.00621i
\(623\) −0.203187 0.625344i −0.00814050 0.0250539i
\(624\) −19.2291 + 59.1810i −0.769778 + 2.36913i
\(625\) 0 0
\(626\) 74.5163 2.97827
\(627\) 12.7875 + 16.1175i 0.510683 + 0.643671i
\(628\) −1.36341 −0.0544061
\(629\) 22.7107 + 16.5003i 0.905536 + 0.657910i
\(630\) 0 0
\(631\) 0.476748 + 1.46728i 0.0189790 + 0.0584114i 0.960097 0.279666i \(-0.0902236\pi\)
−0.941118 + 0.338077i \(0.890224\pi\)
\(632\) −76.5156 + 55.5918i −3.04363 + 2.21132i
\(633\) −3.35314 + 2.43620i −0.133275 + 0.0968301i
\(634\) 14.5039 + 44.6383i 0.576022 + 1.77281i
\(635\) 0 0
\(636\) 36.4127 + 26.4554i 1.44386 + 1.04902i
\(637\) −33.4920 −1.32700
\(638\) −11.0446 + 16.6411i −0.437258 + 0.658829i
\(639\) −0.465257 −0.0184053
\(640\) 0 0
\(641\) 9.64663 29.6893i 0.381019 1.17266i −0.558308 0.829634i \(-0.688549\pi\)
0.939327 0.343023i \(-0.111451\pi\)
\(642\) 24.3756 + 75.0203i 0.962027 + 2.96082i
\(643\) −16.4378 + 11.9428i −0.648245 + 0.470978i −0.862673 0.505762i \(-0.831211\pi\)
0.214428 + 0.976740i \(0.431211\pi\)
\(644\) −1.48453 + 1.07857i −0.0584985 + 0.0425017i
\(645\) 0 0
\(646\) −13.7341 + 42.2693i −0.540361 + 1.66306i
\(647\) 17.9348 + 13.0304i 0.705092 + 0.512279i 0.881586 0.472023i \(-0.156476\pi\)
−0.176495 + 0.984302i \(0.556476\pi\)
\(648\) −63.0940 −2.47857
\(649\) −0.166236 3.92020i −0.00652533 0.153881i
\(650\) 0 0
\(651\) −26.1568 19.0040i −1.02516 0.744826i
\(652\) 20.1212 61.9267i 0.788007 2.42524i
\(653\) −3.66862 11.2908i −0.143564 0.441845i 0.853259 0.521487i \(-0.174622\pi\)
−0.996824 + 0.0796417i \(0.974622\pi\)
\(654\) −66.5423 + 48.3458i −2.60201 + 1.89047i
\(655\) 0 0
\(656\) 2.18690 + 6.73060i 0.0853843 + 0.262786i
\(657\) 0.590371 1.81697i 0.0230326 0.0708869i
\(658\) −9.87780 7.17664i −0.385077 0.279774i
\(659\) 13.3368 0.519527 0.259764 0.965672i \(-0.416355\pi\)
0.259764 + 0.965672i \(0.416355\pi\)
\(660\) 0 0
\(661\) −44.8817 −1.74570 −0.872848 0.487992i \(-0.837730\pi\)
−0.872848 + 0.487992i \(0.837730\pi\)
\(662\) −44.6955 32.4732i −1.73714 1.26211i
\(663\) −12.4871 + 38.4312i −0.484957 + 1.49254i
\(664\) −9.57400 29.4657i −0.371543 1.14349i
\(665\) 0 0
\(666\) 2.47779 1.80022i 0.0960125 0.0697572i
\(667\) −0.0767805 0.236306i −0.00297295 0.00914980i
\(668\) 25.3957 78.1598i 0.982588 3.02409i
\(669\) −14.9335 10.8498i −0.577362 0.419478i
\(670\) 0 0
\(671\) 22.7697 8.48071i 0.879014 0.327394i
