Properties

Label 275.2.h.c.201.1
Level $275$
Weight $2$
Character 275.201
Analytic conductor $2.196$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,2,Mod(26,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.26"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.h (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 10 x^{14} - 13 x^{13} + 53 x^{12} - 12 x^{11} + 136 x^{10} + 8 x^{9} + 300 x^{8} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 201.1
Root \(2.66477 + 1.93607i\) of defining polynomial
Character \(\chi\) \(=\) 275.201
Dual form 275.2.h.c.26.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.85576 + 1.34829i) q^{2} +(0.0131041 + 0.0403304i) q^{3} +(1.00792 - 3.10207i) q^{4} +(-0.0786950 - 0.0571753i) q^{6} +(-0.352180 + 1.08390i) q^{7} +(0.894346 + 2.75251i) q^{8} +(2.42560 - 1.76230i) q^{9} +(-1.53020 + 2.94253i) q^{11} +0.138316 q^{12} +(2.27310 - 1.65150i) q^{13} +(-0.807845 - 2.48629i) q^{14} +(-0.0933071 - 0.0677915i) q^{16} +(6.25988 + 4.54807i) q^{17} +(-2.12523 + 6.54080i) q^{18} +(1.01450 + 3.12232i) q^{19} -0.0483291 q^{21} +(-1.12769 - 7.52377i) q^{22} -5.54471 q^{23} +(-0.0992903 + 0.0721386i) q^{24} +(-1.99162 + 6.12957i) q^{26} +(0.205781 + 0.149508i) q^{27} +(3.00736 + 2.18497i) q^{28} +(-2.15164 + 6.62208i) q^{29} +(0.604302 - 0.439051i) q^{31} -5.52377 q^{32} +(-0.138725 - 0.0231542i) q^{33} -17.7489 q^{34} +(-3.02196 - 9.30063i) q^{36} +(1.48775 - 4.57883i) q^{37} +(-6.09245 - 4.42643i) q^{38} +(0.0963927 + 0.0700334i) q^{39} +(2.05928 + 6.33782i) q^{41} +(0.0896870 - 0.0651614i) q^{42} +0.698596 q^{43} +(7.58561 + 7.71264i) q^{44} +(10.2896 - 7.47586i) q^{46} +(2.67259 + 8.22539i) q^{47} +(0.00151135 - 0.00465146i) q^{48} +(4.61231 + 3.35104i) q^{49} +(-0.101395 + 0.312062i) q^{51} +(-2.83197 - 8.71589i) q^{52} +(7.08882 - 5.15033i) q^{53} -0.583459 q^{54} -3.29842 q^{56} +(-0.112630 + 0.0818306i) q^{57} +(-4.93553 - 15.1900i) q^{58} +(3.28551 - 10.1118i) q^{59} +(-7.48769 - 5.44012i) q^{61} +(-0.529471 + 1.62954i) q^{62} +(1.05591 + 3.24975i) q^{63} +(10.4374 - 7.58321i) q^{64} +(0.288659 - 0.144073i) q^{66} +6.69671 q^{67} +(20.4179 - 14.8345i) q^{68} +(-0.0726587 - 0.223620i) q^{69} +(-6.03555 - 4.38508i) q^{71} +(7.02007 + 5.10038i) q^{72} +(-0.472132 + 1.45307i) q^{73} +(3.41267 + 10.5031i) q^{74} +10.7082 q^{76} +(-2.65050 - 2.69488i) q^{77} -0.273306 q^{78} +(8.11356 - 5.89485i) q^{79} +(2.77615 - 8.54412i) q^{81} +(-12.3667 - 8.98495i) q^{82} +(3.96171 + 2.87835i) q^{83} +(-0.0487120 + 0.149920i) q^{84} +(-1.29642 + 0.941908i) q^{86} -0.295266 q^{87} +(-9.46788 - 1.58026i) q^{88} -9.00636 q^{89} +(0.989521 + 3.04543i) q^{91} +(-5.58865 + 17.2001i) q^{92} +(0.0256259 + 0.0186183i) q^{93} +(-16.0499 - 11.6609i) q^{94} +(-0.0723842 - 0.222776i) q^{96} +(-4.79130 + 3.48108i) q^{97} -13.0775 q^{98} +(1.47397 + 9.83406i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{3} - 2 q^{4} - 3 q^{6} + 4 q^{7} + 16 q^{8} + 8 q^{9} - 5 q^{11} - 6 q^{12} + 7 q^{13} + 3 q^{14} - 4 q^{16} + 12 q^{17} + 16 q^{18} - 13 q^{19} + 10 q^{21} + 28 q^{22} - 4 q^{23} - 43 q^{24}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.85576 + 1.34829i −1.31222 + 0.953382i −0.312224 + 0.950008i \(0.601074\pi\)
