Properties

Label 275.2.h.d.251.4
Level $275$
Weight $2$
Character 275.251
Analytic conductor $2.196$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,2,Mod(26,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.26"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.h (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 7x^{14} + 25x^{12} + 57x^{10} + 194x^{8} + 303x^{6} + 235x^{4} + 33x^{2} + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 251.4
Root \(-1.33858 + 0.972539i\) of defining polynomial
Character \(\chi\) \(=\) 275.251
Dual form 275.2.h.d.126.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.511294 - 1.57360i) q^{2} +(1.59764 - 1.16075i) q^{3} +(-0.596764 - 0.433574i) q^{4} +(-1.00970 - 3.10753i) q^{6} +(1.81468 + 1.31845i) q^{7} +(1.68978 - 1.22769i) q^{8} +(0.278050 - 0.855749i) q^{9} +(-3.27115 - 0.547326i) q^{11} -1.45668 q^{12} +(-1.14329 + 3.51868i) q^{13} +(3.00254 - 2.18148i) q^{14} +(-1.52381 - 4.68982i) q^{16} +(-0.687441 - 2.11573i) q^{17} +(-1.20444 - 0.875078i) q^{18} +(-4.27714 + 3.10753i) q^{19} +4.42960 q^{21} +(-2.53379 + 4.86764i) q^{22} -3.85415 q^{23} +(1.27460 - 3.92282i) q^{24} +(4.95244 + 3.59816i) q^{26} +(1.28164 + 3.94448i) q^{27} +(-0.511294 - 1.57360i) q^{28} +(-0.152450 - 0.110762i) q^{29} +(0.212253 - 0.653249i) q^{31} -3.98166 q^{32} +(-5.86142 + 2.92256i) q^{33} -3.68079 q^{34} +(-0.536960 + 0.390125i) q^{36} +(-2.09791 - 1.52422i) q^{37} +(2.70313 + 8.31938i) q^{38} +(2.25775 + 6.94864i) q^{39} +(-6.40421 + 4.65293i) q^{41} +(2.26482 - 6.97041i) q^{42} +8.41368 q^{43} +(1.71480 + 1.74491i) q^{44} +(-1.97060 + 6.06490i) q^{46} +(9.71886 - 7.06117i) q^{47} +(-7.87822 - 5.72386i) q^{48} +(-0.608337 - 1.87227i) q^{49} +(-3.55411 - 2.58222i) q^{51} +(2.20788 - 1.60412i) q^{52} +(3.91110 - 12.0371i) q^{53} +6.86233 q^{54} +4.68506 q^{56} +(-3.22626 + 9.92940i) q^{57} +(-0.252241 + 0.183264i) q^{58} +(0.278050 + 0.202015i) q^{59} +(0.535643 + 1.64854i) q^{61} +(-0.919429 - 0.668004i) q^{62} +(1.63283 - 1.18632i) q^{63} +(1.01183 - 3.11409i) q^{64} +(1.60204 + 10.7178i) q^{66} +0.650461 q^{67} +(-0.507084 + 1.56065i) q^{68} +(-6.15754 + 4.47371i) q^{69} +(1.43619 + 4.42013i) q^{71} +(-0.580756 - 1.78738i) q^{72} +(7.16660 + 5.20684i) q^{73} +(-3.47116 + 2.52195i) q^{74} +3.89979 q^{76} +(-5.21449 - 5.30606i) q^{77} +12.0888 q^{78} +(-2.23551 + 6.88019i) q^{79} +(8.80999 + 6.40083i) q^{81} +(4.04742 + 12.4567i) q^{82} +(0.983185 + 3.02593i) q^{83} +(-2.64342 - 1.92056i) q^{84} +(4.30186 - 13.2398i) q^{86} -0.372127 q^{87} +(-6.19946 + 3.09111i) q^{88} +9.92195 q^{89} +(-6.71389 + 4.87793i) q^{91} +(2.30002 + 1.67106i) q^{92} +(-0.419156 - 1.29003i) q^{93} +(-6.14226 - 18.9039i) q^{94} +(-6.36125 + 4.62172i) q^{96} +(0.700884 - 2.15710i) q^{97} -3.25724 q^{98} +(-1.37792 + 2.64710i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{4} - 18 q^{6} - 2 q^{9} - 6 q^{11} + 12 q^{14} + 16 q^{16} - 6 q^{19} + 8 q^{21} - 6 q^{24} + 40 q^{26} - 2 q^{29} + 8 q^{31} + 16 q^{34} + 10 q^{36} - 30 q^{39} - 52 q^{41} - 4 q^{44} - 62 q^{46}+ \cdots + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.511294 1.57360i 0.361539 1.11270i −0.590581 0.806979i \(-0.701101\pi\)
0.952120 0.305725i \(-0.0988988\pi\)
\(3\) 1.59764 1.16075i 0.922396 0.670160i −0.0217231 0.999764i \(-0.506915\pi\)
0.944119 + 0.329604i \(0.106915\pi\)
\(4\) −0.596764 0.433574i −0.298382 0.216787i
\(5\) 0 0
\(6\) −1.00970 3.10753i −0.412207 1.26864i
\(7\) 1.81468 + 1.31845i 0.685886 + 0.498326i 0.875305 0.483571i \(-0.160660\pi\)
−0.189419 + 0.981896i \(0.560660\pi\)
\(8\) 1.68978 1.22769i 0.597426 0.434055i
\(9\) 0.278050 0.855749i 0.0926832 0.285250i
\(10\) 0 0
\(11\) −3.27115 0.547326i −0.986289 0.165025i
\(12\) −1.45668 −0.420508
\(13\) −1.14329 + 3.51868i −0.317091 + 0.975906i 0.657794 + 0.753198i \(0.271490\pi\)
−0.974885 + 0.222708i \(0.928510\pi\)
\(14\) 3.00254 2.18148i 0.802464 0.583024i
\(15\) 0 0
\(16\) −1.52381 4.68982i −0.380954 1.17245i
\(17\) −0.687441 2.11573i −0.166729 0.513139i 0.832431 0.554129i \(-0.186949\pi\)
−0.999160 + 0.0409903i \(0.986949\pi\)
\(18\) −1.20444 0.875078i −0.283890 0.206258i
\(19\) −4.27714 + 3.10753i −0.981244 + 0.712916i −0.957986 0.286814i \(-0.907404\pi\)
−0.0232580 + 0.999729i \(0.507404\pi\)
\(20\) 0 0
\(21\) 4.42960 0.966617
\(22\) −2.53379 + 4.86764i −0.540206 + 1.03778i
\(23\) −3.85415 −0.803647 −0.401823 0.915717i \(-0.631623\pi\)
−0.401823 + 0.915717i \(0.631623\pi\)
\(24\) 1.27460 3.92282i 0.260177 0.800742i
\(25\) 0 0
\(26\) 4.95244 + 3.59816i 0.971253 + 0.705657i
\(27\) 1.28164 + 3.94448i 0.246652 + 0.759116i
\(28\) −0.511294 1.57360i −0.0966255 0.297383i
\(29\) −0.152450 0.110762i −0.0283093 0.0205679i 0.573541 0.819177i \(-0.305569\pi\)
−0.601850 + 0.798609i \(0.705569\pi\)
\(30\) 0 0
\(31\) 0.212253 0.653249i 0.0381218 0.117327i −0.930185 0.367092i \(-0.880353\pi\)
0.968306 + 0.249765i \(0.0803534\pi\)
\(32\) −3.98166 −0.703866
\(33\) −5.86142 + 2.92256i −1.02034 + 0.508753i
\(34\) −3.68079 −0.631251
\(35\) 0 0
\(36\) −0.536960 + 0.390125i −0.0894934 + 0.0650208i
\(37\) −2.09791 1.52422i −0.344894 0.250580i 0.401830 0.915714i \(-0.368374\pi\)
−0.746724 + 0.665134i \(0.768374\pi\)
\(38\) 2.70313 + 8.31938i 0.438506 + 1.34958i
\(39\) 2.25775 + 6.94864i 0.361529 + 1.11267i
\(40\) 0 0
\(41\) −6.40421 + 4.65293i −1.00017 + 0.726666i −0.962124 0.272611i \(-0.912113\pi\)
−0.0380448 + 0.999276i \(0.512113\pi\)
\(42\) 2.26482 6.97041i 0.349470 1.07556i
\(43\) 8.41368 1.28307 0.641537 0.767092i \(-0.278297\pi\)
0.641537 + 0.767092i \(0.278297\pi\)
\(44\) 1.71480 + 1.74491i 0.258515 + 0.263055i
\(45\) 0 0
\(46\) −1.97060 + 6.06490i −0.290550 + 0.894220i
\(47\) 9.71886 7.06117i 1.41764 1.02998i 0.425486 0.904965i \(-0.360103\pi\)
0.992155 0.125012i \(-0.0398969\pi\)
\(48\) −7.87822 5.72386i −1.13712 0.826168i
\(49\) −0.608337 1.87227i −0.0869053 0.267467i
\(50\) 0 0
\(51\) −3.55411 2.58222i −0.497676 0.361582i
\(52\) 2.20788 1.60412i 0.306178 0.222451i
\(53\) 3.91110 12.0371i 0.537231 1.65343i −0.201549 0.979479i \(-0.564597\pi\)
0.738779 0.673947i \(-0.235403\pi\)
\(54\) 6.86233 0.933845
\(55\) 0 0
\(56\) 4.68506 0.626067
\(57\) −3.22626 + 9.92940i −0.427328 + 1.31518i
\(58\) −0.252241 + 0.183264i −0.0331209 + 0.0240638i
\(59\) 0.278050 + 0.202015i 0.0361990 + 0.0263001i 0.605738 0.795664i \(-0.292878\pi\)
−0.569539 + 0.821965i \(0.692878\pi\)
\(60\) 0 0
\(61\) 0.535643 + 1.64854i 0.0685821 + 0.211074i 0.979474 0.201572i \(-0.0646049\pi\)
−0.910892 + 0.412645i \(0.864605\pi\)
\(62\) −0.919429 0.668004i −0.116768 0.0848366i
\(63\) 1.63283 1.18632i 0.205717 0.149462i
\(64\) 1.01183 3.11409i 0.126479 0.389261i
\(65\) 0 0
\(66\) 1.60204 + 10.7178i 0.197197 + 1.31927i
\(67\) 0.650461 0.0794664 0.0397332 0.999210i \(-0.487349\pi\)
0.0397332 + 0.999210i \(0.487349\pi\)
\(68\) −0.507084 + 1.56065i −0.0614930 + 0.189256i
\(69\) −6.15754 + 4.47371i −0.741281 + 0.538572i
\(70\) 0 0
