Properties

Label 275.2.h.e.201.3
Level $275$
Weight $2$
Character 275.201
Analytic conductor $2.196$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,2,Mod(26,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.26"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.h (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 10 x^{14} - 13 x^{13} + 53 x^{12} - 12 x^{11} + 136 x^{10} + 8 x^{9} + 300 x^{8} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 201.3
Root \(0.977523 + 0.710212i\) of defining polynomial
Character \(\chi\) \(=\) 275.201
Dual form 275.2.h.e.26.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.168506 - 0.122427i) q^{2} +(0.585361 + 1.80155i) q^{3} +(-0.604628 + 1.86085i) q^{4} +(0.319195 + 0.231909i) q^{6} +(-0.398265 + 1.22573i) q^{7} +(0.254662 + 0.783769i) q^{8} +(-0.475901 + 0.345762i) q^{9} +(0.898964 - 3.19247i) q^{11} -3.70635 q^{12} +(-4.40926 + 3.20351i) q^{13} +(0.0829527 + 0.255302i) q^{14} +(-3.02701 - 2.19925i) q^{16} +(3.18058 + 2.31083i) q^{17} +(-0.0378616 + 0.116526i) q^{18} +(0.693894 + 2.13559i) q^{19} -2.44136 q^{21} +(-0.239363 - 0.648008i) q^{22} -0.711128 q^{23} +(-1.26293 + 0.917575i) q^{24} +(-0.350791 + 1.07962i) q^{26} +(3.69600 + 2.68530i) q^{27} +(-2.04011 - 1.48223i) q^{28} +(1.13043 - 3.47910i) q^{29} +(5.22959 - 3.79952i) q^{31} -2.42752 q^{32} +(6.27763 - 0.249213i) q^{33} +0.818854 q^{34} +(-0.355670 - 1.09464i) q^{36} +(2.55355 - 7.85902i) q^{37} +(0.378379 + 0.274908i) q^{38} +(-8.35231 - 6.06831i) q^{39} +(3.90378 + 12.0146i) q^{41} +(-0.411383 + 0.298888i) q^{42} -1.31169 q^{43} +(5.39718 + 3.60310i) q^{44} +(-0.119829 + 0.0870611i) q^{46} +(1.39523 + 4.29408i) q^{47} +(2.19018 - 6.74067i) q^{48} +(4.31931 + 3.13816i) q^{49} +(-2.30129 + 7.08265i) q^{51} +(-3.29531 - 10.1419i) q^{52} +(7.86297 - 5.71278i) q^{53} +0.951551 q^{54} -1.06212 q^{56} +(-3.44120 + 2.50018i) q^{57} +(-0.235451 - 0.724644i) q^{58} +(2.75455 - 8.47763i) q^{59} +(1.48965 + 1.08229i) q^{61} +(0.416055 - 1.28048i) q^{62} +(-0.234278 - 0.721033i) q^{63} +(5.64496 - 4.10130i) q^{64} +(1.02731 - 0.810544i) q^{66} -4.30232 q^{67} +(-6.22318 + 4.52140i) q^{68} +(-0.416266 - 1.28114i) q^{69} +(-8.21746 - 5.97033i) q^{71} +(-0.392192 - 0.284944i) q^{72} +(3.70969 - 11.4173i) q^{73} +(-0.531866 - 1.63692i) q^{74} -4.39356 q^{76} +(3.55509 + 2.37334i) q^{77} -2.15034 q^{78} +(-10.3649 + 7.53052i) q^{79} +(-3.21956 + 9.90878i) q^{81} +(2.12872 + 1.54661i) q^{82} +(-10.1477 - 7.37274i) q^{83} +(1.47611 - 4.54301i) q^{84} +(-0.221028 + 0.160586i) q^{86} +6.92949 q^{87} +(2.73109 - 0.108421i) q^{88} -6.28392 q^{89} +(-2.17060 - 6.68043i) q^{91} +(0.429968 - 1.32330i) q^{92} +(9.90624 + 7.19730i) q^{93} +(0.760816 + 0.552765i) q^{94} +(-1.42098 - 4.37332i) q^{96} +(0.245459 - 0.178336i) q^{97} +1.11202 q^{98} +(0.676018 + 1.83013i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{3} - 2 q^{4} - 3 q^{6} - 4 q^{7} - 16 q^{8} + 8 q^{9} - 5 q^{11} + 6 q^{12} - 7 q^{13} + 3 q^{14} - 4 q^{16} - 12 q^{17} - 16 q^{18} - 13 q^{19} + 10 q^{21} - 28 q^{22} + 4 q^{23} - 43 q^{24}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.168506 0.122427i 0.119152 0.0865688i −0.526613 0.850105i \(-0.676538\pi\)
0.645765 + 0.763536i \(0.276538\pi\)
\(3\) 0.585361 + 1.80155i 0.337958 + 1.04013i 0.965247 + 0.261341i \(0.0841647\pi\)
−0.627288 + 0.778787i \(0.715835\pi\)
\(4\) −0.604628 + 1.86085i −0.302314 + 0.930427i
\(5\) 0 0
\(6\) 0.319195 + 0.231909i 0.130311 + 0.0946765i
\(7\) −0.398265 + 1.22573i −0.150530 + 0.463284i −0.997681 0.0680689i \(-0.978316\pi\)
0.847150 + 0.531353i \(0.178316\pi\)
\(8\) 0.254662 + 0.783769i 0.0900367 + 0.277104i
\(9\) −0.475901 + 0.345762i −0.158634 + 0.115254i
\(10\) 0 0
\(11\) 0.898964 3.19247i 0.271048 0.962566i
\(12\) −3.70635 −1.06993
\(13\) −4.40926 + 3.20351i −1.22291 + 0.888494i −0.996338 0.0855007i \(-0.972751\pi\)
−0.226569 + 0.973995i \(0.572751\pi\)
\(14\) 0.0829527 + 0.255302i 0.0221700 + 0.0682324i
\(15\) 0 0
\(16\) −3.02701 2.19925i −0.756752 0.549812i
\(17\) 3.18058 + 2.31083i 0.771404 + 0.560458i 0.902387 0.430927i \(-0.141813\pi\)
−0.130983 + 0.991385i \(0.541813\pi\)
\(18\) −0.0378616 + 0.116526i −0.00892407 + 0.0274655i
\(19\) 0.693894 + 2.13559i 0.159190 + 0.489937i 0.998561 0.0536215i \(-0.0170764\pi\)
−0.839371 + 0.543559i \(0.817076\pi\)
\(20\) 0 0
\(21\) −2.44136 −0.532748
\(22\) −0.239363 0.648008i −0.0510324 0.138156i
\(23\) −0.711128 −0.148280 −0.0741402 0.997248i \(-0.523621\pi\)
−0.0741402 + 0.997248i \(0.523621\pi\)
\(24\) −1.26293 + 0.917575i −0.257795 + 0.187299i
\(25\) 0 0
\(26\) −0.350791 + 1.07962i −0.0687957 + 0.211731i
\(27\) 3.69600 + 2.68530i 0.711295 + 0.516786i
\(28\) −2.04011 1.48223i −0.385545 0.280115i
\(29\) 1.13043 3.47910i 0.209915 0.646052i −0.789561 0.613673i \(-0.789691\pi\)
0.999476 0.0323796i \(-0.0103085\pi\)
\(30\) 0 0
\(31\) 5.22959 3.79952i 0.939262 0.682414i −0.00898085 0.999960i \(-0.502859\pi\)
0.948243 + 0.317546i \(0.102859\pi\)
\(32\) −2.42752 −0.429130
\(33\) 6.27763 0.249213i 1.09279 0.0433824i
\(34\) 0.818854 0.140432
\(35\) 0 0
\(36\) −0.355670 1.09464i −0.0592783 0.182440i
\(37\) 2.55355 7.85902i 0.419801 1.29201i −0.488085 0.872796i \(-0.662304\pi\)
0.907886 0.419218i \(-0.137696\pi\)
\(38\) 0.378379 + 0.274908i 0.0613811 + 0.0445960i
\(39\) −8.35231 6.06831i −1.33744 0.971707i
\(40\) 0 0
\(41\) 3.90378 + 12.0146i 0.609668 + 1.87637i 0.460789 + 0.887510i \(0.347566\pi\)
0.148879 + 0.988855i \(0.452434\pi\)
\(42\) −0.411383 + 0.298888i −0.0634779 + 0.0461194i
\(43\) −1.31169 −0.200031 −0.100015 0.994986i \(-0.531889\pi\)
−0.100015 + 0.994986i \(0.531889\pi\)
\(44\) 5.39718 + 3.60310i 0.813656 + 0.543187i
\(45\) 0 0
\(46\) −0.119829 + 0.0870611i −0.0176679 + 0.0128365i
\(47\) 1.39523 + 4.29408i 0.203515 + 0.626356i 0.999771 + 0.0213959i \(0.00681104\pi\)
−0.796256 + 0.604960i \(0.793189\pi\)
\(48\) 2.19018 6.74067i 0.316125 0.972932i
\(49\) 4.31931 + 3.13816i 0.617044 + 0.448309i
\(50\) 0 0
\(51\) −2.30129 + 7.08265i −0.322246 + 0.991770i
\(52\) −3.29531 10.1419i −0.456977 1.40643i
\(53\) 7.86297 5.71278i 1.08006 0.784711i 0.102369 0.994747i \(-0.467358\pi\)
0.977694 + 0.210035i \(0.0673579\pi\)
\(54\) 0.951551 0.129490
\(55\) 0 0
\(56\) −1.06212 −0.141931
\(57\) −3.44120 + 2.50018i −0.455798 + 0.331157i
\(58\) −0.235451 0.724644i −0.0309162 0.0951504i
\(59\) 2.75455 8.47763i 0.358612 1.10369i −0.595274 0.803523i \(-0.702956\pi\)
0.953886 0.300171i \(-0.0970436\pi\)
\(60\) 0 0
\(61\) 1.48965 + 1.08229i 0.190730 + 0.138574i 0.679052 0.734090i \(-0.262391\pi\)
−0.488322 + 0.872663i \(0.662391\pi\)
\(62\) 0.416055 1.28048i 0.0528390 0.162622i
\(63\) −0.234278 0.721033i −0.0295162 0.0908417i
\(64\) 5.64496 4.10130i 0.705620 0.512663i
\(65\) 0 0
\(66\) 1.02731 0.810544i 0.126453 0.0997711i