−0.999994 + 0.00337397i \(0.998926\pi\)
\(3\) 0.0131041 + 0.0403304i 0.00756568 + 0.0232848i 0.954768 0.297351i \(-0.0961033\pi\)
−0.947202 + 0.320636i \(0.896103\pi\)
\(4\) 1.00792 3.10207i 0.503962 1.55104i
\(5\) 0 0
\(6\) −0.0786950 0.0571753i −0.0321271 0.0233417i
\(7\) −0.352180 + 1.08390i −0.133112 + 0.409675i −0.995291 0.0969270i \(-0.969099\pi\)
0.862180 + 0.506602i \(0.169099\pi\)
\(8\) 0.894346 + 2.75251i 0.316199 + 0.973161i
\(9\) 2.42560 1.76230i 0.808532 0.587433i
\(10\) 0 0
\(11\) −1.53020 + 2.94253i −0.461373 + 0.887206i
\(12\) 0.138316 0.0399283
\(13\) 2.27310 1.65150i 0.630444 0.458044i −0.226110 0.974102i \(-0.572601\pi\)
0.856554 + 0.516058i \(0.172601\pi\)
\(14\) −0.807845 2.48629i −0.215906 0.664489i
\(15\) 0 0
\(16\) −0.0933071 0.0677915i −0.0233268 0.0169479i
\(17\) 6.25988 + 4.54807i 1.51824 + 1.10307i 0.962349 + 0.271816i \(0.0876241\pi\)
0.555894 + 0.831253i \(0.312376\pi\)
\(18\) −2.12523 + 6.54080i −0.500922 + 1.54168i
\(19\) 1.01450 + 3.12232i 0.232743 + 0.716309i 0.997413 + 0.0718870i \(0.0229021\pi\)
−0.764670 + 0.644422i \(0.777098\pi\)
\(20\) 0 0
\(21\) −0.0483291 −0.0105463
\(22\) −1.12769 7.52377i −0.240425 1.60407i
\(23\) −5.54471 −1.15615 −0.578076 0.815983i \(-0.696196\pi\)
−0.578076 + 0.815983i \(0.696196\pi\)
\(24\) −0.0992903 + 0.0721386i −0.0202675 + 0.0147252i
\(25\) 0 0
\(26\) −1.99162 + 6.12957i −0.390588 + 1.20211i
\(27\) 0.205781 + 0.149508i 0.0396025 + 0.0287729i
\(28\) 3.00736 + 2.18497i 0.568337 + 0.412921i
\(29\) −2.15164 + 6.62208i −0.399550 + 1.22969i 0.525811 + 0.850602i \(0.323762\pi\)
−0.925361 + 0.379087i \(0.876238\pi\)
\(30\) 0 0
\(31\) 0.604302 0.439051i 0.108536 0.0788559i −0.532193 0.846623i \(-0.678632\pi\)
0.640729 + 0.767767i \(0.278632\pi\)
\(32\) −5.52377 −0.976474
\(33\) −0.138725 0.0231542i −0.0241490 0.00403064i
\(34\) −17.7489 −3.04391
\(35\) 0 0
\(36\) −3.02196 9.30063i −0.503660 1.55011i
\(37\) 1.48775 4.57883i 0.244585 0.752755i −0.751120 0.660166i \(-0.770486\pi\)
0.995704 0.0925885i \(-0.0295141\pi\)
\(38\) −6.09245 4.42643i −0.988326 0.718061i
\(39\) 0.0963927 + 0.0700334i 0.0154352 + 0.0112143i
\(40\) 0 0
\(41\) 2.05928 + 6.33782i 0.321606 + 0.989801i 0.972949 + 0.231018i \(0.0742056\pi\)
−0.651344 + 0.758783i \(0.725794\pi\)
\(42\) 0.0896870 0.0651614i 0.0138390 0.0100546i
\(43\) 0.698596 0.106535 0.0532674 0.998580i \(-0.483036\pi\)
0.0532674 + 0.998580i \(0.483036\pi\)
\(44\) 7.58561 + 7.71264i 1.14357 + 1.16272i
\(45\) 0 0
\(46\) 10.2896 7.47586i 1.51712 1.10226i
\(47\) 2.67259 + 8.22539i 0.389837 + 1.19980i 0.932910 + 0.360110i \(0.117261\pi\)
−0.543073 + 0.839686i \(0.682739\pi\)
\(48\) 0.00151135 0.00465146i 0.000218145 0.000671380i