\(71\) 1.43619 + 4.42013i 0.170444 + 0.524573i 0.999396 0.0347464i \(-0.0110624\pi\)
−0.828952 + 0.559320i \(0.811062\pi\)
\(72\) −0.580756 1.78738i −0.0684427 0.210645i
\(73\) 7.16660 + 5.20684i 0.838787 + 0.609415i 0.922032 0.387115i \(-0.126528\pi\)
−0.0832444 + 0.996529i \(0.526528\pi\)
\(74\) −3.47116 + 2.52195i −0.403515 + 0.293171i
\(75\) 0 0
\(76\) 3.89979 0.447336
\(77\) −5.21449 5.30606i −0.594246 0.604682i
\(78\) 12.0888 1.36878
\(79\) −2.23551 + 6.88019i −0.251514 + 0.774082i 0.742982 + 0.669311i \(0.233411\pi\)
−0.994496 + 0.104770i \(0.966589\pi\)
\(80\) 0 0
\(81\) 8.80999 + 6.40083i 0.978888 + 0.711203i
\(82\) 4.04742 + 12.4567i 0.446963 + 1.37561i
\(83\) 0.983185 + 3.02593i 0.107919 + 0.332139i 0.990404 0.138200i \(-0.0441316\pi\)
−0.882486 + 0.470339i \(0.844132\pi\)
\(84\) −2.64342 1.92056i −0.288421 0.209550i
\(85\) 0 0
\(86\) 4.30186 13.2398i 0.463882 1.42768i
\(87\) −0.372127 −0.0398962
\(88\) −6.19946 + 3.09111i −0.660865 + 0.329514i
\(89\) 9.92195 1.05172 0.525862 0.850570i \(-0.323743\pi\)
0.525862 + 0.850570i \(0.323743\pi\)
\(90\) 0 0
\(91\) −6.71389 + 4.87793i −0.703807 + 0.511346i
\(92\) 2.30002 + 1.67106i 0.239793 + 0.174220i
\(93\) −0.419156 1.29003i −0.0434644 0.133770i
\(94\) −6.14226 18.9039i −0.633526 1.94979i
\(95\) 0 0
\(96\) −6.36125 + 4.62172i −0.649243 + 0.471703i
\(97\) 0.700884 2.15710i 0.0711640 0.219020i −0.909149 0.416472i \(-0.863266\pi\)
0.980313 + 0.197451i \(0.0632665\pi\)
\(98\) −3.25724 −0.329031
\(99\) −1.37792 + 2.64710i −0.138486 + 0.266044i
\(100\) 0 0
\(101\) 3.05830 9.41247i 0.304312 0.936576i −0.675621 0.737249i \(-0.736124\pi\)
0.979933 0.199327i \(-0.0638756\pi\)
\(102\) −5.88057 + 4.27249i −0.582263 + 0.423039i
\(103\) −8.28525 6.01958i −0.816370 0.593127i 0.0993007 0.995057i \(-0.468339\pi\)
−0.915670 + 0.401930i \(0.868339\pi\)
\(104\) 2.38796 + 7.34938i 0.234159 + 0.720666i
\(105\) 0 0
\(106\) −16.9419 12.3090i −1.64554 1.19556i
\(107\) −8.12803 + 5.90536i −0.785767 + 0.570893i −0.906704 0.421767i \(-0.861410\pi\)
0.120937 + 0.992660i \(0.461410\pi\)
\(108\) 0.945389 2.90961i 0.0909701 0.279977i
\(109\) −8.80173 −0.843053 −0.421527 0.906816i \(-0.638506\pi\)
−0.421527 + 0.906816i \(0.638506\pi\)
\(110\) 0 0
\(111\) −5.12094 −0.486058
\(112\) 3.41803 10.5196i 0.322973 0.994010i
\(113\) −0.187168 + 0.135985i −0.0176073 + 0.0127924i −0.596554 0.802573i \(-0.703464\pi\)
0.578947 + 0.815365i \(0.303464\pi\)
\(114\) 13.9753 + 10.1537i 1.30891 + 0.950980i
\(115\) 0 0
\(116\) 0.0429534 + 0.132197i 0.00398812 + 0.0122742i
\(117\) 2.69321 + 1.95673i 0.248988 + 0.180900i
\(118\) 0.460056 0.334250i 0.0423516 0.0307702i
\(119\) 1.54198 4.74573i 0.141353 0.435040i
\(120\) 0 0
\(121\) 10.4009 + 3.58078i 0.945533 + 0.325525i
\(122\) 2.86801 0.259658
\(123\) −4.83071 + 14.8674i −0.435570 + 1.34055i
\(124\) −0.409897 + 0.297808i −0.0368098 + 0.0267439i
\(125\) 0 0
\(126\) −1.03194 3.17598i −0.0919324 0.282939i
\(127\) −0.751018 2.31140i −0.0666421 0.205103i 0.912190 0.409767i \(-0.134390\pi\)
−0.978832 + 0.204664i \(0.934390\pi\)
\(128\) −10.8255 7.86516i −0.956844 0.695188i
\(129\) 13.4420 9.76619i 1.18350 0.859865i
\(130\) 0 0
\(131\) 1.58846 0.138785 0.0693924 0.997589i \(-0.477894\pi\)
0.0693924 + 0.997589i \(0.477894\pi\)
\(132\) 4.76503 + 0.797281i 0.414743 + 0.0693944i
\(133\) −11.8588 −1.02829
\(134\) 0.332577 1.02357i 0.0287302 0.0884226i
\(135\) 0 0
\(136\) −3.75909 2.73114i −0.322339 0.234193i
\(137\) −5.77920 17.7866i −0.493750 1.51961i −0.818895 0.573943i \(-0.805413\pi\)
0.325145 0.945664i \(-0.394587\pi\)
\(138\) 3.89153 + 11.9769i 0.331269 + 1.01954i
\(139\) −9.40675 6.83441i −0.797870 0.579687i 0.112418 0.993661i \(-0.464140\pi\)
−0.910289 + 0.413974i \(0.864140\pi\)
\(140\) 0 0
\(141\) 7.33095 22.5624i 0.617378 1.90009i
\(142\) 7.68984 0.645317
\(143\) 5.66573 10.8844i 0.473792 0.910197i
\(144\) −4.43700 −0.369750
\(145\) 0 0
\(146\) 11.8577 8.61514i 0.981352 0.712994i
\(147\) −3.14514 2.28508i −0.259407 0.188470i
\(148\) 0.591094 + 1.81920i 0.0485876 + 0.149537i
\(149\) 1.82800 + 5.62600i 0.149755 + 0.460900i 0.997592 0.0693580i \(-0.0220951\pi\)
−0.847836 + 0.530258i \(0.822095\pi\)
\(150\) 0 0
\(151\) −10.3375 + 7.51064i −0.841254 + 0.611207i −0.922721 0.385469i \(-0.874040\pi\)
0.0814664 + 0.996676i \(0.474040\pi\)
\(152\) −3.41232 + 10.5020i −0.276776 + 0.851828i
\(153\) −2.00167 −0.161826
\(154\) −11.0158 + 5.49257i −0.887675 + 0.442604i
\(155\) 0 0
\(156\) 1.66541 5.12560i 0.133339 0.410376i
\(157\) −11.6083 + 8.43394i −0.926445 + 0.673102i −0.945120 0.326724i \(-0.894055\pi\)
0.0186749 + 0.999826i \(0.494055\pi\)
\(158\) 9.68367 + 7.03560i 0.770391 + 0.559722i
\(159\) −7.72359 23.7708i −0.612520 1.88514i
\(160\) 0 0
\(161\) −6.99407 5.08149i −0.551210 0.400478i
\(162\) 14.5768 10.5907i 1.14527 0.832084i
\(163\) −1.12085 + 3.44963i −0.0877921 + 0.270196i −0.985308 0.170785i \(-0.945370\pi\)
0.897516 + 0.440982i \(0.145370\pi\)
\(164\) 5.83919 0.455964
\(165\) 0 0
\(166\) 5.26430 0.408589
\(167\) −1.18066 + 3.63370i −0.0913623 + 0.281184i −0.986289 0.165030i \(-0.947228\pi\)
0.894926 + 0.446214i \(0.147228\pi\)
\(168\) 7.48502 5.43819i 0.577482 0.419565i
\(169\) −0.556767 0.404515i −0.0428282 0.0311165i
\(170\) 0 0
\(171\) 1.47000 + 4.52421i 0.112414 + 0.345975i
\(172\) −5.02098 3.64795i −0.382846 0.278154i
\(173\) −1.70472 + 1.23855i −0.129607 + 0.0941651i −0.650700 0.759335i \(-0.725524\pi\)
0.521093 + 0.853500i \(0.325524\pi\)
\(174\) −0.190266 + 0.585579i −0.0144240 + 0.0443926i
\(175\) 0 0
\(176\) 2.41777 + 16.1751i 0.182246 + 1.21925i
\(177\) 0.678711 0.0510151
\(178\) 5.07303 15.6132i 0.380240 1.17026i
\(179\) −4.06448 + 2.95302i −0.303793 + 0.220719i −0.729229 0.684270i \(-0.760121\pi\)
0.425435 + 0.904989i \(0.360121\pi\)
\(180\) 0 0
\(181\) −4.83538 14.8818i −0.359411 1.10615i −0.953408 0.301685i \(-0.902451\pi\)
0.593997 0.804467i \(-0.297549\pi\)
\(182\) 4.24314 + 13.0590i 0.314522 + 0.968000i
\(183\) 2.76931 + 2.01202i 0.204713 + 0.148733i
\(184\) −6.51265 + 4.73172i −0.480119 + 0.348827i
\(185\) 0 0
\(186\) −2.24430 −0.164560
\(187\) 1.09073 + 7.29712i 0.0797622 + 0.533618i
\(188\) −8.86140 −0.646284
\(189\) −2.87481 + 8.84777i −0.209112 + 0.643580i
\(190\) 0 0
\(191\) −2.52078 1.83145i −0.182397 0.132519i 0.492840 0.870120i \(-0.335959\pi\)
−0.675237 + 0.737601i \(0.735959\pi\)
\(192\) −1.99815 6.14966i −0.144204 0.443814i
\(193\) −2.97780 9.16474i −0.214347 0.659692i −0.999199 0.0400095i \(-0.987261\pi\)
0.784852 0.619683i \(-0.212739\pi\)
\(194\) −3.03606 2.20582i −0.217976 0.158369i
\(195\) 0 0
\(196\) −0.448734 + 1.38106i −0.0320524 + 0.0986472i
\(197\) 14.3974 1.02577 0.512885 0.858457i \(-0.328577\pi\)
0.512885 + 0.858457i \(0.328577\pi\)
\(198\) 3.46096 + 3.52174i 0.245960 + 0.250279i
\(199\) 14.7978 1.04899 0.524493 0.851415i \(-0.324255\pi\)
0.524493 + 0.851415i \(0.324255\pi\)
\(200\) 0 0
\(201\) 1.03920 0.755023i 0.0732995 0.0532552i