\(67\) −4.30232 −0.525612 −0.262806 0.964849i \(-0.584648\pi\)
−0.262806 + 0.964849i \(0.584648\pi\)
\(68\) −6.22318 + 4.52140i −0.754671 + 0.548301i
\(69\) −0.416266 1.28114i −0.0501126 0.154231i
\(70\) 0 0
\(71\) −8.21746 5.97033i −0.975233 0.708548i −0.0185947 0.999827i \(-0.505919\pi\)
−0.956638 + 0.291279i \(0.905919\pi\)
\(72\) −0.392192 0.284944i −0.0462202 0.0335810i
\(73\) 3.70969 11.4173i 0.434187 1.33629i −0.459731 0.888058i \(-0.652054\pi\)
0.893917 0.448232i \(-0.147946\pi\)
\(74\) −0.531866 1.63692i −0.0618282 0.190288i
\(75\) 0 0
\(76\) −4.39356 −0.503976
\(77\) 3.55509 + 2.37334i 0.405141 + 0.270467i
\(78\) −2.15034 −0.243478
\(79\) −10.3649 + 7.53052i −1.16614 + 0.847249i −0.990542 0.137213i \(-0.956186\pi\)
−0.175597 + 0.984462i \(0.556186\pi\)
\(80\) 0 0
\(81\) −3.21956 + 9.90878i −0.357729 + 1.10098i
\(82\) 2.12872 + 1.54661i 0.235078 + 0.170794i
\(83\) −10.1477 7.37274i −1.11386 0.809263i −0.130589 0.991437i \(-0.541687\pi\)
−0.983266 + 0.182174i \(0.941687\pi\)
\(84\) 1.47611 4.54301i 0.161057 0.495683i
\(85\) 0 0
\(86\) −0.221028 + 0.160586i −0.0238340 + 0.0173164i
\(87\) 6.92949 0.742920
\(88\) 2.73109 0.108421i 0.291135 0.0115577i
\(89\) −6.28392 −0.666095 −0.333047 0.942910i \(-0.608077\pi\)
−0.333047 + 0.942910i \(0.608077\pi\)
\(90\) 0 0
\(91\) −2.17060 6.68043i −0.227541 0.700299i
\(92\) 0.429968 1.32330i 0.0448272 0.137964i
\(93\) 9.90624 + 7.19730i 1.02723 + 0.746326i
\(94\) 0.760816 + 0.552765i 0.0784722 + 0.0570134i
\(95\) 0 0
\(96\) −1.42098 4.37332i −0.145028 0.446350i
\(97\) 0.245459 0.178336i 0.0249226 0.0181073i −0.575254 0.817975i \(-0.695097\pi\)
0.600177 + 0.799867i \(0.295097\pi\)
\(98\) 1.11202 0.112331
\(99\) 0.676018 + 1.83013i 0.0679423 + 0.183935i
\(100\) 0 0
\(101\) 4.99821 3.63141i 0.497340 0.361339i −0.310660 0.950521i \(-0.600550\pi\)
0.808000 + 0.589182i \(0.200550\pi\)
\(102\) 0.479325 + 1.47521i 0.0474602 + 0.146068i
\(103\) 2.46558 7.58828i 0.242941 0.747695i −0.753027 0.657989i \(-0.771407\pi\)
0.995968 0.0897061i \(-0.0285928\pi\)
\(104\) −3.63369 2.64003i −0.356312 0.258876i
\(105\) 0 0
\(106\) 0.625561 1.92528i 0.0607598 0.187000i
\(107\) 3.10415 + 9.55358i 0.300089 + 0.923580i 0.981464 + 0.191645i \(0.0613823\pi\)
−0.681375 + 0.731934i \(0.738618\pi\)
\(108\) −7.23165 + 5.25410i −0.695866 + 0.505576i
\(109\) 7.63832 0.731619 0.365809 0.930690i \(-0.380792\pi\)
0.365809 + 0.930690i \(0.380792\pi\)
\(110\) 0 0
\(111\) 15.6532 1.48574
\(112\) 3.90125 2.83442i 0.368633 0.267828i
\(113\) 6.05767 + 18.6436i 0.569858 + 1.75384i 0.653057 + 0.757309i \(0.273486\pi\)
−0.0831991 + 0.996533i \(0.526514\pi\)
\(114\) −0.273774 + 0.842590i −0.0256413 + 0.0789158i
\(115\) 0 0
\(116\) 5.79060 + 4.20712i 0.537644 + 0.390621i
\(117\) 0.990715 3.04911i 0.0915916 0.281890i
\(118\) −0.573731 1.76576i −0.0528162 0.162552i
\(119\) −4.09918 + 2.97823i −0.375771 + 0.273013i
\(120\) 0 0
\(121\) −9.38373 5.73983i −0.853066 0.521803i
\(122\) 0.383517 0.0347220
\(123\) −19.3598 + 14.0657i −1.74562 + 1.26827i
\(124\) 3.90839 + 12.0288i 0.350984 + 1.08022i
\(125\) 0 0
\(126\) −0.127751 0.0928166i −0.0113810 0.00826876i
\(127\) −13.8869 10.0894i −1.23226 0.895293i −0.235207 0.971945i \(-0.575577\pi\)
−0.997058 + 0.0766526i \(0.975577\pi\)
\(128\) 1.94939 5.99961i 0.172304 0.530296i
\(129\) −0.767812 2.36308i −0.0676020 0.208058i
\(130\) 0 0
\(131\) 10.0223 0.875655 0.437828 0.899059i \(-0.355748\pi\)
0.437828 + 0.899059i \(0.355748\pi\)
\(132\) −3.33188 + 11.8324i −0.290003 + 1.02988i
\(133\) −2.89402 −0.250943
\(134\) −0.724967 + 0.526720i −0.0626276 + 0.0455016i
\(135\) 0 0
\(136\) −1.00118 + 3.08132i −0.0858506 + 0.264221i
\(137\) −2.85366 2.07331i −0.243805 0.177134i 0.459172 0.888347i \(-0.348146\pi\)
−0.702977 + 0.711213i \(0.748146\pi\)
\(138\) −0.226989 0.164917i −0.0193226 0.0140387i
\(139\) −2.71237 + 8.34781i −0.230060 + 0.708052i 0.767679 + 0.640835i \(0.221412\pi\)
−0.997738 + 0.0672164i \(0.978588\pi\)
\(140\) 0 0
\(141\) −6.91931 + 5.02717i −0.582711 + 0.423364i
\(142\) −2.11562 −0.177539
\(143\) 6.26335 + 16.9563i 0.523768 + 1.41795i
\(144\) 2.20097 0.183414
\(145\) 0 0
\(146\) −0.772674 2.37805i −0.0639469 0.196808i
\(147\) −3.12522 + 9.61843i −0.257763 + 0.793314i
\(148\) 13.0805 + 9.50356i 1.07521 + 0.781188i
\(149\) 6.79312 + 4.93549i 0.556514 + 0.404331i 0.830181 0.557493i \(-0.188237\pi\)
−0.273667 + 0.961824i \(0.588237\pi\)
\(150\) 0 0
\(151\) −2.63804 8.11906i −0.214681 0.660720i −0.999176 0.0405849i \(-0.987078\pi\)
0.784495 0.620135i \(-0.212922\pi\)
\(152\) −1.49710 + 1.08771i −0.121431 + 0.0882247i
\(153\) −2.31264 −0.186966
\(154\) 0.889616 0.0353165i 0.0716873 0.00284588i
\(155\) 0 0
\(156\) 16.3423 11.8734i 1.30843 0.950629i
\(157\) −3.90892 12.0304i −0.311966 0.960131i −0.976986 0.213306i \(-0.931577\pi\)
0.665020 0.746826i \(-0.268423\pi\)
\(158\) −0.824606 + 2.53788i −0.0656021 + 0.201903i
\(159\) 14.8946 + 10.8215i 1.18122 + 0.858204i
\(160\) 0 0
\(161\) 0.283218 0.871654i 0.0223207 0.0686960i
\(162\) 0.670585 + 2.06385i 0.0526862 + 0.162151i
\(163\) −6.80311 + 4.94275i −0.532860 + 0.387146i −0.821427 0.570314i \(-0.806821\pi\)
0.288566 + 0.957460i \(0.406821\pi\)
\(164\) −24.7177 −1.93013
\(165\) 0 0
\(166\) −2.61257 −0.202775
\(167\) −15.4725 + 11.2414i −1.19730 + 0.869888i −0.994016 0.109233i \(-0.965161\pi\)
−0.203281 + 0.979120i \(0.565161\pi\)
\(168\) −0.621721 1.91346i −0.0479668 0.147627i
\(169\) 5.16183 15.8865i 0.397064 1.22204i
\(170\) 0 0
\(171\) −1.06863 0.776405i −0.0817202 0.0593732i
\(172\) 0.793085 2.44086i 0.0604721 0.186114i
\(173\) −3.78197 11.6397i −0.287538 0.884950i −0.985626 0.168939i \(-0.945966\pi\)
0.698089 0.716011i \(-0.254034\pi\)
\(174\) 1.16766 0.848356i 0.0885202 0.0643137i
\(175\) 0 0
\(176\) −9.74221 + 7.68658i −0.734347 + 0.579398i
\(177\) 16.8853 1.26918
\(178\) −1.05888 + 0.769321i −0.0793664 + 0.0576630i
\(179\) 0.988945 + 3.04366i 0.0739172 + 0.227494i 0.981189 0.193052i \(-0.0618386\pi\)
−0.907271 + 0.420546i \(0.861839\pi\)
\(180\) 0 0
\(181\) −1.75310 1.27370i −0.130307 0.0946734i 0.520723 0.853726i \(-0.325663\pi\)
−0.651029 + 0.759053i \(0.725663\pi\)
\(182\) −1.18362 0.859952i −0.0877360 0.0637439i
\(183\) −1.07783 + 3.31722i −0.0796754 + 0.245216i
\(184\) −0.181097 0.557360i −0.0133507 0.0410891i
\(185\) 0 0
\(186\) 2.55040 0.187005
\(187\) 10.2365 8.07655i 0.748565 0.590616i
\(188\) −8.83425 −0.644304
\(189\) −4.76345 + 3.46085i −0.346490 + 0.251740i
\(190\) 0 0
\(191\) 0.544810 1.67675i 0.0394211 0.121326i −0.929409 0.369051i \(-0.879683\pi\)
0.968830 + 0.247725i \(0.0796829\pi\)
\(192\) 10.6931 + 7.76896i 0.771705 + 0.560677i
\(193\) −12.4647 9.05616i −0.897231 0.651877i 0.0405221 0.999179i \(-0.487098\pi\)
−0.937753 + 0.347302i \(0.887098\pi\)