\(672\) 45.1438 1.74146
\(673\) −4.76086 3.45897i −0.183518 0.133333i 0.492233 0.870463i \(-0.336181\pi\)
−0.675751 + 0.737130i \(0.736181\pi\)
\(674\) −11.1345 + 34.2684i −0.428884 + 1.31997i
\(675\) 0 0
\(676\) −26.7022 + 19.4003i −1.02701 + 0.746165i
\(677\) −23.9475 + 17.3989i −0.920379 + 0.668694i −0.943618 0.331035i \(-0.892602\pi\)
0.0232393 + 0.999730i \(0.492602\pi\)
\(678\) −20.3212 62.5422i −0.780431 2.40192i
\(679\) −5.23894 + 16.1238i −0.201052 + 0.618774i
\(680\) 0 0
\(681\) −12.8678 −0.493097
\(682\) 1.70860 + 40.2926i 0.0654258 + 1.54288i
\(683\) 13.1257 0.502239 0.251120 0.967956i \(-0.419201\pi\)
0.251120 + 0.967956i \(0.419201\pi\)
\(684\) 2.72805 + 1.98204i 0.104310 + 0.0757854i
\(685\) 0 0
\(686\) 1.34436 + 4.13751i 0.0513278 + 0.157971i
\(687\) −2.98658 + 2.16988i −0.113945 + 0.0827860i
\(688\) 27.8590 20.2407i 1.06211 0.771670i
\(689\) 7.64211 + 23.5200i 0.291141 + 0.896041i
\(690\) 0 0
\(691\) 5.69772 + 4.13963i 0.216751 + 0.157479i 0.690863 0.722986i \(-0.257231\pi\)
−0.474112 + 0.880465i \(0.657231\pi\)
\(692\) −39.9709 −1.51946
\(693\) 1.48759 2.24139i 0.0565089 0.0851435i
\(694\) 73.4141 2.78676
\(695\) 0 0
\(696\) −8.56063 + 26.3469i −0.324490 + 0.998677i
\(697\) 1.42014 + 4.37075i 0.0537917 + 0.165554i
\(698\) 37.1542 26.9941i 1.40631 1.02174i
\(699\) −25.5047 + 18.5302i −0.964675 + 0.700877i
\(700\) 0 0
\(701\) 13.7090 42.1921i 0.517783 1.59357i −0.260377 0.965507i \(-0.583847\pi\)
0.778161 0.628065i \(-0.216153\pi\)
\(702\) −46.5749 33.8387i −1.75786 1.27716i
\(703\) 19.3820 0.731006
\(704\) −3.17826 4.00591i −0.119785 0.150979i
\(705\) 0 0
\(706\) −51.3621 37.3168i −1.93304 1.40443i
\(707\) 10.3420 31.8294i 0.388951 1.19707i
\(708\) −2.99245 9.20982i −0.112463 0.346126i
\(709\) 15.7889 11.4713i 0.592963 0.430813i −0.250411 0.968140i \(-0.580566\pi\)
0.843374 + 0.537327i \(0.180566\pi\)
\(710\) 0 0
\(711\) 0.948436 + 2.91899i 0.0355691 + 0.109471i
\(712\) −0.351536 + 1.08192i −0.0131744 + 0.0405466i
\(713\) −0.405886 0.294893i −0.0152006 0.0110438i
\(714\) 87.5068 3.27486
\(715\) 0 0
\(716\) −104.567 −3.90785
\(717\) −27.1034 19.6918i −1.01219 0.735402i
\(718\) −8.27662 + 25.4728i −0.308881 + 0.950638i
\(719\) 14.6482 + 45.0824i 0.546284 + 1.68129i 0.717918 + 0.696128i \(0.245095\pi\)
−0.171634 + 0.985161i \(0.554905\pi\)
\(720\) 0 0
\(721\) 50.6571 36.8045i 1.88657 1.37067i