\(202\) −13.2478 9.62508i −0.932111 0.677218i
\(203\) −0.130616 0.401995i −0.00916745 0.0282145i
\(204\) 1.00138 + 3.08194i 0.0701109 + 0.215779i
\(205\) 0 0
\(206\) −13.7086 + 9.95989i −0.955125 + 0.693939i
\(207\) −1.07165 + 3.29819i −0.0744845 + 0.229240i
\(208\) 18.2441 1.26500
\(209\) 15.6920 7.82420i 1.08544 0.541211i
\(210\) 0 0
\(211\) −2.09250 + 6.44005i −0.144054 + 0.443352i −0.996888 0.0788298i \(-0.974882\pi\)
0.852834 + 0.522181i \(0.174882\pi\)
\(212\) −7.55299 + 5.48756i −0.518741 + 0.376888i
\(213\) 7.42518 + 5.39471i 0.508765 + 0.369640i
\(214\) 5.13687 + 15.8097i 0.351149 + 1.08073i
\(215\) 0 0
\(216\) 7.00830 + 5.09183i 0.476854 + 0.346455i
\(217\) 1.24645 0.905596i 0.0846143 0.0614759i
\(218\) −4.50027 + 13.8504i −0.304797 + 0.938069i
\(219\) 17.4935 1.18210
\(220\) 0 0
\(221\) 8.23051 0.553644
\(222\) −2.61831 + 8.05832i −0.175729 + 0.540839i
\(223\) −7.05242 + 5.12388i −0.472265 + 0.343121i −0.798323 0.602229i \(-0.794279\pi\)
0.326058 + 0.945350i \(0.394279\pi\)
\(224\) −7.22547 5.24961i −0.482772 0.350754i
\(225\) 0 0
\(226\) 0.118289 + 0.364056i 0.00786846 + 0.0242166i
\(227\) 3.08028 + 2.23795i 0.204445 + 0.148538i 0.685297 0.728264i \(-0.259672\pi\)
−0.480852 + 0.876802i \(0.659672\pi\)
\(228\) 6.23044 4.52668i 0.412621 0.299787i
\(229\) −0.838570 + 2.58085i −0.0554142 + 0.170547i −0.974933 0.222499i \(-0.928579\pi\)
0.919519 + 0.393046i \(0.128579\pi\)
\(230\) 0 0
\(231\) −14.4899 2.42443i −0.953364 0.159516i
\(232\) −0.393588 −0.0258403
\(233\) 3.24801 9.99634i 0.212784 0.654882i −0.786519 0.617566i \(-0.788119\pi\)
0.999303 0.0373166i \(-0.0118810\pi\)
\(234\) 4.45614 3.23758i 0.291307 0.211647i
\(235\) 0 0
\(236\) −0.0783415 0.241110i −0.00509959 0.0156949i
\(237\) 4.41466 + 13.5869i 0.286763 + 0.882565i
\(238\) −6.67948 4.85293i −0.432966 0.314569i
\(239\) −16.2124 + 11.7790i −1.04869 + 0.761919i −0.971963 0.235133i \(-0.924448\pi\)
−0.0767288 + 0.997052i \(0.524448\pi\)
\(240\) 0 0
\(241\) 28.4450 1.83230 0.916152 0.400832i \(-0.131279\pi\)
0.916152 + 0.400832i \(0.131279\pi\)
\(242\) 10.9526 14.5360i 0.704060 0.934408i
\(243\) 9.06251 0.581361
\(244\) 0.395112 1.21603i 0.0252944 0.0778483i
\(245\) 0 0
\(246\) 20.9254 + 15.2032i 1.33416 + 0.969321i
\(247\) −6.04438 18.6027i −0.384595 1.18366i
\(248\) −0.443329 1.36443i −0.0281514 0.0866411i
\(249\) 5.08313 + 3.69311i 0.322130 + 0.234041i
\(250\) 0 0
\(251\) −7.36604 + 22.6703i −0.464940 + 1.43094i 0.394117 + 0.919060i \(0.371050\pi\)
−0.859058 + 0.511879i \(0.828950\pi\)
\(252\) −1.48877 −0.0937838
\(253\) 12.6075 + 2.10948i 0.792628 + 0.132622i
\(254\) −4.02120 −0.252313
\(255\) 0 0
\(256\) −12.6136 + 9.16432i −0.788350 + 0.572770i
\(257\) 19.9636 + 14.5044i 1.24529 + 0.904758i 0.997939 0.0641671i \(-0.0204391\pi\)
0.247354 + 0.968925i \(0.420439\pi\)
\(258\) −8.49527 26.1458i −0.528892 1.62776i
\(259\) −1.79744 5.53196i −0.111688 0.343739i
\(260\) 0 0
\(261\) −0.137173 + 0.0996619i −0.00849079 + 0.00616892i
\(262\) 0.812172 2.49961i 0.0501761 0.154426i
\(263\) −5.44098 −0.335505 −0.167753 0.985829i \(-0.553651\pi\)
−0.167753 + 0.985829i \(0.553651\pi\)
\(264\) −6.31647 + 12.1345i −0.388752 + 0.746827i
\(265\) 0 0
\(266\) −6.06332 + 18.6610i −0.371766 + 1.14418i
\(267\) 15.8517 11.5169i 0.970107 0.704824i
\(268\) −0.388171 0.282023i −0.0237113 0.0172273i
\(269\) −2.07213 6.37738i −0.126340 0.388835i 0.867803 0.496909i \(-0.165532\pi\)
−0.994143 + 0.108074i \(0.965532\pi\)
\(270\) 0 0
\(271\) 4.09349 + 2.97409i 0.248662 + 0.180663i 0.705134 0.709075i \(-0.250887\pi\)
−0.456472 + 0.889738i \(0.650887\pi\)
\(272\) −8.87484 + 6.44795i −0.538116 + 0.390964i
\(273\) −5.06430 + 15.5863i −0.306505 + 0.943327i
\(274\) −30.9438 −1.86938
\(275\) 0 0
\(276\) 5.61428 0.337940
\(277\) 3.30453 10.1703i 0.198550 0.611074i −0.801367 0.598173i \(-0.795893\pi\)
0.999917 0.0129009i \(-0.00410661\pi\)
\(278\) −15.5642 + 11.3081i −0.933481 + 0.678214i
\(279\) −0.500000 0.363271i −0.0299342 0.0217485i
\(280\) 0 0
\(281\) −4.23963 13.0482i −0.252915 0.778392i −0.994233 0.107238i \(-0.965799\pi\)
0.741319 0.671153i \(-0.234201\pi\)
\(282\) −31.7559 23.0720i −1.89103 1.37392i
\(283\) −17.7735 + 12.9132i −1.05653 + 0.767611i −0.973442 0.228932i \(-0.926477\pi\)
−0.0830832 + 0.996543i \(0.526477\pi\)
\(284\) 1.05939 3.26047i 0.0628633 0.193473i
\(285\) 0 0
\(286\) −14.2308 14.4807i −0.841485 0.856263i
\(287\) −17.7563 −1.04812
\(288\) −1.10710 + 3.40730i −0.0652365 + 0.200777i
\(289\) 9.74956 7.08347i 0.573504 0.416675i
\(290\) 0 0
\(291\) −1.38410 4.25981i −0.0811372 0.249715i
\(292\) −2.01922 6.21450i −0.118166 0.363676i
\(293\) 11.3570 + 8.25135i 0.663483 + 0.482049i 0.867837 0.496848i \(-0.165509\pi\)
−0.204354 + 0.978897i \(0.565509\pi\)
\(294\) −5.20389 + 3.78085i −0.303497 + 0.220504i
\(295\) 0 0
\(296\) −5.41627 −0.314815
\(297\) −2.03352 13.6045i −0.117997 0.789412i
\(298\) 9.78772 0.566988
\(299\) 4.40641 13.5615i 0.254829 0.784283i
\(300\) 0 0
\(301\) 15.2682 + 11.0930i 0.880043 + 0.639389i
\(302\) 6.53324 + 20.1073i 0.375946 + 1.15704i
\(303\) −6.03949 18.5876i −0.346960 1.06783i
\(304\) 21.0913 + 15.3237i 1.20967 + 0.878877i
\(305\) 0 0
\(306\) −1.02344 + 3.14983i −0.0585064 + 0.180064i
\(307\) 6.86951 0.392064 0.196032 0.980598i \(-0.437194\pi\)
0.196032 + 0.980598i \(0.437194\pi\)
\(308\) 0.811246 + 5.42733i 0.0462251 + 0.309251i
\(309\) −20.2241 −1.15051
\(310\) 0 0
\(311\) 4.45087 3.23374i 0.252385 0.183369i −0.454398 0.890799i \(-0.650146\pi\)
0.706783 + 0.707430i \(0.250146\pi\)
\(312\) 12.3459 + 8.96982i 0.698949 + 0.507816i
\(313\) −4.39793 13.5354i −0.248586 0.765068i −0.995026 0.0996156i \(-0.968239\pi\)
0.746440 0.665452i \(-0.231761\pi\)
\(314\) 7.33639 + 22.5791i 0.414016 + 1.27421i
\(315\) 0 0
\(316\) 4.31714 3.13659i 0.242858 0.176447i
\(317\) −5.77442 + 17.7718i −0.324324 + 0.998166i 0.647421 + 0.762132i \(0.275847\pi\)
−0.971745 + 0.236033i \(0.924153\pi\)
\(318\) −41.3547 −2.31906
\(319\) 0.438065 + 0.445758i 0.0245269 + 0.0249577i
\(320\) 0 0
\(321\) −6.13099 + 18.8693i −0.342199 + 1.05318i
\(322\) −11.5723 + 8.40774i −0.644897 + 0.468545i
\(323\) 9.51497 + 6.91303i 0.529427 + 0.384651i
\(324\) −2.48225 7.63957i −0.137903 0.424420i
\(325\) 0 0
\(326\) 4.85526 + 3.52755i 0.268908 + 0.195373i
\(327\) −14.0620 + 10.2166i −0.777629 + 0.564981i
\(328\) −5.10930 + 15.7248i −0.282114 + 0.868257i
\(329\) 26.9464 1.48560
\(330\) 0 0
\(331\) 0.468249 0.0257373 0.0128686 0.999917i \(-0.495904\pi\)
0.0128686 + 0.999917i \(0.495904\pi\)
\(332\) 0.725237 2.23205i 0.0398025 0.122500i
\(333\) −1.88767 + 1.37148i −0.103444 + 0.0751564i
\(334\) 5.11433 + 3.71578i 0.279844 + 0.203318i
\(335\) 0 0
\(336\) −6.74988 20.7740i −0.368236 1.13331i
\(337\) 27.5771 + 20.0360i 1.50222 + 1.09143i 0.969486 + 0.245146i \(0.0788359\pi\)
0.532735 + 0.846282i \(0.321164\pi\)
\(338\) −0.921216 + 0.669303i −0.0501075 + 0.0364053i
\(339\) −0.141181 + 0.434511i −0.00766790 + 0.0235994i
\(340\) 0 0