\(194\) 0.0195282 0.0601015i 0.00140204 0.00431503i
\(195\) 0 0
\(196\) −8.45123 + 6.14018i −0.603660 + 0.438584i
\(197\) 1.78727 0.127338 0.0636689 0.997971i \(-0.479720\pi\)
0.0636689 + 0.997971i \(0.479720\pi\)
\(198\) 0.337970 + 0.225625i 0.0240185 + 0.0160345i
\(199\) −19.6066 −1.38988 −0.694938 0.719070i \(-0.744568\pi\)
−0.694938 + 0.719070i \(0.744568\pi\)
\(200\) 0 0
\(201\) −2.51841 7.75087i −0.177635 0.546704i
\(202\) 0.397646 1.22383i 0.0279783 0.0861083i
\(203\) 3.81424 + 2.77121i 0.267707 + 0.194501i
\(204\) −11.7884 8.56474i −0.825350 0.599652i
\(205\) 0 0
\(206\) −0.513544 1.58052i −0.0357803 0.110120i
\(207\) 0.338426 0.245881i 0.0235223 0.0170899i
\(208\) 20.3922 1.41394
\(209\) 7.44159 0.295420i 0.514745 0.0204347i
\(210\) 0 0
\(211\) 13.5246 9.82620i 0.931072 0.676464i −0.0151828 0.999885i \(-0.504833\pi\)
0.946255 + 0.323421i \(0.104833\pi\)
\(212\) 5.87648 + 18.0860i 0.403598 + 1.24215i
\(213\) 5.94570 18.2990i 0.407393 1.25383i
\(214\) 1.69268 + 1.22981i 0.115709 + 0.0840678i
\(215\) 0 0
\(216\) −1.16343 + 3.58065i −0.0791611 + 0.243633i
\(217\) 2.57444 + 7.92331i 0.174764 + 0.537869i
\(218\) 1.28710 0.935136i 0.0871737 0.0633354i
\(219\) 22.7403 1.53665
\(220\) 0 0
\(221\) −21.4267 −1.44132
\(222\) 2.63766 1.91637i 0.177028 0.128618i
\(223\) −1.84839 5.68876i −0.123777 0.380947i 0.869899 0.493230i \(-0.164184\pi\)
−0.993676 + 0.112283i \(0.964184\pi\)
\(224\) 0.966799 2.97550i 0.0645970 0.198809i
\(225\) 0 0
\(226\) 3.30323 + 2.39994i 0.219728 + 0.159641i
\(227\) 6.87537 21.1602i 0.456334 1.40445i −0.413227 0.910628i \(-0.635599\pi\)
0.869562 0.493825i \(-0.164401\pi\)
\(228\) −2.57182 7.91525i −0.170323 0.524200i
\(229\) −4.83195 + 3.51062i −0.319305 + 0.231988i −0.735879 0.677113i \(-0.763231\pi\)
0.416574 + 0.909102i \(0.363231\pi\)
\(230\) 0 0
\(231\) −2.19469 + 7.79396i −0.144400 + 0.512805i
\(232\) 3.01469 0.197924
\(233\) 14.3479 10.4243i 0.939960 0.682921i −0.00845137 0.999964i \(-0.502690\pi\)
0.948411 + 0.317044i \(0.102690\pi\)
\(234\) −0.206351 0.635083i −0.0134896 0.0415167i
\(235\) 0 0
\(236\) 14.1102 + 10.2516i 0.918493 + 0.667324i
\(237\) −19.6338 14.2648i −1.27535 0.926599i
\(238\) −0.326121 + 1.00370i −0.0211393 + 0.0650601i
\(239\) −5.90708 18.1801i −0.382097 1.17597i −0.938564 0.345104i \(-0.887844\pi\)
0.556467 0.830870i \(-0.312156\pi\)
\(240\) 0 0
\(241\) −1.79437 −0.115586 −0.0577929 0.998329i \(-0.518406\pi\)
−0.0577929 + 0.998329i \(0.518406\pi\)
\(242\) −2.28392 + 0.181623i −0.146816 + 0.0116752i
\(243\) −6.03029 −0.386843
\(244\) −2.91468 + 2.11764i −0.186593 + 0.135568i
\(245\) 0 0
\(246\) −1.54023 + 4.74033i −0.0982012 + 0.302232i
\(247\) −9.90094 7.19345i −0.629982 0.457708i
\(248\) 4.30973 + 3.13120i 0.273668 + 0.198831i
\(249\) 7.34232 22.5973i 0.465301 1.43205i
\(250\) 0 0
\(251\) −8.55143 + 6.21298i −0.539761 + 0.392160i −0.823996 0.566595i \(-0.808260\pi\)
0.284235 + 0.958755i \(0.408260\pi\)
\(252\) 1.48339 0.0934447
\(253\) −0.639278 + 2.27025i −0.0401911 + 0.142730i
\(254\) −3.57525 −0.224331
\(255\) 0 0
\(256\) 3.90634 + 12.0225i 0.244146 + 0.751404i
\(257\) −1.39033 + 4.27900i −0.0867265 + 0.266917i −0.985009 0.172501i \(-0.944815\pi\)
0.898283 + 0.439418i \(0.144815\pi\)
\(258\) −0.418686 0.304193i −0.0260662 0.0189382i
\(259\) 8.61608 + 6.25995i 0.535377 + 0.388974i
\(260\) 0 0
\(261\) 0.664969 + 2.04656i 0.0411606 + 0.126679i
\(262\) 1.68882 1.22700i 0.104336 0.0758045i
\(263\) −8.87966 −0.547543 −0.273772 0.961795i \(-0.588271\pi\)
−0.273772 + 0.961795i \(0.588271\pi\)
\(264\) 1.79400 + 4.85675i 0.110413 + 0.298912i
\(265\) 0 0
\(266\) −0.487660 + 0.354305i −0.0299003 + 0.0217239i
\(267\) −3.67836 11.3208i −0.225112 0.692824i
\(268\) 2.60130 8.00599i 0.158900 0.489044i
\(269\) 13.5968 + 9.87862i 0.829009 + 0.602310i 0.919279 0.393607i \(-0.128773\pi\)
−0.0902701 + 0.995917i \(0.528773\pi\)
\(270\) 0 0
\(271\) −4.18182 + 12.8703i −0.254028 + 0.781817i 0.739992 + 0.672616i \(0.234829\pi\)
−0.994020 + 0.109201i \(0.965171\pi\)
\(272\) −4.54555 13.9898i −0.275615 0.848255i
\(273\) 10.7646 7.82092i 0.651501 0.473343i
\(274\) −0.734688 −0.0443841
\(275\) 0 0
\(276\) 2.63569 0.158650
\(277\) −16.5592 + 12.0310i −0.994946 + 0.722870i −0.960999 0.276553i \(-0.910808\pi\)
−0.0339471 + 0.999424i \(0.510808\pi\)
\(278\) 0.564945 + 1.73872i 0.0338832 + 0.104282i
\(279\) −1.17504 + 3.61639i −0.0703476 + 0.216508i
\(280\) 0 0
\(281\) 8.09848 + 5.88389i 0.483115 + 0.351004i 0.802530 0.596611i \(-0.203487\pi\)
−0.319415 + 0.947615i \(0.603487\pi\)
\(282\) −0.550485 + 1.69422i −0.0327809 + 0.100889i
\(283\) −0.827516 2.54683i −0.0491907 0.151394i 0.923444 0.383733i \(-0.125362\pi\)
−0.972635 + 0.232340i \(0.925362\pi\)
\(284\) 16.0784 11.6817i 0.954079 0.693179i
\(285\) 0 0
\(286\) 3.13131 + 2.09043i 0.185158 + 0.123610i
\(287\) −16.2815 −0.961064
\(288\) 1.15526 0.839346i 0.0680744 0.0494589i
\(289\) −0.477120 1.46843i −0.0280659 0.0863780i
\(290\) 0 0
\(291\) 0.464964 + 0.337816i 0.0272567 + 0.0198031i
\(292\) 19.0029 + 13.8064i 1.11206 + 0.807958i
\(293\) 7.81514 24.0525i 0.456565 1.40516i −0.412723 0.910857i \(-0.635422\pi\)
0.869288 0.494306i \(-0.164578\pi\)
\(294\) 0.650936 + 2.00337i 0.0379633 + 0.116839i
\(295\) 0 0
\(296\) 6.80995 0.395820
\(297\) 11.8953 9.38538i 0.690236 0.544595i
\(298\) 1.74892 0.101312
\(299\) 3.13554 2.27811i 0.181333 0.131746i
\(300\) 0 0
\(301\) 0.522401 1.60778i 0.0301107 0.0926711i
\(302\) −1.43852 1.04514i −0.0827774 0.0601413i
\(303\) 9.46794 + 6.87886i 0.543919 + 0.395180i
\(304\) 2.59627 7.99049i 0.148906 0.458286i
\(305\) 0 0
\(306\) −0.389693 + 0.283129i −0.0222773 + 0.0161854i
\(307\) −8.53224 −0.486960 −0.243480 0.969906i \(-0.578289\pi\)
−0.243480 + 0.969906i \(0.578289\pi\)
\(308\) −6.56595 + 5.18052i −0.374130 + 0.295188i
\(309\) 15.1140 0.859803
\(310\) 0 0
\(311\) −0.341159 1.04998i −0.0193454 0.0595389i 0.940918 0.338635i \(-0.109965\pi\)
−0.960263 + 0.279096i \(0.909965\pi\)
\(312\) 2.62914 8.09165i 0.148846 0.458099i
\(313\) −4.52358 3.28657i −0.255688 0.185768i 0.452556 0.891736i \(-0.350512\pi\)
−0.708244 + 0.705968i \(0.750512\pi\)
\(314\) −2.13152 1.54864i −0.120289 0.0873949i
\(315\) 0 0
\(316\) −7.74630 23.8407i −0.435764 1.34114i
\(317\) 22.9349 16.6632i 1.28815 0.935897i 0.288385 0.957514i \(-0.406882\pi\)
0.999766 + 0.0216175i \(0.00688161\pi\)
\(318\) 3.83467 0.215038
\(319\) −10.0907 6.73644i −0.564971 0.377168i
\(320\) 0 0
\(321\) −15.3943 + 11.1846i −0.859223 + 0.624262i
\(322\) −0.0589900 0.181552i −0.00328738 0.0101175i
\(323\) −2.72799 + 8.39588i −0.151789 + 0.467159i
\(324\) −16.4921 11.9822i −0.916231 0.665680i
\(325\) 0 0
\(326\) −0.541240 + 1.66577i −0.0299765 + 0.0922582i
\(327\) 4.47117 + 13.7609i 0.247256 + 0.760977i
\(328\) −8.42253 + 6.11933i −0.465056 + 0.337883i
\(329\) −5.81908 −0.320816