\(722\) −5.56252 17.1197i −0.207016 0.637128i
\(723\) 16.7244 51.4724i 0.621987 1.91428i
\(724\) −63.8002 46.3536i −2.37112 1.72272i
\(725\) 0 0
\(726\) −50.3468 + 4.27760i −1.86855 + 0.158756i
\(727\) −37.2483 −1.38146 −0.690731 0.723112i \(-0.742711\pi\)
−0.690731 + 0.723112i \(0.742711\pi\)
\(728\) 90.9450 + 66.0754i 3.37065 + 2.44892i
\(729\) 7.66853 23.6013i 0.284020 0.874123i
\(730\) 0 0
\(731\) 18.0912 13.1440i 0.669126 0.486149i
\(732\) 48.5143 35.2477i 1.79314 1.30279i
\(733\) −3.59105 11.0521i −0.132638 0.408219i 0.862577 0.505926i \(-0.168849\pi\)
−0.995215 + 0.0977073i \(0.968849\pi\)
\(734\) −12.0322 + 37.0312i −0.444115 + 1.36685i
\(735\) 0 0
\(736\) 0.700516 0.0258214
\(737\) 25.0612 + 6.98392i 0.923140 + 0.257256i
\(738\) 0.501399 0.0184568
\(739\) −30.7265 22.3241i −1.13029 0.821207i −0.144556 0.989497i \(-0.546176\pi\)
−0.985738 + 0.168290i \(0.946176\pi\)
\(740\) 0 0
\(741\) 8.62156 + 26.5344i 0.316721 + 0.974766i
\(742\) 43.3265 31.4785i 1.59056 1.15561i
\(743\) −6.24321 + 4.53596i −0.229041 + 0.166408i −0.696387 0.717666i \(-0.745210\pi\)
0.467346 + 0.884075i \(0.345210\pi\)
\(744\) 17.2856 + 53.1995i 0.633720 + 1.95039i
\(745\) 0 0
\(746\) 43.9025 + 31.8971i 1.60739 + 1.16783i
\(747\) −1.00541 −0.0367861
\(748\) −47.1778 59.4635i −1.72499 2.17420i
\(749\) 65.2703 2.38492
\(750\) 0 0
\(751\) 4.95293 15.2435i 0.180735 0.556245i −0.819114 0.573631i \(-0.805534\pi\)
0.999849 + 0.0173860i \(0.00553442\pi\)
\(752\) 2.98990 + 9.20197i 0.109030 + 0.335561i
\(753\) 36.9976 26.8803i 1.34827 0.979574i
\(754\) −21.9118 + 15.9198i −0.797979 + 0.579766i
\(755\) 0 0
\(756\) −26.7907 + 82.4532i −0.974367 + 2.99879i
\(757\) −5.15833 3.74775i −0.187483 0.136214i 0.490085 0.871675i \(-0.336966\pi\)
−0.677568 + 0.735461i \(0.736966\pi\)
\(758\) −90.1078 −3.27286
\(759\) 0.347597 0.523734i 0.0126170 0.0190103i
\(760\) 0 0
\(761\) 12.8347 + 9.32499i 0.465259 + 0.338031i 0.795591 0.605834i \(-0.207161\pi\)
−0.330332 + 0.943865i \(0.607161\pi\)
\(762\) −7.90640 + 24.3334i −0.286419 + 0.881506i
\(763\) 21.0312 + 64.7275i 0.761382 + 2.34329i
\(764\) 67.2402 48.8529i 2.43267 1.76743i
\(765\) 0 0
\(766\) −1.57566 4.84939i −0.0569310 0.175216i
\(767\) 1.64423 5.06043i 0.0593698 0.182721i
\(768\) 39.0348 + 28.3604i 1.40855 + 1.02337i
\(769\) −51.7503 −1.86616 −0.933082 0.359663i \(-0.882892\pi\)