\(341\) −1.05185 + 2.02070i −0.0569611 + 0.109427i
\(342\) 7.87090 0.425610
\(343\) 6.21658 19.1327i 0.335664 1.03307i
\(344\) 14.2172 10.3294i 0.766542 0.556925i
\(345\) 0 0
\(346\) 1.07737 + 3.31580i 0.0579198 + 0.178259i
\(347\) −1.11027 3.41707i −0.0596026 0.183438i 0.916822 0.399296i \(-0.130745\pi\)
−0.976425 + 0.215858i \(0.930745\pi\)
\(348\) 0.222072 + 0.161345i 0.0119043 + 0.00864898i
\(349\) 5.15433 3.74484i 0.275905 0.200457i −0.441224 0.897397i \(-0.645456\pi\)
0.717129 + 0.696940i \(0.245456\pi\)
\(350\) 0 0
\(351\) −15.3446 −0.819037
\(352\) 13.0246 + 2.17927i 0.694215 + 0.116156i
\(353\) 12.1971 0.649186 0.324593 0.945854i \(-0.394773\pi\)
0.324593 + 0.945854i \(0.394773\pi\)
\(354\) 0.347021 1.06802i 0.0184440 0.0567647i
\(355\) 0 0
\(356\) −5.92106 4.30190i −0.313815 0.228000i
\(357\) −3.04509 9.37181i −0.161163 0.496009i
\(358\) 2.56873 + 7.90573i 0.135761 + 0.417831i
\(359\) −19.5093 14.1744i −1.02966 0.748094i −0.0614222 0.998112i \(-0.519564\pi\)
−0.968241 + 0.250018i \(0.919564\pi\)
\(360\) 0 0
\(361\) 2.76592 8.51262i 0.145575 0.448032i
\(362\) −25.8902 −1.36076
\(363\) 20.7732 6.35204i 1.09031 0.333396i
\(364\) 6.12155 0.320856
\(365\) 0 0
\(366\) 4.58205 3.32905i 0.239507 0.174012i
\(367\) −16.4958 11.9849i −0.861073 0.625606i 0.0671034 0.997746i \(-0.478624\pi\)
−0.928177 + 0.372140i \(0.878624\pi\)
\(368\) 5.87302 + 18.0753i 0.306152 + 0.942239i
\(369\) 2.20105 + 6.77414i 0.114582 + 0.352648i
\(370\) 0 0
\(371\) 22.9677 16.6870i 1.19242 0.866347i
\(372\) −0.309186 + 0.951577i −0.0160305 + 0.0493370i
\(373\) −7.51997 −0.389369 −0.194685 0.980866i \(-0.562368\pi\)
−0.194685 + 0.980866i \(0.562368\pi\)
\(374\) 12.0404 + 2.01460i 0.622596 + 0.104172i
\(375\) 0 0
\(376\) 7.75374 23.8636i 0.399869 1.23067i
\(377\) 0.564029 0.409791i 0.0290490 0.0211053i
\(378\) 12.4530 + 9.04762i 0.640512 + 0.465359i
\(379\) 7.16649 + 22.0562i 0.368118 + 1.13295i 0.948006 + 0.318254i \(0.103096\pi\)
−0.579888 + 0.814696i \(0.696904\pi\)
\(380\) 0 0
\(381\) −3.88281 2.82103i −0.198922 0.144526i
\(382\) −4.17083 + 3.03029i −0.213398 + 0.155043i
\(383\) −0.754123 + 2.32095i −0.0385339 + 0.118595i −0.968473 0.249118i \(-0.919859\pi\)
0.929939 + 0.367713i \(0.119859\pi\)
\(384\) −26.4246 −1.34848
\(385\) 0 0
\(386\) −15.9442 −0.811537
\(387\) 2.33942 7.20000i 0.118919 0.365997i
\(388\) −1.35352 + 0.983393i −0.0687148 + 0.0499242i
\(389\) −27.4849 19.9689i −1.39354 1.01246i −0.995467 0.0951096i \(-0.969680\pi\)
−0.398071 0.917355i \(-0.630320\pi\)
\(390\) 0 0
\(391\) 2.64950 + 8.15434i 0.133991 + 0.412383i
\(392\) −3.32653 2.41686i −0.168015 0.122070i
\(393\) 2.53779 1.84381i 0.128015 0.0930080i
\(394\) 7.36129 22.6557i 0.370856 1.14138i
\(395\) 0 0
\(396\) 1.97000 0.982264i 0.0989964 0.0493606i
\(397\) 27.4961 1.37999 0.689995 0.723814i \(-0.257613\pi\)
0.689995 + 0.723814i \(0.257613\pi\)
\(398\) 7.56601 23.2858i 0.379250 1.16721i
\(399\) −18.9460 + 13.7651i −0.948487 + 0.689116i
\(400\) 0 0
\(401\) −0.583247 1.79505i −0.0291259 0.0896404i 0.935437 0.353494i \(-0.115006\pi\)
−0.964563 + 0.263853i \(0.915006\pi\)
\(402\) −0.656768 2.02132i −0.0327566 0.100815i
\(403\) 2.05591 + 1.49370i 0.102412 + 0.0744067i
\(404\) −5.90608 + 4.29102i −0.293839 + 0.213486i
\(405\) 0 0
\(406\) −0.699363 −0.0347088
\(407\) 6.02834 + 6.13420i 0.298814 + 0.304061i
\(408\) −9.17582 −0.454271
\(409\) 4.18949 12.8939i 0.207157 0.637563i −0.792461 0.609923i \(-0.791201\pi\)
0.999618 0.0276408i \(-0.00879945\pi\)
\(410\) 0 0
\(411\) −29.8788 21.7082i −1.47381 1.07079i
\(412\) 2.33440 + 7.18454i 0.115008 + 0.353957i
\(413\) 0.238227 + 0.733187i 0.0117224 + 0.0360778i
\(414\) 4.64210 + 3.37269i 0.228147 + 0.165758i
\(415\) 0 0
\(416\) 4.55219 14.0102i 0.223189 0.686906i
\(417\) −22.9616 −1.12444
\(418\) −4.28893 28.6934i −0.209779 1.40344i
\(419\) −22.1368 −1.08145 −0.540727 0.841198i \(-0.681851\pi\)
−0.540727 + 0.841198i \(0.681851\pi\)
\(420\) 0 0
\(421\) −14.4835 + 10.5229i −0.705881 + 0.512853i −0.881842 0.471544i \(-0.843697\pi\)
0.175961 + 0.984397i \(0.443697\pi\)
\(422\) 9.06419 + 6.58552i 0.441238 + 0.320578i
\(423\) −3.34026 10.2803i −0.162409 0.499843i
\(424\) −8.16902 25.1417i −0.396723 1.22099i
\(425\) 0 0
\(426\) 12.2856 8.92599i 0.595238 0.432466i
\(427\) −1.20149 + 3.69780i −0.0581440 + 0.178949i
\(428\) 7.41093 0.358221
\(429\) −3.58227 23.9658i −0.172954 1.15708i
\(430\) 0 0
\(431\) 10.3353 31.8087i 0.497833 1.53217i −0.314662 0.949204i \(-0.601891\pi\)
0.812495 0.582968i \(-0.198109\pi\)
\(432\) 16.5459 12.0213i 0.796066 0.578376i
\(433\) 25.4771 + 18.5102i 1.22435 + 0.889543i 0.996454 0.0841428i \(-0.0268152\pi\)
0.227897 + 0.973685i \(0.426815\pi\)
\(434\) −0.787747 2.42443i −0.0378130 0.116377i
\(435\) 0 0
\(436\) 5.25255 + 3.81620i 0.251552 + 0.182763i
\(437\) 16.4848 11.9769i 0.788574 0.572932i
\(438\) 8.94431 27.5277i 0.427375 1.31533i
\(439\) 35.6208 1.70009 0.850045 0.526710i \(-0.176575\pi\)
0.850045 + 0.526710i \(0.176575\pi\)
\(440\) 0 0
\(441\) −1.77134 −0.0843495
\(442\) 4.20821 12.9515i 0.200164 0.616041i
\(443\) 19.0018 13.8056i 0.902805 0.655926i −0.0363802 0.999338i \(-0.511583\pi\)
0.939185 + 0.343412i \(0.111583\pi\)
\(444\) 3.05599 + 2.22031i 0.145031 + 0.105371i
\(445\) 0 0
\(446\) 4.45709 + 13.7175i 0.211049 + 0.649543i
\(447\) 9.45086 + 6.86646i 0.447011 + 0.324772i
\(448\) 5.94191 4.31705i 0.280729 0.203961i
\(449\) −9.70066 + 29.8555i −0.457802 + 1.40897i 0.410011 + 0.912080i \(0.365525\pi\)
−0.867814 + 0.496890i \(0.834475\pi\)
\(450\) 0 0
\(451\) 23.4958 11.7152i 1.10637 0.551649i
\(452\) 0.170655 0.00802692
\(453\) −7.79760 + 23.9985i −0.366363 + 1.12755i
\(454\) 5.09658 3.70288i 0.239194 0.173785i
\(455\) 0 0
\(456\) 6.73861 + 20.7393i 0.315564 + 0.971207i
\(457\) −12.0859 37.1964i −0.565352 1.73998i −0.666903 0.745145i \(-0.732380\pi\)
0.101550 0.994830i \(-0.467620\pi\)
\(458\) 3.63247 + 2.63915i 0.169734 + 0.123319i
\(459\) 7.46440 5.42320i 0.348408 0.253133i
\(460\) 0 0
\(461\) −8.88399 −0.413769 −0.206884 0.978365i \(-0.566332\pi\)
−0.206884 + 0.978365i \(0.566332\pi\)
\(462\) −11.2237 + 21.5617i −0.522173 + 1.00314i
\(463\) −4.21081 −0.195693 −0.0978464 0.995202i \(-0.531195\pi\)
−0.0978464 + 0.995202i \(0.531195\pi\)
\(464\) −0.287146 + 0.883744i −0.0133304 + 0.0410268i
\(465\) 0 0
\(466\) −14.0696 10.2221i −0.651760 0.473531i
\(467\) 2.07920 + 6.39912i 0.0962139 + 0.296116i 0.987568 0.157191i \(-0.0502440\pi\)
−0.891354 + 0.453307i \(0.850244\pi\)
\(468\) −0.758822 2.33542i −0.0350766 0.107955i
\(469\) 1.18038 + 0.857597i 0.0545049 + 0.0396002i
\(470\) 0 0
\(471\) −8.75618 + 26.9487i −0.403463 + 1.24173i
\(472\) 0.717854 0.0330419
\(473\) −27.5224 4.60503i −1.26548 0.211740i
\(474\) 23.6376 1.08571
\(475\) 0 0
\(476\) −2.97782 + 2.16352i −0.136488 + 0.0991646i
\(477\) −9.21327 6.69383i −0.421847 0.306490i
\(478\) 10.2461 + 31.5343i 0.468647 + 1.44235i
\(479\) 6.43046 + 19.7909i 0.293815 + 0.904270i 0.983617 + 0.180272i \(0.0576977\pi\)