\(330\) 0 0
\(331\) 18.6052 1.02263 0.511317 0.859392i \(-0.329158\pi\)
0.511317 + 0.859392i \(0.329158\pi\)
\(332\) 19.8552 14.4256i 1.08969 0.791709i
\(333\) 1.50211 + 4.62303i 0.0823154 + 0.253341i
\(334\) −1.23096 + 3.78850i −0.0673550 + 0.207297i
\(335\) 0 0
\(336\) 7.39000 + 5.36915i 0.403158 + 0.292911i
\(337\) −9.10777 + 28.0308i −0.496132 + 1.52694i 0.319054 + 0.947737i \(0.396635\pi\)
−0.815186 + 0.579200i \(0.803365\pi\)
\(338\) −1.07513 3.30891i −0.0584794 0.179981i
\(339\) −30.0415 + 21.8264i −1.63163 + 1.18545i
\(340\) 0 0
\(341\) −7.42864 20.1109i −0.402283 1.08907i
\(342\) −0.275124 −0.0148770
\(343\) −12.8655 + 9.34733i −0.694671 + 0.504708i
\(344\) −0.334038 1.02806i −0.0180101 0.0554294i
\(345\) 0 0
\(346\) −2.06230 1.49835i −0.110870 0.0805516i
\(347\) 14.3171 + 10.4020i 0.768583 + 0.558408i 0.901531 0.432715i \(-0.142444\pi\)
−0.132948 + 0.991123i \(0.542444\pi\)
\(348\) −4.18977 + 12.8948i −0.224595 + 0.691232i
\(349\) 0.483116 + 1.48688i 0.0258606 + 0.0795908i 0.963154 0.268951i \(-0.0866770\pi\)
−0.937293 + 0.348542i \(0.886677\pi\)
\(350\) 0 0
\(351\) −24.8990 −1.32901
\(352\) −2.18226 + 7.74980i −0.116315 + 0.413066i
\(353\) 1.66213 0.0884663 0.0442331 0.999021i \(-0.485916\pi\)
0.0442331 + 0.999021i \(0.485916\pi\)
\(354\) 2.84528 2.06722i 0.151225 0.109871i
\(355\) 0 0
\(356\) 3.79944 11.6935i 0.201370 0.619752i
\(357\) −7.76493 5.64155i −0.410964 0.298583i
\(358\) 0.539269 + 0.391802i 0.0285012 + 0.0207074i
\(359\) −9.64641 + 29.6886i −0.509118 + 1.56690i 0.284617 + 0.958641i \(0.408134\pi\)
−0.793735 + 0.608263i \(0.791866\pi\)
\(360\) 0 0
\(361\) 11.2921 8.20418i 0.594320 0.431799i
\(362\) −0.451343 −0.0237220
\(363\) 4.84776 20.2652i 0.254441 1.06365i
\(364\) 13.7437 0.720366
\(365\) 0 0
\(366\) 0.224496 + 0.690927i 0.0117346 + 0.0361153i
\(367\) 2.88261 8.87177i 0.150471 0.463103i −0.847203 0.531270i \(-0.821715\pi\)
0.997674 + 0.0681670i \(0.0217151\pi\)
\(368\) 2.15259 + 1.56395i 0.112211 + 0.0815264i
\(369\) −6.01201 4.36798i −0.312973 0.227388i
\(370\) 0 0
\(371\) 3.87081 + 11.9131i 0.200962 + 0.618499i
\(372\) −19.3827 + 14.0824i −1.00495 + 0.730137i
\(373\) −9.77497 −0.506129 −0.253064 0.967449i \(-0.581438\pi\)
−0.253064 + 0.967449i \(0.581438\pi\)
\(374\) 0.736121 2.61417i 0.0380639 0.135175i
\(375\) 0 0
\(376\) −3.01026 + 2.18708i −0.155242 + 0.112790i
\(377\) 6.16099 + 18.9616i 0.317307 + 0.976571i
\(378\) −0.378970 + 1.16635i −0.0194921 + 0.0599905i
\(379\) −10.8852 7.90855i −0.559135 0.406235i 0.272007 0.962295i \(-0.412312\pi\)
−0.831142 + 0.556060i \(0.812312\pi\)
\(380\) 0 0
\(381\) 10.0478 30.9240i 0.514765 1.58428i
\(382\) −0.113476 0.349242i −0.00580592 0.0178688i
\(383\) −3.16673 + 2.30076i −0.161812 + 0.117563i −0.665745 0.746180i \(-0.731886\pi\)
0.503933 + 0.863743i \(0.331886\pi\)
\(384\) 11.9497 0.609807
\(385\) 0 0
\(386\) −3.20910 −0.163339
\(387\) 0.624234 0.453533i 0.0317316 0.0230544i
\(388\) 0.183446 + 0.564590i 0.00931308 + 0.0286627i
\(389\) −4.11854 + 12.6755i −0.208818 + 0.642676i 0.790717 + 0.612182i \(0.209708\pi\)
−0.999535 + 0.0304938i \(0.990292\pi\)
\(390\) 0 0
\(391\) −2.26180 1.64329i −0.114384 0.0831049i
\(392\) −1.35963 + 4.18451i −0.0686717 + 0.211350i
\(393\) 5.86668 + 18.0558i 0.295935 + 0.910794i
\(394\) 0.301166 0.218810i 0.0151725 0.0110235i
\(395\) 0 0
\(396\) −3.81434 + 0.151424i −0.191678 + 0.00760933i
\(397\) 8.80209 0.441764 0.220882 0.975300i \(-0.429106\pi\)
0.220882 + 0.975300i \(0.429106\pi\)
\(398\) −3.30383 + 2.40038i −0.165606 + 0.120320i
\(399\) −1.69404 5.21373i −0.0848083 0.261013i
\(400\) 0 0
\(401\) −13.2728 9.64323i −0.662810 0.481560i 0.204801 0.978804i \(-0.434345\pi\)
−0.867611 + 0.497244i \(0.834345\pi\)
\(402\) −1.37328 0.997747i −0.0684931 0.0497631i
\(403\) −10.8868 + 33.5061i −0.542310 + 1.66906i
\(404\) 3.73547 + 11.4966i 0.185846 + 0.571976i
\(405\) 0 0
\(406\) 0.981993 0.0487355
\(407\) −22.7941 15.2171i −1.12986 0.754284i
\(408\) −6.13722 −0.303838
\(409\) 9.55575 6.94266i 0.472501 0.343292i −0.325914 0.945399i \(-0.605672\pi\)
0.798415 + 0.602107i \(0.205672\pi\)
\(410\) 0 0
\(411\) 2.06475 6.35466i 0.101847 0.313452i
\(412\) 12.6299 + 9.17617i 0.622231 + 0.452078i
\(413\) 9.29429 + 6.75269i 0.457342 + 0.332278i
\(414\) 0.0269244 0.0828649i 0.00132326 0.00407259i
\(415\) 0 0
\(416\) 10.7036 7.77660i 0.524786 0.381279i
\(417\) −16.6267 −0.814215
\(418\) 1.21778 0.960830i 0.0595638 0.0469957i
\(419\) 26.3901 1.28924 0.644620 0.764503i \(-0.277015\pi\)
0.644620 + 0.764503i \(0.277015\pi\)
\(420\) 0 0
\(421\) 3.51334 + 10.8130i 0.171230 + 0.526991i 0.999441 0.0334246i \(-0.0106414\pi\)
−0.828211 + 0.560416i \(0.810641\pi\)
\(422\) 1.07599 3.31155i 0.0523783 0.161204i
\(423\) −2.14872 1.56114i −0.104474 0.0759052i
\(424\) 6.47991 + 4.70793i 0.314692 + 0.228637i
\(425\) 0 0
\(426\) −1.23840 3.81141i −0.0600007 0.184663i
\(427\) −1.91988 + 1.39488i −0.0929096 + 0.0675028i
\(428\) −19.6547 −0.950044
\(429\) −26.8813 + 21.2093i −1.29784 + 1.02399i
\(430\) 0 0
\(431\) −14.5688 + 10.5849i −0.701756 + 0.509856i −0.880504 0.474039i \(-0.842795\pi\)
0.178747 + 0.983895i \(0.442795\pi\)
\(432\) −5.28217 16.2568i −0.254138 0.782158i
\(433\) −11.8233 + 36.3883i −0.568191 + 1.74871i 0.0900851 + 0.995934i \(0.471286\pi\)
−0.658276 + 0.752777i \(0.728714\pi\)
\(434\) 1.40383 + 1.01995i 0.0673862 + 0.0489589i
\(435\) 0 0
\(436\) −4.61834 + 14.2138i −0.221179 + 0.680718i
\(437\) −0.493448 1.51868i −0.0236048 0.0726481i
\(438\) 3.83189 2.78403i 0.183095 0.133026i
\(439\) −8.67958 −0.414254 −0.207127 0.978314i \(-0.566411\pi\)
−0.207127 + 0.978314i \(0.566411\pi\)
\(440\) 0 0
\(441\) −3.14062 −0.149553
\(442\) −3.61054 + 2.62321i −0.171736 + 0.124773i
\(443\) −4.13947 12.7400i −0.196672 0.605295i −0.999953 0.00969443i \(-0.996914\pi\)
0.803281 0.595601i \(-0.203086\pi\)
\(444\) −9.46436 + 29.1283i −0.449159 + 1.38237i
\(445\) 0 0
\(446\) −1.00792 0.732298i −0.0477264 0.0346753i
\(447\) −4.91513 + 15.1272i −0.232478 + 0.715493i
\(448\) 2.77892 + 8.55263i 0.131292 + 0.404074i
\(449\) 15.8011 11.4802i 0.745700 0.541783i −0.148791 0.988869i \(-0.547538\pi\)
0.894491 + 0.447086i \(0.147538\pi\)
\(450\) 0 0
\(451\) 41.8656 1.66201i 1.97137 0.0782608i
\(452\) −38.3556 −1.80410
\(453\) 13.0827 9.50515i 0.614680 0.446591i
\(454\) −1.43204 4.40735i −0.0672088 0.206847i
\(455\) 0 0
\(456\) −2.83591 2.06041i −0.132803 0.0964874i
\(457\) 20.8569 + 15.1535i 0.975647 + 0.708849i 0.956731 0.290972i \(-0.0939788\pi\)
0.0189151 + 0.999821i \(0.493979\pi\)
\(458\) −0.384420 + 1.18312i −0.0179627 + 0.0552836i
\(459\) 5.55016 + 17.0816i 0.259059 + 0.797302i
\(460\) 0 0
\(461\) 19.0542 0.887441 0.443720 0.896165i \(-0.353658\pi\)
0.443720 + 0.896165i \(0.353658\pi\)
\(462\) 0.584371 + 1.58202i 0.0271874 + 0.0736022i