−0.933082 + 0.359663i \(0.882892\pi\)
\(770\) 0 0
\(771\) 42.9178 1.54565
\(772\) 40.7694 + 29.6207i 1.46732 + 1.06607i
\(773\) −2.99315 + 9.21198i −0.107656 + 0.331332i −0.990345 0.138627i \(-0.955731\pi\)
0.882688 + 0.469959i \(0.155731\pi\)
\(774\) −0.753921 2.32033i −0.0270991 0.0834025i
\(775\) 0 0
\(776\) 23.7298 17.2407i 0.851849 0.618905i
\(777\) −11.7925 36.2935i −0.423053 1.30202i
\(778\) −4.79740 + 14.7649i −0.171995 + 0.529346i
\(779\) 2.56704 + 1.86506i 0.0919737 + 0.0668228i
\(780\) 0 0
\(781\) 6.77623 2.52385i 0.242473 0.0903105i
\(782\) 1.35788 0.0485578
\(783\) −9.49723 6.90014i −0.339403 0.246591i
\(784\) 17.7607 54.6617i 0.634310 1.95221i
\(785\) 0 0
\(786\) 51.4199 37.3587i 1.83409 1.33254i
\(787\) −14.7424 + 10.7110i −0.525510 + 0.381805i −0.818675 0.574256i \(-0.805291\pi\)
0.293166 + 0.956062i \(0.405291\pi\)
\(788\) −22.1835 68.2739i −0.790255 2.43216i
\(789\) 14.8288 45.6385i 0.527921 1.62477i
\(790\) 0 0
\(791\) −54.4139 −1.93473
\(792\) −4.36152 + 1.62448i −0.154980 + 0.0577233i
\(793\) 32.9495 1.17007
\(794\) −72.6954 52.8163i −2.57986 1.87438i
\(795\) 0 0
\(796\) 6.27245 + 19.3046i 0.222321 + 0.684234i
\(797\) −16.1910 + 11.7634i −0.573514 + 0.416682i −0.836380 0.548150i \(-0.815332\pi\)
0.262866 + 0.964832i \(0.415332\pi\)
\(798\) 48.8793 35.5129i 1.73031 1.25714i
\(799\) 1.94160 + 5.97562i 0.0686887 + 0.211402i
\(800\) 0 0
\(801\) 0.0298661 + 0.0216990i 0.00105527 + 0.000766696i
\(802\) 42.2160 1.49070
\(803\) 1.25798 + 29.6658i 0.0443930 + 1.04688i
\(804\) 64.2079 2.26444
\(805\) 0 0
\(806\) −16.8997 + 52.0121i −0.595268 + 1.83205i
\(807\) −3.30474 10.1709i −0.116332 0.358034i
\(808\) −46.8441 + 34.0342i −1.64797 + 1.19732i
\(809\) 25.7317 18.6952i 0.904679 0.657288i −0.0349842 0.999388i \(-0.511138\pi\)
0.939664 + 0.342100i \(0.111138\pi\)
\(810\) 0 0
\(811\) 1.12941 3.47596i 0.0396589 0.122057i −0.929267 0.369409i \(-0.879560\pi\)
0.968926 + 0.247351i \(0.0795602\pi\)
\(812\) 32.9977 + 23.9742i 1.15799 + 0.841331i
\(813\) −13.4331 −0.471119
\(814\) −26.3222 + 39.6604i −0.922593 + 1.39010i
\(815\) 0 0
\(816\) −56.1012 40.7599i −1.96393 1.42688i
\(817\) 4.77108 14.6839i 0.166919 0.513724i
\(818\) 3.41313 + 10.5045i 0.119337 + 0.367283i
\(819\) 2.95129 2.14424i 0.103126 0.0749258i
\(820\) 0 0
\(821\) 4.25449 + 13.0940i 0.148483 + 0.456983i 0.997442 0.0714746i \(-0.0227705\pi\)