−0.689802 + 0.723998i \(0.742302\pi\)
\(480\) 0 0
\(481\) 7.76176 5.63925i 0.353906 0.257128i
\(482\) 14.5437 44.7611i 0.662450 2.03881i
\(483\) −17.0723 −0.776818
\(484\) −4.65433 6.64642i −0.211560 0.302110i
\(485\) 0 0
\(486\) 4.63361 14.2608i 0.210185 0.646882i
\(487\) −12.7658 + 9.27489i −0.578473 + 0.420285i −0.838173 0.545404i \(-0.816376\pi\)
0.259700 + 0.965689i \(0.416376\pi\)
\(488\) 2.92902 + 2.12806i 0.132590 + 0.0963326i
\(489\) 2.21345 + 6.81230i 0.100096 + 0.308063i
\(490\) 0 0
\(491\) −15.6386 11.3621i −0.705759 0.512764i 0.176044 0.984382i \(-0.443670\pi\)
−0.881803 + 0.471618i \(0.843670\pi\)
\(492\) 9.32890 6.77784i 0.420579 0.305569i
\(493\) −0.129541 + 0.398685i −0.00583422 + 0.0179559i
\(494\) −32.3637 −1.45611
\(495\) 0 0
\(496\) −3.38705 −0.152083
\(497\) −3.22148 + 9.91469i −0.144503 + 0.444734i
\(498\) 8.41045 6.11055i 0.376881 0.273820i
\(499\) 33.5416 + 24.3694i 1.50153 + 1.09092i 0.969769 + 0.244026i \(0.0784684\pi\)
0.531758 + 0.846896i \(0.321532\pi\)
\(500\) 0 0
\(501\) 2.33156 + 7.17579i 0.104166 + 0.320591i
\(502\) 31.9078 + 23.1824i 1.42412 + 1.03468i
\(503\) −26.4236 + 19.1978i −1.17817 + 0.855990i −0.991964 0.126521i \(-0.959619\pi\)
−0.186205 + 0.982511i \(0.559619\pi\)
\(504\) 1.30268 4.00923i 0.0580259 0.178585i
\(505\) 0 0
\(506\) 9.76563 18.7606i 0.434135 0.834012i
\(507\) −1.35905 −0.0603576
\(508\) −0.553981 + 1.70498i −0.0245789 + 0.0756462i
\(509\) −13.4662 + 9.78379i −0.596881 + 0.433659i −0.844770 0.535129i \(-0.820263\pi\)
0.247890 + 0.968788i \(0.420263\pi\)
\(510\) 0 0
\(511\) 6.14019 + 18.8975i 0.271626 + 0.835978i
\(512\) −0.298195 0.917749i −0.0131785 0.0405592i
\(513\) −17.7393 12.8884i −0.783211 0.569036i
\(514\) 33.0313 23.9987i 1.45695 1.05854i
\(515\) 0 0
\(516\) −12.2561 −0.539543
\(517\) −35.6566 + 17.7788i −1.56818 + 0.781909i
\(518\) −9.62412 −0.422860
\(519\) −1.28587 + 3.95750i −0.0564434 + 0.173715i
\(520\) 0 0
\(521\) −11.3717 8.26206i −0.498205 0.361967i 0.310126 0.950696i \(-0.399629\pi\)
−0.808331 + 0.588728i \(0.799629\pi\)
\(522\) 0.0866924 + 0.266812i 0.00379442 + 0.0116780i
\(523\) 4.84159 + 14.9009i 0.211708 + 0.651570i 0.999371 + 0.0354635i \(0.0112908\pi\)
−0.787663 + 0.616106i \(0.788709\pi\)
\(524\) −0.947937 0.688717i −0.0414108 0.0300867i
\(525\) 0 0
\(526\) −2.78194 + 8.56194i −0.121298 + 0.373318i
\(527\) −1.52801 −0.0665611
\(528\) 22.6380 + 23.0356i 0.985193 + 1.00249i
\(529\) −8.14550 −0.354152
\(530\) 0 0
\(531\) 0.250186 0.181770i 0.0108571 0.00788817i
\(532\) 7.07689 + 5.14166i 0.306822 + 0.222919i
\(533\) −9.05031 27.8540i −0.392012 1.20649i
\(534\) −10.0182 30.8327i −0.433528 1.33426i
\(535\) 0 0
\(536\) 1.09913 0.798567i 0.0474753 0.0344928i
\(537\) −3.06584 + 9.43570i −0.132301 + 0.407180i
\(538\) −11.0949 −0.478336
\(539\) 0.965221 + 6.45743i 0.0415750 + 0.278141i
\(540\) 0 0
\(541\) −12.2489 + 37.6983i −0.526623 + 1.62078i 0.234461 + 0.972125i \(0.424667\pi\)
−0.761084 + 0.648653i \(0.775333\pi\)
\(542\) 6.77301 4.92088i 0.290926 0.211370i
\(543\) −24.9992 18.1630i −1.07282 0.779448i
\(544\) 2.73716 + 8.42412i 0.117355 + 0.361181i
\(545\) 0 0
\(546\) 21.9373 + 15.9384i 0.938830 + 0.682100i
\(547\) −33.3043 + 24.1970i −1.42399 + 1.03459i −0.432895 + 0.901445i \(0.642508\pi\)
−0.991097 + 0.133145i \(0.957492\pi\)
\(548\) −4.26297 + 13.1201i −0.182105 + 0.560462i
\(549\) 1.55967 0.0665651
\(550\) 0 0
\(551\) 0.996247 0.0424415
\(552\) −4.91251 + 15.1191i −0.209090 + 0.643513i
\(553\) −13.1279 + 9.53798i −0.558255 + 0.405596i
\(554\) −14.3144 10.4000i −0.608161 0.441855i
\(555\) 0 0
\(556\) 2.65039 + 8.15705i 0.112401 + 0.345936i
\(557\) −24.1702 17.5606i −1.02412 0.744069i −0.0569987 0.998374i \(-0.518153\pi\)
−0.967124 + 0.254306i \(0.918153\pi\)
\(558\) −0.827291 + 0.601062i −0.0350220 + 0.0254450i
\(559\) −9.61926 + 29.6050i −0.406851 + 1.25216i
\(560\) 0 0
\(561\) 10.2127 + 10.3921i 0.431182 + 0.438754i
\(562\) −22.7004 −0.957558
\(563\) 0.666795 2.05218i 0.0281021 0.0864892i −0.936022 0.351942i \(-0.885521\pi\)
0.964124 + 0.265453i \(0.0855214\pi\)
\(564\) −14.1573 + 10.2859i −0.596130 + 0.433114i
\(565\) 0 0
\(566\) 11.2328 + 34.5709i 0.472148 + 1.45312i
\(567\) 7.54820 + 23.2310i 0.316995 + 0.975610i
\(568\) 7.85341 + 5.70583i 0.329522 + 0.239411i
\(569\) −0.580298 + 0.421611i −0.0243274 + 0.0176749i −0.599882 0.800088i \(-0.704786\pi\)
0.575555 + 0.817763i \(0.304786\pi\)
\(570\) 0 0
\(571\) −21.6311 −0.905235 −0.452617 0.891705i \(-0.649510\pi\)
−0.452617 + 0.891705i \(0.649510\pi\)
\(572\) −8.10029 + 4.03888i −0.338690 + 0.168874i
\(573\) −6.15315 −0.257051
\(574\) −9.07866 + 27.9413i −0.378936 + 1.16625i
\(575\) 0 0
\(576\) −2.38354 1.73174i −0.0993141 0.0721559i
\(577\) 7.23952 + 22.2810i 0.301385 + 0.927568i 0.981001 + 0.194000i \(0.0621463\pi\)
−0.679616 + 0.733568i \(0.737854\pi\)
\(578\) −6.16167 18.9637i −0.256291 0.788784i
\(579\) −15.3954 11.1854i −0.639812 0.464851i
\(580\) 0 0
\(581\) −2.20536 + 6.78739i −0.0914936 + 0.281588i
\(582\) −7.41093 −0.307193
\(583\) −19.3820 + 37.2346i −0.802722 + 1.54210i
\(584\) 18.5023 0.765633
\(585\) 0 0
\(586\) 18.7911 13.6525i 0.776253 0.563981i
\(587\) 1.81814 + 1.32095i 0.0750425 + 0.0545216i 0.624674 0.780886i \(-0.285232\pi\)
−0.549632 + 0.835407i \(0.685232\pi\)
\(588\) 0.886154 + 2.72730i 0.0365444 + 0.112472i
\(589\) 1.12215 + 3.45362i 0.0462374 + 0.142304i
\(590\) 0 0
\(591\) 23.0018 16.7118i 0.946167 0.687431i
\(592\) −3.95149 + 12.1615i −0.162405 + 0.499833i
\(593\) 25.4034 1.04319 0.521596 0.853193i \(-0.325337\pi\)
0.521596 + 0.853193i \(0.325337\pi\)
\(594\) −22.4477 3.75594i −0.921042 0.154108i
\(595\) 0 0
\(596\) 1.34841 4.14996i 0.0552328 0.169989i
\(597\) 23.6415 17.1765i 0.967580 0.702988i
\(598\) −19.0875 13.8678i −0.780544 0.567098i
\(599\) −5.63194 17.3333i −0.230115 0.708220i −0.997732 0.0673118i \(-0.978558\pi\)
0.767617 0.640909i \(-0.221442\pi\)
\(600\) 0 0
\(601\) 28.0242 + 20.3608i 1.14313 + 0.830533i 0.987552 0.157290i \(-0.0502758\pi\)
0.155579 + 0.987824i \(0.450276\pi\)
\(602\) 25.2625 18.3542i 1.02962 0.748063i
\(603\) 0.180860 0.556631i 0.00736520 0.0226678i
\(604\) 9.42547 0.383517
\(605\) 0 0
\(606\) −32.3375 −1.31362
\(607\) 7.86394 24.2027i 0.319187 0.982358i −0.654809 0.755794i \(-0.727251\pi\)
0.973996 0.226564i \(-0.0727491\pi\)
\(608\) 17.0302 12.3731i 0.690664 0.501797i
\(609\) −0.675293 0.490629i −0.0273643 0.0198813i
\(610\) 0 0
\(611\) 13.7345 + 42.2705i 0.555639 + 1.71008i
\(612\) 1.19453 + 0.867874i 0.0482858 + 0.0350817i
\(613\) 29.9835 21.7843i 1.21102 0.879859i 0.215698 0.976460i \(-0.430797\pi\)
0.995323 + 0.0966016i \(0.0307973\pi\)
\(614\) 3.51234 10.8099i 0.141746 0.436251i
\(615\) 0 0
\(616\) −15.3255 2.56426i −0.617483 0.103317i
\(617\) −27.5937 −1.11088 −0.555439 0.831557i \(-0.687450\pi\)
−0.555439 + 0.831557i \(0.687450\pi\)
\(618\) −10.3404 + 31.8246i −0.415953 + 1.28017i
\(619\) −16.5391 + 12.0164i −0.664764 + 0.482979i −0.868268 0.496095i \(-0.834767\pi\)