\(463\) 20.0792 0.933161 0.466580 0.884479i \(-0.345486\pi\)
0.466580 + 0.884479i \(0.345486\pi\)
\(464\) −11.0732 + 8.04516i −0.514061 + 0.373487i
\(465\) 0 0
\(466\) 1.14148 3.51313i 0.0528782 0.162742i
\(467\) −13.3534 9.70181i −0.617921 0.448946i 0.234273 0.972171i \(-0.424729\pi\)
−0.852195 + 0.523225i \(0.824729\pi\)
\(468\) 5.07493 + 3.68715i 0.234589 + 0.170439i
\(469\) 1.71347 5.27350i 0.0791205 0.243508i
\(470\) 0 0
\(471\) 19.3853 14.0843i 0.893228 0.648968i
\(472\) 7.34599 0.338127
\(473\) −1.17916 + 4.18753i −0.0542179 + 0.192543i
\(474\) −5.05481 −0.232175
\(475\) 0 0
\(476\) −3.06356 9.42868i −0.140418 0.432163i
\(477\) −1.76673 + 5.43744i −0.0808930 + 0.248963i
\(478\) −3.22111 2.34028i −0.147330 0.107042i
\(479\) −4.15087 3.01578i −0.189658 0.137795i 0.488904 0.872337i \(-0.337397\pi\)
−0.678562 + 0.734543i \(0.737397\pi\)
\(480\) 0 0
\(481\) 13.9172 + 42.8327i 0.634570 + 1.95300i
\(482\) −0.302363 + 0.219680i −0.0137723 + 0.0100061i
\(483\) 1.73612 0.0789960
\(484\) 16.3547 13.9913i 0.743393 0.635967i
\(485\) 0 0
\(486\) −1.01614 + 0.738269i −0.0460930 + 0.0334886i
\(487\) 5.17276 + 15.9201i 0.234400 + 0.721409i 0.997200 + 0.0747753i \(0.0238239\pi\)
−0.762800 + 0.646634i \(0.776176\pi\)
\(488\) −0.468912 + 1.44316i −0.0212266 + 0.0653289i
\(489\) −12.8869 9.36288i −0.582766 0.423404i
\(490\) 0 0
\(491\) −0.238396 + 0.733708i −0.0107587 + 0.0331118i −0.956292 0.292414i \(-0.905541\pi\)
0.945533 + 0.325526i \(0.105541\pi\)
\(492\) −14.4688 44.5304i −0.652304 2.00758i
\(493\) 11.6350 8.45333i 0.524014 0.380719i
\(494\) −2.54904 −0.114687
\(495\) 0 0
\(496\) −24.1861 −1.08599
\(497\) 10.5908 7.69465i 0.475061 0.345152i
\(498\) −1.52930 4.70669i −0.0685294 0.210912i
\(499\) 5.40385 16.6313i 0.241909 0.744521i −0.754220 0.656622i \(-0.771985\pi\)
0.996129 0.0878988i \(-0.0280152\pi\)
\(500\) 0 0
\(501\) −29.3090 21.2943i −1.30943 0.951357i
\(502\) −0.680333 + 2.09385i −0.0303647 + 0.0934530i
\(503\) 12.1050 + 37.2553i 0.539734 + 1.66113i 0.733193 + 0.680021i \(0.238029\pi\)
−0.193459 + 0.981108i \(0.561971\pi\)
\(504\) 0.505462 0.367240i 0.0225151 0.0163582i
\(505\) 0 0
\(506\) 0.170218 + 0.460816i 0.00756710 + 0.0204858i
\(507\) 31.6419 1.40526
\(508\) 27.1714 19.7412i 1.20554 0.875873i
\(509\) 1.00212 + 3.08420i 0.0444181 + 0.136705i 0.970806 0.239865i \(-0.0771033\pi\)
−0.926388 + 0.376570i \(0.877103\pi\)
\(510\) 0 0
\(511\) 12.5171 + 9.09420i 0.553724 + 0.402304i
\(512\) 12.3373 + 8.96355i 0.545235 + 0.396137i
\(513\) −3.17006 + 9.75644i −0.139962 + 0.430757i
\(514\) 0.289585 + 0.891252i 0.0127731 + 0.0393114i
\(515\) 0 0
\(516\) 4.86159 0.214020
\(517\) 14.9630 0.594010i 0.658072 0.0261245i
\(518\) 2.21825 0.0974642
\(519\) 18.7557 13.6268i 0.823286 0.598152i
\(520\) 0 0
\(521\) 3.60355 11.0906i 0.157874 0.485887i −0.840567 0.541708i \(-0.817778\pi\)
0.998441 + 0.0558215i \(0.0177778\pi\)
\(522\) 0.362606 + 0.263449i 0.0158708 + 0.0115308i
\(523\) −4.13469 3.00403i −0.180797 0.131357i 0.493706 0.869629i \(-0.335642\pi\)
−0.674503 + 0.738272i \(0.735642\pi\)
\(524\) −6.05978 + 18.6501i −0.264723 + 0.814733i
\(525\) 0 0
\(526\) −1.49628 + 1.08711i −0.0652407 + 0.0474002i
\(527\) 25.4132 1.10701
\(528\) −19.5505 13.0517i −0.850826 0.568002i
\(529\) −22.4943 −0.978013
\(530\) 0 0
\(531\) 1.62035 + 4.98693i 0.0703173 + 0.216414i
\(532\) 1.74980 5.38534i 0.0758636 0.233484i
\(533\) −55.7017 40.4696i −2.41271 1.75293i
\(534\) −2.00580 1.45730i −0.0867994 0.0630635i
\(535\) 0 0
\(536\) −1.09564 3.37203i −0.0473244 0.145649i
\(537\) −4.90443 + 3.56328i −0.211642 + 0.153767i
\(538\) 3.50054 0.150919
\(539\) 13.9014 10.9682i 0.598775 0.472432i
\(540\) 0 0
\(541\) −29.3114 + 21.2960i −1.26019 + 0.915585i −0.998767 0.0496388i \(-0.984193\pi\)
−0.261427 + 0.965223i \(0.584193\pi\)
\(542\) 0.871011 + 2.68070i 0.0374131 + 0.115146i
\(543\) 1.26845 3.90388i 0.0544342 0.167531i
\(544\) −7.72093 5.60959i −0.331032 0.240509i
\(545\) 0 0
\(546\) 0.856405 2.63574i 0.0366508 0.112799i
\(547\) 5.91930 + 18.2177i 0.253091 + 0.778934i 0.994200 + 0.107549i \(0.0343002\pi\)
−0.741109 + 0.671385i \(0.765700\pi\)
\(548\) 5.58352 4.05667i 0.238516 0.173292i
\(549\) −1.08314 −0.0462274
\(550\) 0 0
\(551\) 8.21432 0.349942
\(552\) 0.898108 0.652513i 0.0382260 0.0277728i
\(553\) −5.10245 15.7037i −0.216978 0.667790i
\(554\) −1.31741 + 4.05458i −0.0559715 + 0.172263i
\(555\) 0 0
\(556\) −13.8941 10.0946i −0.589240 0.428108i
\(557\) 8.24779 25.3841i 0.349470 1.07556i −0.609677 0.792650i \(-0.708701\pi\)
0.959147 0.282908i \(-0.0912991\pi\)
\(558\) 0.244742 + 0.753239i 0.0103608 + 0.0318872i
\(559\) 5.78358 4.20201i 0.244619 0.177726i
\(560\) 0 0
\(561\) 20.5424 + 13.7139i 0.867300 + 0.579000i
\(562\) 2.08499 0.0879500
\(563\) 27.5770 20.0359i 1.16223 0.844412i 0.172174 0.985066i \(-0.444921\pi\)
0.990059 + 0.140655i \(0.0449207\pi\)
\(564\) −5.17122 15.9154i −0.217748 0.670159i
\(565\) 0 0
\(566\) −0.451242 0.327847i −0.0189671 0.0137804i
\(567\) −10.8633 7.89265i −0.456215 0.331460i
\(568\) 2.58669 7.96101i 0.108535 0.334037i
\(569\) −7.05363 21.7088i −0.295703 0.910082i −0.982984 0.183690i \(-0.941196\pi\)
0.687281 0.726392i \(-0.258804\pi\)
\(570\) 0 0
\(571\) −36.9818 −1.54764 −0.773820 0.633406i \(-0.781656\pi\)
−0.773820 + 0.633406i \(0.781656\pi\)
\(572\) −35.3401 + 1.40295i −1.47764 + 0.0586604i
\(573\) 3.33967 0.139517
\(574\) −2.74352 + 1.99329i −0.114512 + 0.0831982i
\(575\) 0 0
\(576\) −1.26837 + 3.90363i −0.0528486 + 0.162651i
\(577\) 23.3962 + 16.9984i 0.973999 + 0.707651i 0.956359 0.292193i \(-0.0943850\pi\)
0.0176392 + 0.999844i \(0.494385\pi\)
\(578\) −0.260172 0.189026i −0.0108217 0.00786246i
\(579\) 9.01880 27.7570i 0.374809 1.15354i
\(580\) 0 0
\(581\) 13.0785 9.50209i 0.542588 0.394213i
\(582\) 0.119707 0.00496202
\(583\) −11.1694 30.2379i −0.462588 1.25233i
\(584\) 9.89322 0.409385
\(585\) 0 0
\(586\) −1.62778 5.00978i −0.0672428 0.206952i
\(587\) −2.23223 + 6.87011i −0.0921341 + 0.283560i −0.986496 0.163784i \(-0.947630\pi\)
0.894362 + 0.447344i \(0.147630\pi\)
\(588\) −16.0089 11.6311i −0.660195 0.479660i
\(589\) 11.7430 + 8.53178i 0.483861 + 0.351546i
\(590\) 0 0
\(591\) 1.04620 + 3.21986i 0.0430348 + 0.132448i
\(592\) −25.0135 + 18.1734i −1.02805 + 0.746922i
\(593\) 10.9657 0.450308 0.225154 0.974323i \(-0.427711\pi\)
0.225154 + 0.974323i \(0.427711\pi\)
\(594\) 0.855410 3.03780i 0.0350979 0.124642i
\(595\) 0 0
\(596\) −13.2915 + 9.65687i −0.544442 + 0.395561i
\(597\) −11.4769 35.3224i −0.469720 1.44565i
\(598\) 0.249457 0.767749i 0.0102011 0.0313956i
\(599\) −4.69066 3.40797i −0.191655 0.139246i 0.487820 0.872944i \(-0.337792\pi\)
−0.679475 + 0.733699i \(0.737792\pi\)
\(600\) 0 0
\(601\) −2.51599 + 7.74343i −0.102629 + 0.315861i −0.989167 0.146796i \(-0.953104\pi\)