\(49\) 4.61231 + 3.35104i 0.658902 + 0.478720i
\(50\) 0 0
\(51\) −0.101395 + 0.312062i −0.0141981 + 0.0436974i
\(52\) −2.83197 8.71589i −0.392723 1.20868i
\(53\) 7.08882 5.15033i 0.973724 0.707452i 0.0174268 0.999848i \(-0.494453\pi\)
0.956297 + 0.292396i \(0.0944526\pi\)
\(54\) −0.583459 −0.0793988
\(55\) 0 0
\(56\) −3.29842 −0.440769
\(57\) −0.112630 + 0.0818306i −0.0149182 + 0.0108387i
\(58\) −4.93553 15.1900i −0.648067 1.99454i
\(59\) 3.28551 10.1118i 0.427737 1.31644i −0.472613 0.881270i \(-0.656689\pi\)
0.900349 0.435168i \(-0.143311\pi\)
\(60\) 0 0
\(61\) −7.48769 5.44012i −0.958700 0.696536i −0.00585161 0.999983i \(-0.501863\pi\)
−0.952848 + 0.303446i \(0.901863\pi\)
\(62\) −0.529471 + 1.62954i −0.0672429 + 0.206952i
\(63\) 1.05591 + 3.24975i 0.133032 + 0.409430i
\(64\) 10.4374 7.58321i 1.30467 0.947901i
\(65\) 0 0
\(66\) 0.288659 0.144073i 0.0355315 0.0177341i
\(67\) 6.69671 0.818133 0.409066 0.912505i \(-0.365854\pi\)
0.409066 + 0.912505i \(0.365854\pi\)
\(68\) 20.4179 14.8345i 2.47604 1.79895i
\(69\) −0.0726587 0.223620i −0.00874708 0.0269207i
\(70\) 0 0
\(71\) −6.03555 4.38508i −0.716288 0.520414i 0.168908 0.985632i \(-0.445976\pi\)
−0.885196 + 0.465218i \(0.845976\pi\)
\(72\) 7.02007 + 5.10038i 0.827324 + 0.601086i
\(73\) −0.472132 + 1.45307i −0.0552588 + 0.170069i −0.974877 0.222745i \(-0.928498\pi\)
0.919618 + 0.392814i \(0.128498\pi\)
\(74\) 3.41267 + 10.5031i 0.396714 + 1.22096i
\(75\) 0 0
\(76\) 10.7082 1.22831
\(77\) −2.65050 2.69488i −0.302052 0.307110i
\(78\) −0.273306 −0.0309459
\(79\) 8.11356 5.89485i 0.912847 0.663222i −0.0288861 0.999583i \(-0.509196\pi\)
0.941733 + 0.336360i \(0.109196\pi\)
\(80\) 0 0
\(81\) 2.77615 8.54412i 0.308461 0.949347i
\(82\) −12.3667 8.98495i −1.36568 0.992222i
\(83\) 3.96171 + 2.87835i 0.434854 + 0.315940i 0.783587 0.621282i \(-0.213388\pi\)
−0.348733 + 0.937222i \(0.613388\pi\)
\(84\) −0.0487120 + 0.149920i −0.00531492 + 0.0163576i
\(85\) 0 0
\(86\) −1.29642 + 0.941908i −0.139797 + 0.101569i
\(87\) −0.295266 −0.0316559
\(88\) −9.46788 1.58026i −1.00928 0.168456i
\(89\) −9.00636 −0.954672 −0.477336 0.878721i \(-0.658398\pi\)
−0.477336 + 0.878721i \(0.658398\pi\)
\(90\) 0 0
\(91\) 0.989521 + 3.04543i 0.103730 + 0.319248i
\(92\) −5.58865 + 17.2001i −0.582657 + 1.79323i
\(93\) 0.0256259 + 0.0186183i 0.00265729 + 0.00193063i
\(94\) −16.0499 11.6609i −1.65542 1.20273i
\(95\) 0 0
\(96\) −0.0723842 0.222776i −0.00738769 0.0227370i
\(97\) −4.79130 + 3.48108i −0.486482 + 0.353450i −0.803830 0.594859i \(-0.797208\pi\)
0.317348 + 0.948309i \(0.397208\pi\)
\(98\) −13.0775 −1.32103
\(99\) 1.47397 + 9.83406i 0.148140 + 0.988360i
\(100\) 0 0
\(101\) 7.55718 5.49062i 0.751968 0.546337i −0.144468 0.989509i \(-0.546147\pi\)
0.896436 + 0.443173i \(0.146147\pi\)
\(102\) −0.232584 0.715821i −0.0230293 0.0708768i
\(103\) −3.21686 + 9.90047i −0.316966 + 0.975522i 0.657971 + 0.753043i \(0.271415\pi\)