−0.848960 + 0.528458i \(0.822770\pi\)
\(822\) −14.1158 + 43.4440i −0.492345 + 1.51528i
\(823\) −32.8267 23.8500i −1.14427 0.831358i −0.156558 0.987669i \(-0.550040\pi\)
−0.987708 + 0.156311i \(0.950040\pi\)
\(824\) −108.332 −3.77393
\(825\) 0 0
\(826\) −11.5225 −0.400918
\(827\) 12.5658 + 9.12955i 0.436954 + 0.317466i 0.784423 0.620226i \(-0.212959\pi\)
−0.347469 + 0.937691i \(0.612959\pi\)
\(828\) 0.0318362 0.0979817i 0.00110638 0.00340510i
\(829\) −9.00201 27.7053i −0.312653 0.962247i −0.976710 0.214565i \(-0.931167\pi\)
0.664057 0.747682i \(-0.268833\pi\)
\(830\) 0 0
\(831\) −2.09204 + 1.51996i −0.0725720 + 0.0527267i
\(832\) −2.14284 6.59497i −0.0742895 0.228640i
\(833\) 11.5335 35.4965i 0.399612 1.22988i
\(834\) −7.54615 5.48260i −0.261302 0.189847i
\(835\) 0 0
\(836\) −50.4845 14.0688i −1.74604 0.486579i
\(837\) −23.7038 −0.819322
\(838\) 38.7902 + 28.1827i 1.33999 + 0.973557i
\(839\) 6.73139 20.7171i 0.232393 0.715233i −0.765063 0.643955i \(-0.777292\pi\)
0.997456 0.0712779i \(-0.0227077\pi\)
\(840\) 0 0
\(841\) 18.9934 13.7995i 0.654945 0.475845i
\(842\) 63.2451 45.9503i 2.17957 1.58355i
\(843\) −0.132543 0.407927i −0.00456504 0.0140497i
\(844\) 3.26253 10.0410i 0.112301 0.345626i
\(845\) 0 0
\(846\) 0.685505 0.0235681
\(847\) −9.50725 + 40.7144i −0.326673 + 1.39896i
\(848\) −42.4392 −1.45737
\(849\) −7.65560 5.56212i −0.262740 0.190892i
\(850\) 0 0
\(851\) −0.182989 0.563182i −0.00627278 0.0193056i
\(852\) 14.4378 10.4897i 0.494631 0.359371i
\(853\) 7.08127 5.14484i 0.242458 0.176156i −0.459920 0.887961i \(-0.652122\pi\)
0.702378 + 0.711804i \(0.252122\pi\)
\(854\) −22.0493 67.8608i −0.754512 2.32215i
\(855\) 0 0
\(856\) −91.3583 66.3757i −3.12256 2.26867i
\(857\) −14.0273 −0.479163 −0.239582 0.970876i \(-0.577010\pi\)
−0.239582 + 0.970876i \(0.577010\pi\)
\(858\) −66.0047 18.3939i −2.25336 0.627957i
\(859\) 31.8774 1.08764 0.543822 0.839201i \(-0.316977\pi\)
0.543822 + 0.839201i \(0.316977\pi\)
\(860\) 0 0
\(861\) 1.93055 5.94162i 0.0657930 0.202490i
\(862\) 6.58294 + 20.2602i 0.224216 + 0.690065i
\(863\) 2.80343 2.03681i 0.0954298 0.0693338i −0.539047 0.842276i \(-0.681216\pi\)
0.634477 + 0.772942i \(0.281216\pi\)
\(864\) 26.7761 19.4539i 0.910940 0.661836i
\(865\) 0 0
\(866\) −21.7360 + 66.8964i −0.738618 + 2.27323i
\(867\) −11.7771 8.55659i −0.399973 0.290597i
\(868\) 82.3577 2.79540
\(869\) −29.6479 37.3686i −1.00574 1.26764i