0.886537 + 0.462657i \(0.153104\pi\)
\(602\) −0.108808 0.334877i −0.00443469 0.0136486i
\(603\) 2.04748 1.48758i 0.0833798 0.0605789i
\(604\) 16.7034 0.679652
\(605\) 0 0
\(606\) 2.43756 0.0990192
\(607\) 21.5706 15.6720i 0.875525 0.636106i −0.0565387 0.998400i \(-0.518006\pi\)
0.932064 + 0.362294i \(0.118006\pi\)
\(608\) −1.68445 5.18419i −0.0683133 0.210247i
\(609\) −2.75978 + 8.49372i −0.111832 + 0.344183i
\(610\) 0 0
\(611\) −19.9081 14.4641i −0.805395 0.585153i
\(612\) 1.39829 4.30348i 0.0565223 0.173958i
\(613\) 3.19030 + 9.81873i 0.128855 + 0.396575i 0.994584 0.103939i \(-0.0331446\pi\)
−0.865729 + 0.500513i \(0.833145\pi\)
\(614\) −1.43773 + 1.04457i −0.0580222 + 0.0421556i
\(615\) 0 0
\(616\) −0.954805 + 3.39078i −0.0384702 + 0.136618i
\(617\) −8.79766 −0.354180 −0.177090 0.984195i \(-0.556668\pi\)
−0.177090 + 0.984195i \(0.556668\pi\)
\(618\) 2.54679 1.85035i 0.102447 0.0744321i
\(619\) −4.20736 12.9489i −0.169108 0.520461i 0.830208 0.557454i \(-0.188222\pi\)
−0.999315 + 0.0369937i \(0.988222\pi\)
\(620\) 0 0
\(621\) −2.62833 1.90959i −0.105471 0.0766293i
\(622\) −0.186033 0.135161i −0.00745925 0.00541946i
\(623\) 2.50267 7.70242i 0.100267 0.308591i
\(624\) 11.9368 + 36.7376i 0.477853 + 1.47068i
\(625\) 0 0
\(626\) −1.16462 −0.0465474
\(627\) 4.88823 + 13.2335i 0.195217 + 0.528495i
\(628\) 24.7503 0.987643
\(629\) 26.2826 19.0954i 1.04796 0.761384i
\(630\) 0 0
\(631\) −8.10923 + 24.9576i −0.322823 + 0.993548i 0.649590 + 0.760285i \(0.274941\pi\)
−0.972414 + 0.233264i \(0.925059\pi\)
\(632\) −8.54173 6.20593i −0.339772 0.246859i
\(633\) 25.6192 + 18.6134i 1.01827 + 0.739818i
\(634\) 1.82465 5.61569i 0.0724661 0.223028i
\(635\) 0 0
\(636\) −29.1430 + 21.1736i −1.15559 + 0.839588i
\(637\) −29.0981 −1.15291
\(638\) −2.52507 + 0.100242i −0.0999683 + 0.00396860i
\(639\) 5.97501 0.236368
\(640\) 0 0
\(641\) 12.3908 + 38.1350i 0.489407 + 1.50624i 0.825495 + 0.564410i \(0.190896\pi\)
−0.336087 + 0.941831i \(0.609104\pi\)
\(642\) −1.22473 + 3.76934i −0.0483363 + 0.148764i
\(643\) 2.12044 + 1.54059i 0.0836218 + 0.0607548i 0.628811 0.777558i \(-0.283542\pi\)
−0.545189 + 0.838313i \(0.683542\pi\)
\(644\) 1.45078 + 1.05405i 0.0571687 + 0.0415355i
\(645\) 0 0
\(646\) 0.568198 + 1.74873i 0.0223555 + 0.0688031i
\(647\) 24.4251 17.7459i 0.960250 0.697662i 0.00704095 0.999975i \(-0.497759\pi\)
0.953209 + 0.302313i \(0.0977588\pi\)
\(648\) −8.58610 −0.337294
\(649\) −24.5883 16.4149i −0.965177 0.644341i
\(650\) 0 0
\(651\) −12.7673 + 9.27598i −0.500390 + 0.363554i
\(652\) −5.08438 15.6481i −0.199120 0.612827i
\(653\) −11.2515 + 34.6286i −0.440305 + 1.35512i 0.447246 + 0.894411i \(0.352405\pi\)
−0.887551 + 0.460709i \(0.847595\pi\)
\(654\) 2.43812 + 1.77140i 0.0953380 + 0.0692671i
\(655\) 0 0
\(656\) 14.6063 44.9537i 0.570281 1.75515i
\(657\) 2.18221 + 6.71616i 0.0851362 + 0.262022i
\(658\) −0.980550 + 0.712411i −0.0382258 + 0.0277727i
\(659\) −32.9001 −1.28161 −0.640803 0.767706i \(-0.721398\pi\)
−0.640803 + 0.767706i \(0.721398\pi\)
\(660\) 0 0
\(661\) 31.0455 1.20753 0.603766 0.797162i \(-0.293666\pi\)
0.603766 + 0.797162i \(0.293666\pi\)
\(662\) 3.13509 2.27778i 0.121849 0.0885283i
\(663\) −12.5424 38.6015i −0.487105 1.49916i
\(664\) 3.19429 9.83102i 0.123963 0.381517i
\(665\) 0 0
\(666\) 0.819099 + 0.595110i 0.0317394 + 0.0230601i
\(667\) −0.803878 + 2.47408i −0.0311263 + 0.0957969i
\(668\) −11.5635 35.5889i −0.447407 1.37698i
\(669\) 9.16663 6.65995i 0.354402 0.257488i
\(670\) 0 0
\(671\) 4.79433 3.78272i 0.185083 0.146030i
\(672\) 5.92645 0.228618
\(673\) 3.74637 2.72189i 0.144412 0.104921i −0.513234 0.858249i \(-0.671553\pi\)
0.657645 + 0.753328i \(0.271553\pi\)
\(674\) 1.89701 + 5.83840i 0.0730701 + 0.224887i
\(675\) 0 0
\(676\) 26.4414 + 19.2108i 1.01698 + 0.738877i
\(677\) −17.9475 13.0396i −0.689780 0.501154i 0.186808 0.982396i \(-0.440186\pi\)
−0.876588 + 0.481242i \(0.840186\pi\)
\(678\) −2.39004 + 7.35578i −0.0917888 + 0.282497i
\(679\) 0.120835 + 0.371892i 0.00463723 + 0.0142719i
\(680\) 0 0
\(681\) 42.1458 1.61503
\(682\) −3.71389 2.47935i −0.142212 0.0949393i
\(683\) 42.5540 1.62828 0.814142 0.580665i \(-0.197207\pi\)
0.814142 + 0.580665i \(0.197207\pi\)
\(684\) 2.09090 1.51913i 0.0799476 0.0580853i
\(685\) 0 0
\(686\) −1.02355 + 3.15016i −0.0390793 + 0.120274i
\(687\) −9.15301 6.65005i −0.349209 0.253715i
\(688\) 3.97050 + 2.88473i 0.151374 + 0.109979i
\(689\) −16.3689 + 50.3783i −0.623605 + 1.91926i
\(690\) 0 0
\(691\) 3.05397 2.21884i 0.116178 0.0844086i −0.528179 0.849133i \(-0.677125\pi\)
0.644357 + 0.764725i \(0.277125\pi\)
\(692\) 23.9465 0.910308
\(693\) −2.51248 + 0.0997421i −0.0954414 + 0.00378889i
\(694\) 3.68600 0.139919
\(695\) 0 0
\(696\) 1.76468 + 5.43112i 0.0668900 + 0.205866i
\(697\) −15.3474 + 47.2343i −0.581323 + 1.78913i
\(698\) 0.263442 + 0.191402i 0.00997143 + 0.00724466i
\(699\) 27.1787 + 19.7465i 1.02799 + 0.746880i
\(700\) 0 0
\(701\) −0.265067 0.815792i −0.0100114 0.0308120i 0.945926 0.324382i \(-0.105156\pi\)
−0.955937 + 0.293570i \(0.905156\pi\)
\(702\) −4.19563 + 3.04830i −0.158354 + 0.115051i
\(703\) 18.5555 0.699834
\(704\) −8.01867 21.7083i −0.302215 0.818162i
\(705\) 0 0
\(706\) 0.280079 0.203489i 0.0105409 0.00765842i
\(707\) 2.46053 + 7.57274i 0.0925378 + 0.284802i
\(708\) −10.2093 + 31.4211i −0.383690 + 1.18088i
\(709\) −20.0202 14.5455i −0.751874 0.546269i 0.144533 0.989500i \(-0.453832\pi\)
−0.896407 + 0.443231i \(0.853832\pi\)
\(710\) 0 0
\(711\) 2.32888 7.16756i 0.0873399 0.268804i
\(712\) −1.60028 4.92515i −0.0599729 0.184578i
\(713\) −3.71891 + 2.70194i −0.139274 + 0.101189i
\(714\) −1.99912 −0.0748150
\(715\) 0 0
\(716\) −6.26175 −0.234012
\(717\) 29.2947 21.2838i 1.09403 0.794860i
\(718\) 2.00920 + 6.18369i 0.0749828 + 0.230773i
\(719\) −5.40434 + 16.6329i −0.201548 + 0.620301i 0.798289 + 0.602274i \(0.205739\pi\)
−0.999837 + 0.0180271i \(0.994261\pi\)
\(720\) 0 0
\(721\) 8.31926 + 6.04430i 0.309826 + 0.225101i
\(722\) 0.898373 2.76491i 0.0334340 0.102899i
\(723\) −1.05036 3.23266i −0.0390632 0.120224i
\(724\) 3.43014 2.49214i 0.127480 0.0926198i
\(725\) 0 0
\(726\) −1.66412 4.00830i −0.0617614 0.148762i
\(727\) 13.8835 0.514909 0.257455 0.966290i \(-0.417116\pi\)
0.257455 + 0.966290i \(0.417116\pi\)
\(728\) 4.68314 3.40250i 0.173569 0.126105i
\(729\) 6.12878 + 18.8624i 0.226992 + 0.698609i
\(730\) 0 0
\(731\) −4.17194 3.03109i −0.154305 0.112109i
\(732\) −5.52117 4.01137i −0.204068 0.148264i
\(733\) −9.34742 + 28.7684i −0.345255 + 1.06259i 0.616192 + 0.787596i \(0.288674\pi\)
−0.961447 + 0.274990i \(0.911326\pi\)
\(734\) −0.600405 1.84786i −0.0221614 0.0682056i
\(735\) 0 0
\(736\) 1.72628 0.0636315
\(737\) −3.86763 + 13.7350i −0.142466 + 0.505936i
\(738\) −1.54782 −0.0569759
\(739\) 19.8185 14.3990i 0.729037 0.529676i −0.160222 0.987081i \(-0.551221\pi\)