0.203504 + 0.979074i \(0.434767\pi\)
\(620\) 0 0
\(621\) −4.93964 15.2026i −0.198221 0.610061i
\(622\) −2.81292 8.65728i −0.112788 0.347125i
\(623\) 18.0052 + 13.0816i 0.721364 + 0.524101i
\(624\) 29.1475 21.1769i 1.16683 0.847754i
\(625\) 0 0
\(626\) −23.5480 −0.941167
\(627\) 15.9882 30.7148i 0.638507 1.22663i
\(628\) 10.5842 0.422354
\(629\) −1.78265 + 5.48642i −0.0710787 + 0.218758i
\(630\) 0 0
\(631\) −0.614155 0.446210i −0.0244491 0.0177633i 0.575494 0.817806i \(-0.304810\pi\)
−0.599943 + 0.800043i \(0.704810\pi\)
\(632\) 4.66926 + 14.3705i 0.185733 + 0.571627i
\(633\) 4.13224 + 12.7177i 0.164242 + 0.505485i
\(634\) 25.0133 + 18.1733i 0.993407 + 0.721752i
\(635\) 0 0
\(636\) −5.69723 + 17.5343i −0.225910 + 0.695279i
\(637\) 7.28342 0.288579
\(638\) 0.925425 0.461426i 0.0366379 0.0182680i
\(639\) 4.18186 0.165432
\(640\) 0 0
\(641\) 12.0584 8.76094i 0.476278 0.346037i −0.323605 0.946192i \(-0.604895\pi\)
0.799883 + 0.600156i \(0.204895\pi\)
\(642\) 26.5579 + 19.2955i 1.04816 + 0.761531i
\(643\) 8.53955 + 26.2820i 0.336767 + 1.03646i 0.965845 + 0.259120i \(0.0834325\pi\)
−0.629078 + 0.777342i \(0.716568\pi\)
\(644\) 1.97060 + 6.06490i 0.0776527 + 0.238990i
\(645\) 0 0
\(646\) 15.7433 11.4382i 0.619411 0.450029i
\(647\) 7.71879 23.7560i 0.303457 0.933945i −0.676791 0.736175i \(-0.736630\pi\)
0.980248 0.197770i \(-0.0633700\pi\)
\(648\) 22.7452 0.893514
\(649\) −0.798974 0.813005i −0.0313625 0.0319132i
\(650\) 0 0
\(651\) 0.940197 2.89363i 0.0368492 0.113410i
\(652\) 2.16456 1.57264i 0.0847706 0.0615895i
\(653\) −22.4607 16.3187i −0.878956 0.638599i 0.0540191 0.998540i \(-0.482797\pi\)
−0.932975 + 0.359941i \(0.882797\pi\)
\(654\) 8.88708 + 27.3516i 0.347513 + 1.06953i
\(655\) 0 0
\(656\) 31.5802 + 22.9444i 1.23300 + 0.895827i
\(657\) 6.44842 4.68505i 0.251577 0.182781i
\(658\) 13.7775 42.4029i 0.537105 1.65304i
\(659\) −21.5863 −0.840883 −0.420442 0.907320i \(-0.638125\pi\)
−0.420442 + 0.907320i \(0.638125\pi\)
\(660\) 0 0
\(661\) −16.0174 −0.623003 −0.311502 0.950246i \(-0.600832\pi\)
−0.311502 + 0.950246i \(0.600832\pi\)
\(662\) 0.239413 0.736837i 0.00930504 0.0286380i
\(663\) 13.1494 9.55357i 0.510679 0.371030i
\(664\) 5.37628 + 3.90609i 0.208640 + 0.151586i
\(665\) 0 0
\(666\) 1.19300 + 3.67167i 0.0462277 + 0.142274i
\(667\) 0.587567 + 0.426892i 0.0227507 + 0.0165293i
\(668\) 2.28005 1.65656i 0.0882180 0.0640941i
\(669\) −5.31966 + 16.3722i −0.205670 + 0.632986i
\(670\) 0 0
\(671\) −0.849880 5.68579i −0.0328093 0.219498i
\(672\) −17.6372 −0.680368
\(673\) 9.68673 29.8127i 0.373396 1.14920i −0.571158 0.820840i \(-0.693506\pi\)
0.944554 0.328355i \(-0.106494\pi\)
\(674\) 45.6286 33.1511i 1.75755 1.27693i
\(675\) 0 0
\(676\) 0.156871 + 0.482799i 0.00603350 + 0.0185692i
\(677\) −9.47642 29.1654i −0.364209 1.12092i −0.950475 0.310801i \(-0.899403\pi\)
0.586267 0.810118i \(-0.300597\pi\)
\(678\) 0.611561 + 0.444325i 0.0234869 + 0.0170642i
\(679\) 4.11590 2.99038i 0.157954 0.114760i
\(680\) 0 0
\(681\) 7.51888 0.288124
\(682\) 2.64198 + 2.68837i 0.101166 + 0.102943i
\(683\) −3.27236 −0.125213 −0.0626066 0.998038i \(-0.519941\pi\)
−0.0626066 + 0.998038i \(0.519941\pi\)
\(684\) 1.08433 3.33724i 0.0414606 0.127602i
\(685\) 0 0
\(686\) −26.9287 19.5648i −1.02814 0.746989i
\(687\) 1.65600 + 5.09664i 0.0631802 + 0.194449i
\(688\) −12.8209 39.4586i −0.488792 1.50435i
\(689\) 37.8832 + 27.5238i 1.44324 + 1.04857i
\(690\) 0 0
\(691\) −11.2774 + 34.7084i −0.429014 + 1.32037i 0.470083 + 0.882622i \(0.344224\pi\)
−0.899098 + 0.437748i \(0.855776\pi\)
\(692\) 1.55431 0.0590862
\(693\) −5.99054 + 2.98694i −0.227562 + 0.113465i
\(694\) −5.94478 −0.225661
\(695\) 0 0
\(696\) −0.628811 + 0.456858i −0.0238350 + 0.0173172i
\(697\) 14.2468 + 10.3509i 0.539638 + 0.392070i
\(698\) −3.25750 10.0256i −0.123298 0.379473i
\(699\) −6.41413 19.7407i −0.242605 0.746660i
\(700\) 0 0
\(701\) −37.6684 + 27.3677i −1.42272 + 1.03366i −0.431399 + 0.902161i \(0.641980\pi\)
−0.991316 + 0.131502i \(0.958020\pi\)
\(702\) −7.84562 + 24.1463i −0.296114 + 0.911345i
\(703\) 13.7096 0.517068
\(704\) −5.01427 + 9.63285i −0.188982 + 0.363052i
\(705\) 0 0
\(706\) 6.23630 19.1933i 0.234706 0.722351i
\(707\) 17.9597 13.0485i 0.675443 0.490738i
\(708\) −0.405030 0.294272i −0.0152220 0.0110594i
\(709\) −11.0000 33.8544i −0.413112 1.27143i −0.913929 0.405874i \(-0.866967\pi\)
0.500817 0.865553i \(-0.333033\pi\)
\(710\) 0 0
\(711\) 5.26613 + 3.82607i 0.197495 + 0.143489i
\(712\) 16.7659 12.1811i 0.628327 0.456507i
\(713\) −0.818057 + 2.51772i −0.0306365 + 0.0942894i
\(714\) −16.3044 −0.610178
\(715\) 0 0
\(716\) 3.70588 0.138495
\(717\) −12.2290 + 37.6371i −0.456702 + 1.40558i
\(718\) −32.2798 + 23.4526i −1.20467 + 0.875245i
\(719\) −17.8722 12.9849i −0.666522 0.484256i 0.202337 0.979316i \(-0.435146\pi\)
−0.868859 + 0.495060i \(0.835146\pi\)
\(720\) 0 0
\(721\) −7.09862 21.8473i −0.264366 0.813636i
\(722\) −11.9813 8.70490i −0.445896 0.323963i
\(723\) 45.4448 33.0176i 1.69011 1.22794i
\(724\) −3.56677 + 10.9774i −0.132558 + 0.407971i
\(725\) 0 0
\(726\) 0.625636 35.9365i 0.0232195 1.33373i
\(727\) 45.5415 1.68904 0.844521 0.535522i \(-0.179885\pi\)
0.844521 + 0.535522i \(0.179885\pi\)
\(728\) −5.35637 + 16.4852i −0.198520 + 0.610982i
\(729\) −11.9514 + 8.68317i −0.442643 + 0.321599i
\(730\) 0 0
\(731\) −5.78391 17.8011i −0.213926 0.658396i
\(732\) −0.780262 2.40140i −0.0288393 0.0887583i
\(733\) −9.20572 6.68835i −0.340021 0.247040i 0.404650 0.914472i \(-0.367393\pi\)
−0.744671 + 0.667432i \(0.767393\pi\)
\(734\) −27.2936 + 19.8300i −1.00743 + 0.731938i
\(735\) 0 0
\(736\) 15.3459 0.565659
\(737\) −2.12776 0.356014i −0.0783769 0.0131140i
\(738\) 11.7852 0.433818
\(739\) −1.34045 + 4.12547i −0.0493091 + 0.151758i −0.972679 0.232153i \(-0.925423\pi\)
0.923370 + 0.383911i \(0.125423\pi\)
\(740\) 0 0
\(741\) −31.2498 22.7043i −1.14799 0.834064i
\(742\) −14.5154 44.6740i −0.532879 1.64003i
\(743\) 5.34429 + 16.4480i 0.196063 + 0.603420i 0.999963 + 0.00865478i \(0.00275494\pi\)
−0.803900 + 0.594765i \(0.797245\pi\)
\(744\) −2.29204 1.66526i −0.0840302 0.0610515i
\(745\) 0 0
\(746\) −3.84491 + 11.8334i −0.140772 + 0.433253i
\(747\) 2.86281 0.104745
\(748\) 2.51293 4.82757i 0.0918819 0.176513i
\(749\) −22.5357 −0.823437
\(750\) 0 0
\(751\) 25.4946 18.5229i 0.930310 0.675910i −0.0157586 0.999876i \(-0.505016\pi\)
0.946069 + 0.323966i \(0.105016\pi\)
\(752\) −47.9253 34.8198i −1.74766 1.26975i
\(753\) 14.5464 + 44.7691i 0.530099 + 1.63148i
\(754\) −0.356463 1.09708i −0.0129816 0.0399533i
\(755\) 0 0
\(756\) 5.55175 4.03358i 0.201915 0.146700i
\(757\) 2.86687 8.82332i 0.104198 0.320689i −0.885343 0.464938i \(-0.846077\pi\)
0.989541 + 0.144249i \(0.0460766\pi\)
\(758\) 38.3718 1.39373
\(759\) 22.5908 11.2640i 0.819995 0.408858i
\(760\) 0 0
\(761\) −1.28492 + 3.95459i −0.0465784 + 0.143354i −0.971641 0.236461i \(-0.924012\pi\)
0.925062 + 0.379815i \(0.124012\pi\)