\(870\) 0 0
\(871\) 28.5418 + 20.7368i 0.967103 + 0.702641i
\(872\) 36.3865 111.986i 1.23220 3.79233i
\(873\) −0.294138 0.905265i −0.00995507 0.0306386i
\(874\) 0.758482 0.551069i 0.0256560 0.0186402i
\(875\) 0 0
\(876\) 22.6452 + 69.6946i 0.765109 + 2.35476i
\(877\) −6.11122 + 18.8084i −0.206361 + 0.635114i 0.793294 + 0.608839i \(0.208365\pi\)
−0.999655 + 0.0262750i \(0.991635\pi\)
\(878\) 47.9975 + 34.8723i 1.61984 + 1.17688i
\(879\) 26.8816 0.906692
\(880\) 0 0
\(881\) 57.2097 1.92744 0.963722 0.266910i \(-0.0860025\pi\)
0.963722 + 0.266910i \(0.0860025\pi\)
\(882\) −3.29436 2.39349i −0.110927 0.0805931i
\(883\) −17.6885 + 54.4396i −0.595265 + 1.83204i −0.0418636 + 0.999123i \(0.513329\pi\)
−0.553402 + 0.832915i \(0.686671\pi\)
\(884\) −31.8081 97.8953i −1.06982 3.29258i
\(885\) 0 0
\(886\) 41.8421 30.4000i 1.40571 1.02131i
\(887\) 12.2757 + 37.7809i 0.412179 + 1.26856i 0.914750 + 0.404021i \(0.132388\pi\)
−0.502571 + 0.864536i \(0.667612\pi\)
\(888\) −20.4023 + 62.7919i −0.684657 + 2.10716i
\(889\) 17.1276 + 12.4439i 0.574441 + 0.417356i
\(890\) 0 0
\(891\) −1.34819 31.7933i −0.0451661 1.06512i
\(892\) 47.0199 1.57434
\(893\) 3.50962 + 2.54989i 0.117445 + 0.0853287i
\(894\) 15.0748 46.3956i 0.504178 1.55170i
\(895\) 0 0
\(896\) 28.5990 20.7784i 0.955427 0.694158i
\(897\) 0.689612 0.501032i 0.0230255 0.0167290i
\(898\) 11.1129 + 34.2020i 0.370842 + 1.14133i
\(899\) −3.44608 + 10.6059i −0.114933 + 0.353728i
\(900\) 0 0
\(901\) −27.5594 −0.918136
\(902\) −7.30262 + 2.71991i −0.243151 + 0.0905630i
\(903\) −30.3989 −1.01161
\(904\) 76.1627 + 55.3354i 2.53313 + 1.84043i
\(905\) 0 0
\(906\) −4.87511 15.0041i −0.161965 0.498476i
\(907\) 21.5295 15.6421i 0.714875 0.519387i −0.169867 0.985467i \(-0.554334\pi\)
0.884743 + 0.466080i \(0.154334\pi\)
\(908\) 26.5180 19.2665i 0.880032 0.639380i
\(909\) 0.580648 + 1.78705i 0.0192589 + 0.0592727i
\(910\) 0 0
\(911\) −6.30044 4.57754i −0.208743 0.151661i 0.478502 0.878087i \(-0.341180\pi\)
−0.687245 + 0.726426i \(0.741180\pi\)
\(912\) −47.8784 −1.58541
\(913\) 14.6433 5.45399i 0.484623 0.180501i
\(914\) −40.0351 −1.32424
\(915\) 0 0
\(916\) 2.90587 8.94336i 0.0960128 0.295497i
\(917\) −16.2517 50.0175i −0.536678 1.65172i
\(918\) 51.9028 37.7096i 1.71305 1.24460i
\(919\) 12.9266 9.39169i 0.426408 0.309803i −0.353803 0.935320i \(-0.615112\pi\)