0.889259 + 0.457405i \(0.151221\pi\)
\(740\) 0 0
\(741\) 7.16378 22.0478i 0.263168 0.809948i
\(742\) 2.11074 + 1.53354i 0.0774877 + 0.0562981i
\(743\) −5.37625 3.90607i −0.197235 0.143300i 0.484784 0.874634i \(-0.338898\pi\)
−0.682020 + 0.731334i \(0.738898\pi\)
\(744\) −3.11828 + 9.59709i −0.114322 + 0.351846i
\(745\) 0 0
\(746\) −1.64714 + 1.19672i −0.0603061 + 0.0438150i
\(747\) 7.37851 0.269966
\(748\) 8.84003 + 23.9319i 0.323223 + 0.875036i
\(749\) −12.9464 −0.473052
\(750\) 0 0
\(751\) −5.58167 17.1786i −0.203678 0.626857i −0.999765 0.0216746i \(-0.993100\pi\)
0.796087 0.605182i \(-0.206900\pi\)
\(752\) 5.22038 16.0667i 0.190368 0.585891i
\(753\) −16.1987 11.7690i −0.590313 0.428887i
\(754\) 3.35957 + 2.44087i 0.122348 + 0.0888912i
\(755\) 0 0
\(756\) −3.56002 10.9566i −0.129477 0.398488i
\(757\) −8.56321 + 6.22154i −0.311235 + 0.226126i −0.732426 0.680846i \(-0.761612\pi\)
0.421191 + 0.906972i \(0.361612\pi\)
\(758\) −2.80244 −0.101789
\(759\) −4.46419 + 0.177222i −0.162040 + 0.00643276i
\(760\) 0 0
\(761\) −6.26922 + 4.55485i −0.227259 + 0.165113i −0.695588 0.718441i \(-0.744856\pi\)
0.468329 + 0.883554i \(0.344856\pi\)
\(762\) −2.09281 6.44100i −0.0758145 0.233333i
\(763\) −3.04208 + 9.36256i −0.110131 + 0.338947i
\(764\) 2.79078 + 2.02762i 0.100967 + 0.0733569i
\(765\) 0 0
\(766\) −0.251938 + 0.775384i −0.00910288 + 0.0280158i
\(767\) 15.0127 + 46.2043i 0.542076 + 1.66834i
\(768\) −19.3725 + 14.0750i −0.699046 + 0.507886i
\(769\) −23.9339 −0.863078 −0.431539 0.902094i \(-0.642029\pi\)
−0.431539 + 0.902094i \(0.642029\pi\)
\(770\) 0 0
\(771\) −8.52270 −0.306938
\(772\) 24.3887 17.7194i 0.877769 0.637737i
\(773\) 10.7378 + 33.0476i 0.386212 + 1.18864i 0.935597 + 0.353069i \(0.114862\pi\)
−0.549385 + 0.835569i \(0.685138\pi\)
\(774\) 0.0496627 0.152846i 0.00178509 0.00549394i
\(775\) 0 0
\(776\) 0.202284 + 0.146968i 0.00726156 + 0.00527583i
\(777\) −6.23413 + 19.1867i −0.223648 + 0.688318i
\(778\) 0.857829 + 2.64013i 0.0307547 + 0.0946531i
\(779\) −22.9494 + 16.6737i −0.822248 + 0.597398i
\(780\) 0 0
\(781\) −26.4473 + 20.8669i −0.946359 + 0.746675i
\(782\) −0.582310 −0.0208234
\(783\) 13.5205 9.82320i 0.483183 0.351053i
\(784\) −6.17298 18.9985i −0.220463 0.678517i
\(785\) 0 0
\(786\) 3.19908 + 2.32427i 0.114108 + 0.0829040i
\(787\) −7.10333 5.16087i −0.253206 0.183965i 0.453940 0.891032i \(-0.350018\pi\)
−0.707147 + 0.707067i \(0.750018\pi\)
\(788\) −1.08063 + 3.32585i −0.0384960 + 0.118478i
\(789\) −5.19780 15.9972i −0.185047 0.569515i
\(790\) 0 0
\(791\) −25.2647 −0.898308
\(792\) −1.26224 + 0.995906i −0.0448518 + 0.0353880i
\(793\) −10.0354 −0.356367
\(794\) 1.48321 1.07761i 0.0526370 0.0382430i
\(795\) 0 0
\(796\) 11.8547 36.4850i 0.420179 1.29318i
\(797\) −40.0732 29.1149i −1.41946 1.03130i −0.991860 0.127336i \(-0.959357\pi\)
−0.427605 0.903966i \(-0.640643\pi\)
\(798\) −0.923757 0.671149i −0.0327007 0.0237584i
\(799\) −5.48523 + 16.8818i −0.194054 + 0.597235i
\(800\) 0 0
\(801\) 2.99052 2.17274i 0.105665 0.0767701i
\(802\) −3.41713 −0.120663
\(803\) −33.1144 22.1068i −1.16858 0.780132i
\(804\) 15.9459 0.562370
\(805\) 0 0
\(806\) 2.26756 + 6.97882i 0.0798712 + 0.245818i
\(807\) −9.83787 + 30.2778i −0.346309 + 1.06583i
\(808\) 4.11904 + 2.99266i 0.144907 + 0.105281i
\(809\) 32.0568 + 23.2906i 1.12706 + 0.818854i 0.985264 0.171042i \(-0.0547135\pi\)
0.141792 + 0.989896i \(0.454714\pi\)
\(810\) 0 0
\(811\) −15.4557 47.5676i −0.542722 1.67033i −0.726346 0.687329i \(-0.758783\pi\)
0.183624 0.982997i \(-0.441217\pi\)
\(812\) −7.46301 + 5.42219i −0.261900 + 0.190282i
\(813\) −25.6345 −0.899040
\(814\) −5.70393 + 0.226438i −0.199923 + 0.00793665i
\(815\) 0 0
\(816\) 22.5426 16.3781i 0.789147 0.573349i
\(817\) −0.910175 2.80123i −0.0318430 0.0980026i
\(818\) 0.760234 2.33976i 0.0265810 0.0818078i
\(819\) 3.34283 + 2.42871i 0.116808 + 0.0848659i
\(820\) 0 0
\(821\) 12.5676 38.6792i 0.438613 1.34991i −0.450725 0.892663i \(-0.648834\pi\)
0.889338 0.457250i \(-0.151166\pi\)
\(822\) −0.430057 1.32358i −0.0150000 0.0461651i
\(823\) −24.0661 + 17.4851i −0.838892 + 0.609491i −0.922061 0.387045i \(-0.873496\pi\)
0.0831687 + 0.996535i \(0.473496\pi\)
\(824\) 6.57535 0.229063
\(825\) 0 0
\(826\) 2.39285 0.0832581
\(827\) −37.3653 + 27.1475i −1.29932 + 0.944011i −0.999949 0.0101260i \(-0.996777\pi\)
−0.299371 + 0.954137i \(0.596777\pi\)
\(828\) 0.252927 + 0.778428i 0.00878981 + 0.0270523i
\(829\) −15.1310 + 46.5683i −0.525520 + 1.61738i 0.237766 + 0.971323i \(0.423585\pi\)
−0.763285 + 0.646061i \(0.776415\pi\)
\(830\) 0 0
\(831\) −31.3675 22.7898i −1.08813 0.790571i
\(832\) −11.7515 + 36.1674i −0.407410 + 1.25388i
\(833\) 6.48616 + 19.9623i 0.224732 + 0.691654i
\(834\) −2.80171 + 2.03556i −0.0970152 + 0.0704856i
\(835\) 0 0
\(836\) −3.94966 + 14.0263i −0.136602 + 0.485110i
\(837\) 29.5314 1.02075
\(838\) 4.44689 3.23086i 0.153615 0.111608i
\(839\) −14.2351 43.8112i −0.491451 1.51253i −0.822415 0.568889i \(-0.807374\pi\)
0.330963 0.943644i \(-0.392626\pi\)
\(840\) 0 0
\(841\) 12.6352 + 9.18004i 0.435698 + 0.316553i
\(842\) 1.91582 + 1.39192i 0.0660233 + 0.0479688i
\(843\) −5.85962 + 18.0341i −0.201816 + 0.621126i
\(844\) 10.1078 + 31.1085i 0.347924 + 1.07080i
\(845\) 0 0
\(846\) −0.553198 −0.0190193
\(847\) 10.7727 9.21598i 0.370155 0.316665i
\(848\) −36.3651 −1.24878
\(849\) 4.10386 2.98163i 0.140844 0.102329i
\(850\) 0 0
\(851\) −1.81590 + 5.58877i −0.0622482 + 0.191580i
\(852\) 30.4568 + 22.1282i 1.04343 + 0.758099i
\(853\) 17.3122 + 12.5780i 0.592757 + 0.430663i 0.843301 0.537442i \(-0.180609\pi\)
−0.250543 + 0.968105i \(0.580609\pi\)
\(854\) −0.152742 + 0.470090i −0.00522671 + 0.0160862i
\(855\) 0 0
\(856\) −6.69730 + 4.86587i −0.228909 + 0.166312i
\(857\) −10.0178 −0.342201 −0.171100 0.985254i \(-0.554732\pi\)
−0.171100 + 0.985254i \(0.554732\pi\)
\(858\) −1.93308 + 6.86489i −0.0659941 + 0.234363i
\(859\) −31.7860 −1.08452 −0.542261 0.840210i \(-0.682432\pi\)
−0.542261 + 0.840210i \(0.682432\pi\)
\(860\) 0 0
\(861\) −9.53052 29.3319i −0.324799 0.999629i
\(862\) −1.15906 + 3.56723i −0.0394779 + 0.121500i
\(863\) 22.2577 + 16.1711i 0.757660 + 0.550472i 0.898192 0.439604i \(-0.144881\pi\)
−0.140532 + 0.990076i \(0.544881\pi\)
\(864\) −8.97213 6.51863i −0.305238 0.221768i
\(865\) 0 0
\(866\) 2.46261 + 7.57914i 0.0836830 + 0.257550i
\(867\) 2.36616 1.71912i 0.0803590 0.0583843i
\(868\) −16.3007 −0.553282
\(869\) 14.7233 + 39.8592i 0.499454 + 1.35213i
\(870\) 0 0
\(871\) 18.9700 13.7825i 0.642775 0.467003i
\(872\) 1.94519 + 5.98668i 0.0658725 + 0.202735i
\(873\) −0.0551521 + 0.169741i −0.00186662 + 0.00574485i
\(874\) −0.269076 0.195495i −0.00910162 0.00661271i
\(875\) 0 0
\(876\) −13.7494 + 42.3164i −0.464551 + 1.42974i
\(877\) −8.44797 26.0002i −0.285268 0.877964i −0.986318 0.164852i \(-0.947285\pi\)