\(762\) −6.42442 + 4.66762i −0.232732 + 0.169090i
\(763\) −15.9724 11.6046i −0.578239 0.420115i
\(764\) 0.710238 + 2.18589i 0.0256955 + 0.0790827i
\(765\) 0 0
\(766\) 3.26667 + 2.37338i 0.118030 + 0.0857536i
\(767\) −1.02872 + 0.747406i −0.0371448 + 0.0269873i
\(768\) −9.51446 + 29.2825i −0.343324 + 1.05664i
\(769\) 16.8800 0.608709 0.304355 0.952559i \(-0.401559\pi\)
0.304355 + 0.952559i \(0.401559\pi\)
\(770\) 0 0
\(771\) 48.7305 1.75499
\(772\) −2.19655 + 6.76028i −0.0790555 + 0.243308i
\(773\) 6.85852 4.98301i 0.246684 0.179226i −0.457572 0.889173i \(-0.651281\pi\)
0.704256 + 0.709946i \(0.251281\pi\)
\(774\) −10.1338 7.36263i −0.364252 0.264644i
\(775\) 0 0
\(776\) −1.46392 4.50548i −0.0525517 0.161737i
\(777\) −9.29289 6.75168i −0.333381 0.242215i
\(778\) −45.4759 + 33.0402i −1.63039 + 1.18455i
\(779\) 12.9326 39.8025i 0.463359 1.42607i
\(780\) 0 0
\(781\) −2.27873 15.2450i −0.0815395 0.545509i
\(782\) 14.1863 0.507303
\(783\) 0.241511 0.743294i 0.00863089 0.0265632i
\(784\) −7.85361 + 5.70598i −0.280486 + 0.203785i
\(785\) 0 0
\(786\) −1.60387 4.93620i −0.0572080 0.176068i
\(787\) 16.5684 + 50.9924i 0.590601 + 1.81768i 0.575508 + 0.817796i \(0.304804\pi\)
0.0150924 + 0.999886i \(0.495196\pi\)
\(788\) −8.59183 6.24233i −0.306071 0.222374i
\(789\) −8.69272 + 6.31563i −0.309469 + 0.224842i
\(790\) 0 0
\(791\) −0.518940 −0.0184514
\(792\) 0.921459 + 6.16466i 0.0327426 + 0.219052i
\(793\) −6.41307 −0.227735
\(794\) 14.0586 43.2679i 0.498921 1.53552i
\(795\) 0 0
\(796\) −8.83077 6.41593i −0.312998 0.227407i
\(797\) 8.82082 + 27.1477i 0.312450 + 0.961621i 0.976792 + 0.214192i \(0.0687119\pi\)
−0.664342 + 0.747429i \(0.731288\pi\)
\(798\) 11.9738 + 36.8515i 0.423867 + 1.30453i
\(799\) −21.6206 15.7083i −0.764883 0.555720i
\(800\) 0 0
\(801\) 2.75879 8.49070i 0.0974772 0.300004i
\(802\) −3.12290 −0.110273
\(803\) −20.5932 20.9548i −0.726718 0.739480i
\(804\) −0.947515 −0.0334163
\(805\) 0 0
\(806\) 3.40166 2.47145i 0.119819 0.0870532i
\(807\) −10.7131 7.78350i −0.377118 0.273992i
\(808\) −6.38780 19.6596i −0.224722 0.691623i
\(809\) 11.4170 + 35.1378i 0.401399 + 1.23538i 0.923865 + 0.382718i \(0.125012\pi\)
−0.522466 + 0.852660i \(0.674988\pi\)
\(810\) 0 0
\(811\) 31.0475 22.5573i 1.09022 0.792094i 0.110787 0.993844i \(-0.464663\pi\)
0.979437 + 0.201750i \(0.0646629\pi\)
\(812\) −0.0963477 + 0.296528i −0.00338114 + 0.0104061i
\(813\) 9.99209 0.350438
\(814\) 12.7350 6.34982i 0.446363 0.222561i
\(815\) 0 0
\(816\) −6.69431 + 20.6030i −0.234348 + 0.721248i
\(817\) −35.9865 + 26.1458i −1.25901 + 0.914724i
\(818\) −18.1478 13.1852i −0.634524 0.461008i
\(819\) 2.30749 + 7.10171i 0.0806301 + 0.248154i
\(820\) 0 0
\(821\) 8.29214 + 6.02459i 0.289398 + 0.210260i 0.723006 0.690842i \(-0.242760\pi\)
−0.433608 + 0.901101i \(0.642760\pi\)
\(822\) −49.4370 + 35.9181i −1.72431 + 1.25279i
\(823\) 7.79637 23.9948i 0.271764 0.836405i −0.718293 0.695741i \(-0.755076\pi\)
0.990057 0.140664i \(-0.0449237\pi\)
\(824\) −21.3904 −0.745170
\(825\) 0 0
\(826\) 1.27555 0.0443820
\(827\) −5.67001 + 17.4505i −0.197165 + 0.606813i 0.802779 + 0.596277i \(0.203354\pi\)
−0.999944 + 0.0105362i \(0.996646\pi\)
\(828\) 2.06953 1.50360i 0.0719211 0.0522537i
\(829\) −19.7259 14.3317i −0.685110 0.497761i 0.189939 0.981796i \(-0.439171\pi\)
−0.875049 + 0.484035i \(0.839171\pi\)
\(830\) 0 0
\(831\) −6.52575 20.0842i −0.226376 0.696713i
\(832\) 9.80066 + 7.12060i 0.339777 + 0.246862i
\(833\) −3.54301 + 2.57415i −0.122758 + 0.0891890i
\(834\) −11.7401 + 36.1324i −0.406528 + 1.25116i
\(835\) 0 0
\(836\) −12.7568 2.13446i −0.441203 0.0738217i
\(837\) 2.84876 0.0984676
\(838\) −11.3184 + 34.8345i −0.390988 + 1.20334i
\(839\) 34.2059 24.8520i 1.18092 0.857988i 0.188644 0.982046i \(-0.439591\pi\)
0.992275 + 0.124058i \(0.0395908\pi\)
\(840\) 0 0
\(841\) −8.95052 27.5469i −0.308639 0.949892i
\(842\) 9.15347 + 28.1715i 0.315449 + 0.970853i
\(843\) −21.9191 15.9252i −0.754935 0.548492i
\(844\) 4.04097 2.93594i 0.139096 0.101059i
\(845\) 0 0
\(846\) −17.8849 −0.614895
\(847\) 14.1532 + 20.2110i 0.486311 + 0.694457i
\(848\) −62.4117 −2.14323
\(849\) −13.4066 + 41.2613i −0.460113 + 1.41608i
\(850\) 0 0
\(851\) 8.08567 + 5.87458i 0.277173 + 0.201378i
\(852\) −2.09207 6.43874i −0.0716732 0.220587i
\(853\) 4.75529 + 14.6353i 0.162818 + 0.501103i 0.998869 0.0475493i \(-0.0151411\pi\)
−0.836051 + 0.548652i \(0.815141\pi\)
\(854\) 5.20454 + 3.78132i 0.178096 + 0.129394i
\(855\) 0 0
\(856\) −6.48458 + 19.9575i −0.221638 + 0.682132i
\(857\) 36.1038 1.23328 0.616641 0.787245i \(-0.288493\pi\)
0.616641 + 0.787245i \(0.288493\pi\)
\(858\) −39.5442 6.61650i −1.35002 0.225884i
\(859\) 48.3509 1.64971 0.824855 0.565344i \(-0.191257\pi\)
0.824855 + 0.565344i \(0.191257\pi\)
\(860\) 0 0
\(861\) −28.3680 + 20.6106i −0.966781 + 0.702407i
\(862\) −44.7699 32.5272i −1.52487 1.10788i
\(863\) 11.4919 + 35.3685i 0.391190 + 1.20396i 0.931889 + 0.362743i \(0.118160\pi\)
−0.540699 + 0.841216i \(0.681840\pi\)
\(864\) −5.10306 15.7056i −0.173610 0.534316i
\(865\) 0 0
\(866\) 42.1539 30.6266i 1.43245 1.04073i
\(867\) 7.35411 22.6336i 0.249759 0.768679i
\(868\) −1.13648 −0.0385745
\(869\) 11.0784 21.2826i 0.375809 0.721962i
\(870\) 0 0
\(871\) −0.743664 + 2.28876i −0.0251981 + 0.0775517i
\(872\) −14.8730 + 10.8058i −0.503662 + 0.365932i
\(873\) −1.65105 1.19956i −0.0558797 0.0405990i
\(874\) −10.4183 32.0642i −0.352403 1.08459i
\(875\) 0 0
\(876\) −10.4395 7.58472i −0.352717 0.256264i
\(877\) 20.8672 15.1609i 0.704634 0.511947i −0.176804 0.984246i \(-0.556576\pi\)
0.881438 + 0.472299i \(0.156576\pi\)
\(878\) 18.2127 56.0530i 0.614649 1.89170i
\(879\) 27.7221 0.935044
\(880\) 0 0
\(881\) −45.6820 −1.53906 −0.769532 0.638608i \(-0.779511\pi\)
−0.769532 + 0.638608i \(0.779511\pi\)
\(882\) −0.905675 + 2.78738i −0.0304957 + 0.0938560i
\(883\) 4.01783 2.91912i 0.135211 0.0982364i −0.518124 0.855306i \(-0.673369\pi\)
0.653335 + 0.757069i \(0.273369\pi\)
\(884\) −4.91167 3.56853i −0.165197 0.120023i
\(885\) 0 0
\(886\) −12.0090 36.9600i −0.403452 1.24170i
\(887\) −23.3994 17.0006i −0.785674 0.570826i 0.121002 0.992652i \(-0.461389\pi\)
−0.906677 + 0.421827i \(0.861389\pi\)
\(888\) −8.65324 + 6.28695i −0.290384 + 0.210976i
\(889\) 1.68459 5.18463i 0.0564993 0.173887i
\(890\) 0 0
\(891\) −25.3155 25.7600i −0.848100 0.862994i
\(892\) 6.43021 0.215299
\(893\) −19.6262 + 60.4033i −0.656766 + 2.02132i
\(894\) 15.6372 11.3611i 0.522987 0.379972i
\(895\) 0 0
\(896\) −9.27501 28.5456i −0.309856 0.953640i
\(897\) −8.70172 26.7811i −0.290542 0.894196i
\(898\) 42.0208 + 30.5299i 1.40225 + 1.01880i
\(899\) −0.104713 + 0.0760785i −0.00349237 + 0.00253736i
\(900\) 0 0
\(901\) −28.1559 −0.938010
\(902\) −6.42186 42.9630i −0.213824 1.43051i
\(903\) 37.2692 1.24024
\(904\) −0.149323 + 0.459570i −0.00496642 + 0.0152851i
\(905\) 0 0
\(906\) 33.7773 + 24.5406i 1.12217 + 0.815307i
\(907\) −4.09531 12.6041i −0.135983 0.418511i 0.859759 0.510700i \(-0.170614\pi\)