0.780211 + 0.625517i \(0.215112\pi\)
\(920\) 0 0
\(921\) −1.16901 + 3.59783i −0.0385201 + 0.118553i
\(922\) −61.3803 44.5954i −2.02145 1.46867i
\(923\) 9.80572 0.322759
\(924\) 4.37168 + 103.094i 0.143818 + 3.39154i
\(925\) 0 0
\(926\) −2.72877 1.98257i −0.0896730 0.0651512i
\(927\) −1.08636 + 3.34347i −0.0356807 + 0.109814i
\(928\) −4.81167 14.8088i −0.157951 0.486123i
\(929\) −8.02976 + 5.83396i −0.263448 + 0.191406i −0.711666 0.702518i \(-0.752059\pi\)
0.448218 + 0.893924i \(0.352059\pi\)
\(930\) 0 0
\(931\) −7.96319 24.5082i −0.260983 0.803223i
\(932\) 24.8155 76.3741i 0.812857 2.50172i
\(933\) 24.1627 + 17.5552i 0.791051 + 0.574732i
\(934\) 31.0046 1.01450
\(935\) 0 0
\(936\) −6.31145 −0.206296
\(937\) 7.21488 + 5.24192i 0.235700 + 0.171246i 0.699365 0.714764i \(-0.253466\pi\)
−0.463666 + 0.886010i \(0.653466\pi\)
\(938\) 23.6086 72.6599i 0.770849 2.37243i
\(939\) 16.1086 + 49.5771i 0.525683 + 1.61789i
\(940\) 0 0
\(941\) −30.1937 + 21.9370i −0.984287 + 0.715126i −0.958663 0.284546i \(-0.908157\pi\)
−0.0256241 + 0.999672i \(0.508157\pi\)
\(942\) −0.423829 1.30441i −0.0138091 0.0425001i
\(943\) 0.0299572 0.0921987i 0.000975540 0.00300240i
\(944\) 7.38712 + 5.36705i 0.240430 + 0.174683i
\(945\) 0 0
\(946\) 23.5674 + 29.7047i 0.766242 + 0.965782i
\(947\) −1.62118 −0.0526814 −0.0263407 0.999653i \(-0.508385\pi\)
−0.0263407 + 0.999653i \(0.508385\pi\)
\(948\) −95.2431 69.1982i −3.09335 2.24745i
\(949\) −12.4426 + 38.2944i −0.403904 + 1.24309i
\(950\) 0 0
\(951\) −26.5633 + 19.2994i −0.861375 + 0.625826i
\(952\) −101.348 + 73.6340i −3.28472 + 2.38649i
\(953\) 7.83110 + 24.1017i 0.253674 + 0.780729i 0.994088 + 0.108578i \(0.0346297\pi\)
−0.740414 + 0.672152i \(0.765370\pi\)
\(954\) −0.929151 + 2.85963i −0.0300824 + 0.0925840i
\(955\) 0 0
\(956\) 85.3383 2.76004
\(957\) −13.4592 3.75075i −0.435075 0.121245i
\(958\) 7.82578 0.252839
\(959\) 30.5790 + 22.2169i 0.987448 + 0.717423i
\(960\) 0 0
\(961\) −2.62123 8.06732i −0.0845558 0.260236i
\(962\) −52.2217 + 37.9413i −1.68370 + 1.22328i
\(963\) −2.96470 + 2.15398i −0.0955362 + 0.0694111i
\(964\) 42.6019 + 131.115i 1.37211 + 4.22293i
\(965\) 0 0
\(966\) −1.49338 1.08500i −0.0480486 0.0349093i
\(967\) −6.70594 −0.215648 −0.107824 0.994170i \(-0.534388\pi\)
−0.107824 + 0.994170i \(0.534388\pi\)
\(968\) 54.7111 47.3193i 1.75848 1.52090i
\(969\) −31.0915 −0.998803
\(970\) 0 0