0.701050 0.713112i \(-0.252715\pi\)
\(878\) −1.46256 + 1.06261i −0.0493591 + 0.0358615i
\(879\) 47.9066 1.61585
\(880\) 0 0
\(881\) −48.8428 −1.64555 −0.822777 0.568364i \(-0.807576\pi\)
−0.822777 + 0.568364i \(0.807576\pi\)
\(882\) −0.529214 + 0.384496i −0.0178195 + 0.0129467i
\(883\) −14.8801 45.7961i −0.500754 1.54116i −0.807793 0.589466i \(-0.799338\pi\)
0.307039 0.951697i \(-0.400662\pi\)
\(884\) 12.9552 39.8720i 0.435731 1.34104i
\(885\) 0 0
\(886\) −2.25724 1.63998i −0.0758335 0.0550963i
\(887\) 18.0406 55.5232i 0.605744 1.86429i 0.114148 0.993464i \(-0.463586\pi\)
0.491596 0.870824i \(-0.336414\pi\)
\(888\) 3.98628 + 12.2685i 0.133771 + 0.411704i
\(889\) 17.8977 13.0034i 0.600268 0.436120i
\(890\) 0 0
\(891\) 28.7392 + 19.1860i 0.962800 + 0.642754i
\(892\) 11.7035 0.391863
\(893\) −8.20224 + 5.95928i −0.274478 + 0.199420i
\(894\) 1.02375 + 3.15077i 0.0342392 + 0.105378i
\(895\) 0 0
\(896\) 6.57756 + 4.77888i 0.219741 + 0.159651i
\(897\) 5.93956 + 4.31534i 0.198316 + 0.144085i
\(898\) 1.25710 3.86896i 0.0419500 0.129109i
\(899\) −7.30723 22.4893i −0.243710 0.750061i
\(900\) 0 0
\(901\) 38.2101 1.27296
\(902\) 6.85113 5.40553i 0.228118 0.179985i
\(903\) 3.20230 0.106566
\(904\) −13.0696 + 9.49563i −0.434689 + 0.315820i
\(905\) 0 0
\(906\) 1.04083 3.20335i 0.0345793 0.106424i
\(907\) −36.4485 26.4814i −1.21025 0.879299i −0.214998 0.976614i \(-0.568975\pi\)
−0.995254 + 0.0973150i \(0.968975\pi\)
\(908\) 35.2190 + 25.5881i 1.16878 + 0.849171i
\(909\) −1.12305 + 3.45638i −0.0372491 + 0.114641i
\(910\) 0 0
\(911\) −5.00639 + 3.63735i −0.165869 + 0.120511i −0.667623 0.744499i \(-0.732688\pi\)
0.501754 + 0.865010i \(0.332688\pi\)
\(912\) 15.9150 0.527000
\(913\) −32.6597 + 25.7684i −1.08088 + 0.852810i
\(914\) 5.36971 0.177614
\(915\) 0 0
\(916\) −3.61122 11.1142i −0.119318 0.367223i
\(917\) −3.99155 + 12.2847i −0.131813 + 0.405677i
\(918\) 3.02648 + 2.19887i 0.0998889 + 0.0725735i
\(919\) −6.73240 4.89138i −0.222081 0.161352i 0.471182 0.882036i \(-0.343828\pi\)
−0.693263 + 0.720685i \(0.743828\pi\)
\(920\) 0 0
\(921\) −4.99444 15.3713i −0.164572 0.506501i
\(922\) 3.21074 2.33274i 0.105740 0.0768247i
\(923\) 55.3589 1.82216
\(924\) −13.1764 8.79645i −0.433473 0.289382i
\(925\) 0 0
\(926\) 3.38347 2.45824i 0.111188 0.0807826i
\(927\) 1.45037 + 4.46377i 0.0476363 + 0.146610i
\(928\) −2.74414 + 8.44559i −0.0900808 + 0.277240i
\(929\) −8.60810 6.25415i −0.282423 0.205192i 0.437551 0.899194i \(-0.355846\pi\)
−0.719973 + 0.694002i \(0.755846\pi\)
\(930\) 0 0
\(931\) −3.70467 + 11.4018i −0.121416 + 0.373679i
\(932\) 10.7230 + 33.0021i 0.351245 + 1.08102i
\(933\) 1.69190 1.22923i 0.0553902 0.0402433i
\(934\) −3.43789 −0.112491
\(935\) 0 0
\(936\) 2.64210 0.0863596
\(937\) −30.8835 + 22.4382i −1.00892 + 0.733023i −0.963982 0.265967i \(-0.914309\pi\)
−0.0449375 + 0.998990i \(0.514309\pi\)
\(938\) −0.356889 1.09839i −0.0116528 0.0358638i
\(939\) 3.27302 10.0733i 0.106811 0.328730i
\(940\) 0 0
\(941\) 32.7729 + 23.8109i 1.06837 + 0.776213i 0.975618 0.219476i \(-0.0704349\pi\)
0.0927480 + 0.995690i \(0.470435\pi\)
\(942\) 1.54225 4.74656i 0.0502493 0.154651i
\(943\) −2.77609 8.54391i −0.0904018 0.278228i
\(944\) −26.9825 + 19.6039i −0.878204 + 0.638053i
\(945\) 0 0
\(946\) 0.313970 + 0.849986i 0.0102081 + 0.0276354i
\(947\) −25.2006 −0.818909 −0.409455 0.912330i \(-0.634281\pi\)
−0.409455 + 0.912330i \(0.634281\pi\)
\(948\) 38.4159 27.9108i 1.24769 0.906500i
\(949\) 20.2184 + 62.2257i 0.656316 + 2.01993i
\(950\) 0 0
\(951\) 43.4448 + 31.5645i 1.40879 + 1.02355i
\(952\) −3.37815 2.45437i −0.109486 0.0795465i
\(953\) 6.29862 19.3852i 0.204032 0.627947i −0.795720 0.605665i \(-0.792907\pi\)
0.999752 0.0222813i \(-0.00709296\pi\)
\(954\) 0.367983 + 1.13254i 0.0119139 + 0.0366672i
\(955\) 0 0
\(956\) 37.4021 1.20967
\(957\) 6.22937 22.1222i 0.201367 0.715109i
\(958\) −1.06866 −0.0345268
\(959\) 3.67784 2.67211i 0.118764 0.0862868i
\(960\) 0 0
\(961\) 3.33274 10.2571i 0.107508 0.330874i
\(962\) 7.58901 + 5.51374i 0.244680 + 0.177770i
\(963\) −4.78053 3.47326i −0.154051 0.111924i
\(964\) 1.08493 3.33907i 0.0349432 0.107544i
\(965\) 0 0
\(966\) 0.292546 0.212547i 0.00941252 0.00683860i
\(967\) −4.49928 −0.144687 −0.0723436 0.997380i \(-0.523048\pi\)
−0.0723436 + 0.997380i \(0.523048\pi\)
\(968\) 2.10902 8.81640i 0.0677866 0.283370i
\(969\) −16.7225 −0.537204
\(970\) 0 0
\(971\) 10.5776 + 32.5546i 0.339452 + 1.04473i 0.964487 + 0.264129i \(0.0850845\pi\)
−0.625035 + 0.780596i \(0.714915\pi\)
\(972\) 3.64608 11.2215i 0.116948 0.359929i
\(973\) −9.15195 6.64928i −0.293398 0.213166i
\(974\) 2.82069 + 2.04935i 0.0903808 + 0.0656655i
\(975\) 0 0
\(976\) −2.12895 6.55222i −0.0681459 0.209732i
\(977\) 35.4877 25.7833i 1.13535 0.824881i 0.148887 0.988854i \(-0.452431\pi\)
0.986465 + 0.163973i \(0.0524310\pi\)
\(978\) −3.31779 −0.106091
\(979\) −5.64902 + 20.0612i −0.180544 + 0.641160i
\(980\) 0 0
\(981\) −3.63508 + 2.64104i −0.116059 + 0.0843220i
\(982\) 0.0496543 + 0.152820i 0.00158453 + 0.00487669i
\(983\) 5.54416 17.0632i 0.176831 0.544231i −0.822881 0.568214i \(-0.807635\pi\)
0.999712 + 0.0239829i \(0.00763472\pi\)
\(984\) −15.9545 11.5916i −0.508611 0.369528i
\(985\) 0 0
\(986\) 0.925655 2.84887i 0.0294789 0.0907266i
\(987\) −3.40626 10.4834i −0.108422 0.333690i
\(988\) 19.3723 14.0748i 0.616316 0.447780i
\(989\) 0.932779 0.0296607
\(990\) 0 0
\(991\) −33.5351 −1.06528 −0.532638 0.846343i \(-0.678799\pi\)
−0.532638 + 0.846343i \(0.678799\pi\)
\(992\) −12.6950 + 9.22343i −0.403065 + 0.292844i
\(993\) 10.8908 + 33.5183i 0.345608 + 1.06367i
\(994\) 0.842578 2.59319i 0.0267250 0.0822510i
\(995\) 0 0
\(996\) 37.6110 + 27.3260i 1.19175 + 0.865857i
\(997\) −6.85905 + 21.1100i −0.217228 + 0.668560i 0.781759 + 0.623580i \(0.214322\pi\)
−0.998988 + 0.0449802i \(0.985678\pi\)
\(998\) −1.12554 3.46406i −0.0356283 0.109653i
\(999\) 30.5417 22.1899i 0.966298 0.702056i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.h.e.201.3 yes 16
5.2 odd 4 275.2.z.c.124.5 32
5.3 odd 4 275.2.z.c.124.4 32
5.4 even 2 275.2.h.c.201.2 yes 16
11.2 odd 10 3025.2.a.bj.1.6 8
11.4 even 5 inner 275.2.h.e.26.3 yes 16
11.9 even 5 3025.2.a.bn.1.3 8
55.4 even 10 275.2.h.c.26.2 16
55.9 even 10 3025.2.a.bi.1.6 8
55.24 odd 10 3025.2.a.bm.1.3 8
55.37 odd 20 275.2.z.c.224.4 32
55.48 odd 20 275.2.z.c.224.5 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.2.h.c.26.2 16 55.4 even 10
275.2.h.c.201.2 yes 16 5.4 even 2
275.2.h.e.26.3 yes 16 11.4 even 5 inner
275.2.h.e.201.3 yes 16 1.1 even 1 trivial
275.2.z.c.124.4 32 5.3 odd 4
275.2.z.c.124.5 32 5.2 odd 4
275.2.z.c.224.4 32 55.37 odd 20
275.2.z.c.224.5 32 55.48 odd 20
3025.2.a.bi.1.6 8 55.9 even 10
3025.2.a.bj.1.6 8 11.2 odd 10
3025.2.a.bm.1.3 8 55.24 odd 10
3025.2.a.bn.1.3 8 11.9 even 5