−0.995742 + 0.0921887i \(0.970614\pi\)
\(908\) −0.867880 2.67106i −0.0288016 0.0886422i
\(909\) −7.20435 5.23427i −0.238953 0.173610i
\(910\) 0 0
\(911\) 4.24361 13.0605i 0.140597 0.432713i −0.855822 0.517271i \(-0.826948\pi\)
0.996419 + 0.0845580i \(0.0269478\pi\)
\(912\) 51.4833 1.70478
\(913\) −1.55997 10.4364i −0.0516276 0.345395i
\(914\) −64.7117 −2.14047
\(915\) 0 0
\(916\) 1.61942 1.17658i 0.0535071 0.0388752i
\(917\) 2.88256 + 2.09430i 0.0951906 + 0.0691600i
\(918\) −4.71745 14.5188i −0.155699 0.479193i
\(919\) 18.3494 + 56.4737i 0.605292 + 1.86290i 0.494774 + 0.869022i \(0.335251\pi\)
0.110517 + 0.993874i \(0.464749\pi\)
\(920\) 0 0
\(921\) 10.9750 7.97379i 0.361638 0.262745i
\(922\) −4.54233 + 13.9798i −0.149594 + 0.460402i
\(923\) −17.1950 −0.565981
\(924\) 7.59586 + 7.72925i 0.249885 + 0.254274i
\(925\) 0 0
\(926\) −2.15296 + 6.62613i −0.0707507 + 0.217748i
\(927\) −7.45496 + 5.41635i −0.244853 + 0.177896i
\(928\) 0.607006 + 0.441016i 0.0199259 + 0.0144770i
\(929\) 6.05305 + 18.6294i 0.198594 + 0.611210i 0.999916 + 0.0129763i \(0.00413060\pi\)
−0.801322 + 0.598234i \(0.795869\pi\)
\(930\) 0 0
\(931\) 8.42007 + 6.11754i 0.275957 + 0.200494i
\(932\) −6.27245 + 4.55720i −0.205461 + 0.149276i
\(933\) 3.35730 10.3327i 0.109913 0.338277i
\(934\) 11.1327 0.364275
\(935\) 0 0
\(936\) 6.95320 0.227272
\(937\) 12.5292 38.5608i 0.409310 1.25973i −0.507933 0.861397i \(-0.669590\pi\)
0.917242 0.398329i \(-0.130410\pi\)
\(938\) 1.95304 1.41896i 0.0637689 0.0463308i
\(939\) −22.7376 16.5198i −0.742012 0.539104i
\(940\) 0 0
\(941\) −0.126602 0.389640i −0.00412709 0.0127019i 0.948972 0.315361i \(-0.102126\pi\)
−0.953099 + 0.302659i \(0.902126\pi\)
\(942\) 37.9296 + 27.5575i 1.23581 + 0.897870i
\(943\) 24.6828 17.9331i 0.803783 0.583982i
\(944\) 0.523717 1.61184i 0.0170455 0.0524608i
\(945\) 0 0
\(946\) −21.3185 + 40.9548i −0.693125 + 1.33156i
\(947\) 2.45729 0.0798511 0.0399256 0.999203i \(-0.487288\pi\)
0.0399256 + 0.999203i \(0.487288\pi\)
\(948\) 3.25643 10.0223i 0.105764 0.325508i
\(949\) −26.5147 + 19.2640i −0.860703 + 0.625337i
\(950\) 0 0
\(951\) 11.4033 + 35.0956i 0.369776 + 1.13805i
\(952\) −3.22070 9.91230i −0.104384 0.321260i
\(953\) −49.3714 35.8704i −1.59930 1.16196i −0.888841 0.458215i \(-0.848489\pi\)
−0.710456 0.703742i \(-0.751511\pi\)
\(954\) −15.2441 + 11.0755i −0.493546 + 0.358582i
\(955\) 0 0
\(956\) 14.7820 0.478085
\(957\) 1.21728 + 0.203675i 0.0393492 + 0.00658387i
\(958\) 34.4309 1.11241
\(959\) 12.9632 39.8965i 0.418603 1.28833i
\(960\) 0 0
\(961\) 24.6978 + 17.9440i 0.796705 + 0.578840i
\(962\) −4.90538 15.0972i −0.158156 0.486754i
\(963\) 2.79351 + 8.59754i 0.0900196 + 0.277052i
\(964\) −16.9749 12.3330i −0.546726 0.397220i
\(965\) 0 0
\(966\) −8.72898 + 26.8650i −0.280850 + 0.864369i
\(967\) 17.1997 0.553106 0.276553 0.960999i \(-0.410808\pi\)
0.276553 + 0.960999i \(0.410808\pi\)
\(968\) 21.9712 6.71837i 0.706182 0.215937i
\(969\) 23.2258 0.746119
\(970\) 0 0
\(971\) −22.0125 + 15.9930i −0.706415 + 0.513241i −0.882015 0.471221i \(-0.843813\pi\)
0.175600 + 0.984462i \(0.443813\pi\)
\(972\) −5.40818 3.92927i −0.173467 0.126031i
\(973\) −8.05950 24.8046i −0.258376 0.795198i
\(974\) 8.06790 + 24.8304i 0.258512 + 0.795619i
\(975\) 0 0
\(976\) 6.91513 5.02414i 0.221348 0.160819i
\(977\) −5.92454 + 18.2339i −0.189543 + 0.583353i −0.999997 0.00244904i \(-0.999220\pi\)
0.810454 + 0.585802i \(0.199220\pi\)
\(978\) 11.8516 0.378971
\(979\) −32.4562 5.43055i −1.03730 0.173561i
\(980\) 0 0
\(981\) −2.44732 + 7.53207i −0.0781369 + 0.240481i
\(982\) −25.8753 + 18.7995i −0.825714 + 0.599916i
\(983\) 19.5219 + 14.1835i 0.622653 + 0.452384i 0.853847 0.520524i \(-0.174263\pi\)
−0.231194 + 0.972908i \(0.574263\pi\)
\(984\) 10.0898 + 31.0532i 0.321651 + 0.989939i
\(985\) 0 0
\(986\) 0.561138 + 0.407691i 0.0178703 + 0.0129835i
\(987\) 43.0506 31.2781i 1.37032 0.995593i
\(988\) −4.45858 + 13.7221i −0.141846 + 0.436558i
\(989\) −32.4276 −1.03114
\(990\) 0 0
\(991\) 27.7081 0.880177 0.440089 0.897954i \(-0.354947\pi\)
0.440089 + 0.897954i \(0.354947\pi\)
\(992\) −0.845122 + 2.60102i −0.0268327 + 0.0825824i
\(993\) 0.748092 0.543521i 0.0237400 0.0172481i
\(994\) 13.9546 + 10.1386i 0.442614 + 0.321578i
\(995\) 0 0
\(996\) −1.43219 4.40782i −0.0453806 0.139667i
\(997\) −27.0950 19.6856i −0.858106 0.623451i 0.0692628 0.997598i \(-0.477935\pi\)
−0.927369 + 0.374148i \(0.877935\pi\)
\(998\) 55.4972 40.3211i 1.75673 1.27634i
\(999\) 3.32350 10.2287i 0.105151 0.323621i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.h.d.251.4 16
5.2 odd 4 55.2.j.a.9.4 yes 16
5.3 odd 4 55.2.j.a.9.1 16
5.4 even 2 inner 275.2.h.d.251.1 16
11.4 even 5 3025.2.a.bl.1.7 8
11.5 even 5 inner 275.2.h.d.126.4 16
11.7 odd 10 3025.2.a.bk.1.2 8
15.2 even 4 495.2.ba.a.64.1 16
15.8 even 4 495.2.ba.a.64.4 16
20.3 even 4 880.2.cd.c.449.1 16
20.7 even 4 880.2.cd.c.449.4 16
55.2 even 20 605.2.j.g.124.4 16
55.3 odd 20 605.2.j.h.444.1 16
55.4 even 10 3025.2.a.bl.1.2 8
55.7 even 20 605.2.b.f.364.2 8
55.8 even 20 605.2.j.g.444.4 16
55.13 even 20 605.2.j.g.124.1 16
55.17 even 20 605.2.j.d.269.4 16
55.18 even 20 605.2.b.f.364.7 8
55.27 odd 20 55.2.j.a.49.1 yes 16
55.28 even 20 605.2.j.d.269.1 16
55.29 odd 10 3025.2.a.bk.1.7 8
55.32 even 4 605.2.j.d.9.1 16
55.37 odd 20 605.2.b.g.364.7 8
55.38 odd 20 55.2.j.a.49.4 yes 16
55.42 odd 20 605.2.j.h.124.1 16
55.43 even 4 605.2.j.d.9.4 16
55.47 odd 20 605.2.j.h.444.4 16
55.48 odd 20 605.2.b.g.364.2 8
55.49 even 10 inner 275.2.h.d.126.1 16
55.52 even 20 605.2.j.g.444.1 16
55.53 odd 20 605.2.j.h.124.4 16
165.38 even 20 495.2.ba.a.379.1 16
165.137 even 20 495.2.ba.a.379.4 16
220.27 even 20 880.2.cd.c.49.1 16
220.203 even 20 880.2.cd.c.49.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.j.a.9.1 16 5.3 odd 4
55.2.j.a.9.4 yes 16 5.2 odd 4
55.2.j.a.49.1 yes 16 55.27 odd 20
55.2.j.a.49.4 yes 16 55.38 odd 20
275.2.h.d.126.1 16 55.49 even 10 inner
275.2.h.d.126.4 16 11.5 even 5 inner
275.2.h.d.251.1 16 5.4 even 2 inner
275.2.h.d.251.4 16 1.1 even 1 trivial
495.2.ba.a.64.1 16 15.2 even 4
495.2.ba.a.64.4 16 15.8 even 4
495.2.ba.a.379.1 16 165.38 even 20
495.2.ba.a.379.4 16 165.137 even 20
605.2.b.f.364.2 8 55.7 even 20
605.2.b.f.364.7 8 55.18 even 20
605.2.b.g.364.2 8 55.48 odd 20
605.2.b.g.364.7 8 55.37 odd 20
605.2.j.d.9.1 16 55.32 even 4
605.2.j.d.9.4 16 55.43 even 4
605.2.j.d.269.1 16 55.28 even 20
605.2.j.d.269.4 16 55.17 even 20
605.2.j.g.124.1 16 55.13 even 20
605.2.j.g.124.4 16 55.2 even 20
605.2.j.g.444.1 16 55.52 even 20
605.2.j.g.444.4 16 55.8 even 20
605.2.j.h.124.1 16 55.42 odd 20
605.2.j.h.124.4 16 55.53 odd 20
605.2.j.h.444.1 16 55.3 odd 20
605.2.j.h.444.4 16 55.47 odd 20
880.2.cd.c.49.1 16 220.27 even 20
880.2.cd.c.49.4 16 220.203 even 20
880.2.cd.c.449.1 16 20.3 even 4
880.2.cd.c.449.4 16 20.7 even 4
3025.2.a.bk.1.2 8 11.7 odd 10
3025.2.a.bk.1.7 8 55.29 odd 10
3025.2.a.bl.1.2 8 55.4 even 10
3025.2.a.bl.1.7 8 11.4 even 5