\(971\) 1.79835 5.53476i 0.0577119 0.177619i −0.918045 0.396476i \(-0.870233\pi\)
0.975757 + 0.218857i \(0.0702329\pi\)
\(972\) −3.12349 9.61312i −0.100186 0.308341i
\(973\) −6.24407 + 4.53658i −0.200176 + 0.145436i
\(974\) 50.2511 36.5095i 1.61015 1.16984i
\(975\) 0 0
\(976\) −17.4730 + 53.7763i −0.559296 + 1.72134i
\(977\) −4.23279 3.07530i −0.135419 0.0983875i 0.518014 0.855372i \(-0.326672\pi\)
−0.653432 + 0.756985i \(0.726672\pi\)
\(978\) 65.5017 2.09451
\(979\) −0.552694 0.154022i −0.0176642 0.00492256i
\(980\) 0 0
\(981\) −3.09135 2.24600i −0.0986993 0.0717092i
\(982\) −25.8772 + 79.6419i −0.825775 + 2.54148i
\(983\) −4.57075 14.0673i −0.145784 0.448678i 0.851327 0.524636i \(-0.175799\pi\)
−0.997111 + 0.0759580i \(0.975799\pi\)
\(984\) −8.74443 + 6.35320i −0.278762 + 0.202533i
\(985\) 0 0
\(986\) −9.32696 28.7054i −0.297031 0.914168i
\(987\) 2.63942 8.12329i 0.0840136 0.258567i
\(988\) −57.4962 41.7734i −1.82920 1.32899i
\(989\) −0.471714 −0.0149996
\(990\) 0 0
\(991\) 24.9189 0.791575 0.395788 0.918342i \(-0.370472\pi\)
0.395788 + 0.918342i \(0.370472\pi\)
\(992\) −25.4361 18.4804i −0.807595 0.586752i
\(993\) 11.9430 36.7566i 0.378998 1.16644i
\(994\) −6.56185 20.1953i −0.208129 0.640556i
\(995\) 0 0
\(996\) 31.1998 22.6680i 0.988604 0.718263i
\(997\) 4.58532 + 14.1122i 0.145219 + 0.446937i 0.997039 0.0768969i \(-0.0245012\pi\)
−0.851820 + 0.523834i \(0.824501\pi\)
\(998\) −23.7601 + 73.1261i −0.752113 + 2.31477i
\(999\) −22.6345 16.4449i −0.716124 0.520295i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.h.e.26.1 yes 16
5.2 odd 4 275.2.z.c.224.8 32
5.3 odd 4 275.2.z.c.224.1 32
5.4 even 2 275.2.h.c.26.4 16
11.3 even 5 inner 275.2.h.e.201.1 yes 16
11.5 even 5 3025.2.a.bn.1.7 8
11.6 odd 10 3025.2.a.bj.1.2 8
55.3 odd 20 275.2.z.c.124.8 32
55.14 even 10 275.2.h.c.201.4 yes 16
55.39 odd 10 3025.2.a.bm.1.7 8
55.47 odd 20 275.2.z.c.124.1 32
55.49 even 10 3025.2.a.bi.1.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.2.h.c.26.4 16 5.4 even 2
275.2.h.c.201.4 yes 16 55.14 even 10
275.2.h.e.26.1 yes 16 1.1 even 1 trivial
275.2.h.e.201.1 yes 16 11.3 even 5 inner
275.2.z.c.124.1 32 55.47 odd 20
275.2.z.c.124.8 32 55.3 odd 20
275.2.z.c.224.1 32 5.3 odd 4
275.2.z.c.224.8 32 5.2 odd 4
3025.2.a.bi.1.2 8 55.49 even 10
3025.2.a.bj.1.2 8 11.6 odd 10
3025.2.a.bm.1.7 8 55.39 odd 10
3025.2.a.bn.1.7 8 11.5 even 5