−0.974937 + 0.222479i \(0.928585\pi\)
\(104\) 6.57871 + 4.77972i 0.645096 + 0.468690i
\(105\) 0 0
\(106\) −6.21101 + 19.1155i −0.603266 + 1.85666i
\(107\) −1.36747 4.20865i −0.132199 0.406866i 0.862945 0.505298i \(-0.168617\pi\)
−0.995144 + 0.0984318i \(0.968617\pi\)
\(108\) 0.671197 0.487653i 0.0645860 0.0469245i
\(109\) −3.22523 −0.308921 −0.154460 0.987999i \(-0.549364\pi\)
−0.154460 + 0.987999i \(0.549364\pi\)
\(110\) 0 0
\(111\) 0.204162 0.0193782
\(112\) 0.106340 0.0772606i 0.0100482 0.00730044i
\(113\) −1.50030 4.61746i −0.141137 0.434374i 0.855357 0.518039i \(-0.173338\pi\)
−0.996494 + 0.0836643i \(0.973338\pi\)
\(114\) 0.0986831 0.303716i 0.00924252 0.0284456i
\(115\) 0 0
\(116\) 18.3735 + 13.3491i 1.70593 + 1.23943i
\(117\) 2.60318 8.01175i 0.240664 0.740687i
\(118\) 7.53644 + 23.1948i 0.693785 + 2.13525i
\(119\) −7.13425 + 5.18333i −0.653995 + 0.475156i
\(120\) 0 0
\(121\) −6.31697 9.00532i −0.574270 0.818666i
\(122\) 21.2302 1.92209
\(123\) −0.228622 + 0.166103i −0.0206141 + 0.0149770i
\(124\) −0.752877 2.31712i −0.0676103 0.208083i
\(125\) 0 0
\(126\) −6.34109 4.60707i −0.564910 0.410431i
\(127\) −12.6642 9.20111i −1.12377 0.816467i −0.138994 0.990293i \(-0.544387\pi\)
−0.984776 + 0.173827i \(0.944387\pi\)
\(128\) −5.73105 + 17.6383i −0.506558 + 1.55902i
\(129\) 0.00915450 + 0.0281746i 0.000806009 + 0.00248064i
\(130\) 0 0
\(131\) −21.8905 −1.91258 −0.956291 0.292415i \(-0.905541\pi\)
−0.956291 + 0.292415i \(0.905541\pi\)
\(132\) −0.211651 + 0.406998i −0.0184218 + 0.0354246i
\(133\) −3.74157 −0.324435
\(134\) −12.4275 + 9.02908i −1.07357 + 0.779994i
\(135\) 0 0
\(136\) −6.92012 + 21.2979i −0.593396 + 1.82628i
\(137\) 7.74963 + 5.63043i 0.662095 + 0.481040i 0.867370 0.497664i \(-0.165809\pi\)
−0.205275 + 0.978704i \(0.565809\pi\)
\(138\) 0.436341 + 0.317020i 0.0371438 + 0.0269866i
\(139\) 3.86417 11.8927i 0.327755 1.00872i −0.642427 0.766347i \(-0.722073\pi\)
0.970182 0.242378i \(-0.0779275\pi\)
\(140\) 0 0
\(141\) −0.296711 + 0.215573i −0.0249876 + 0.0181545i
\(142\) 17.1129 1.43608
\(143\) 1.38130 + 9.21578i 0.115510 + 0.770663i
\(144\) −0.345794 −0.0288162
\(145\) 0 0
\(146\) −1.08300 3.33312i −0.0896294 0.275851i
\(147\) −0.0747084 + 0.229929i −0.00616185 + 0.0189642i
\(148\) −12.7043 9.23022i −1.04429 0.758719i
\(149\) −6.72017 4.88249i −0.550538 0.399989i 0.277446 0.960741i \(-0.410512\pi\)
−0.827984 + 0.560752i \(0.810512\pi\)
\(150\) 0 0
\(151\) 3.99542 + 12.2966i 0.325143 + 1.00069i 0.971376 + 0.237547i \(0.0763434\pi\)
−0.646233 + 0.763140i \(0.723657\pi\)
\(152\) −7.68691 + 5.58487i −0.623491 + 0.452993i
\(153\) 23.1990 1.87553
\(154\) 8.55215 + 1.42741i 0.689152 + 0.115024i
\(155\) 0 0
\(156\) 0.314405 0.228429i 0.0251725 0.0182889i
\(157\) −2.38088 7.32758i −0.190015 0.584805i 0.809984 0.586452i \(-0.199476\pi\)
−0.999999 + 0.00164706i \(0.999476\pi\)
\(158\) −7.10886 + 21.8788i −0.565550 + 1.74059i
\(159\) 0.300608 + 0.218404i 0.0238397 + 0.0173206i
\(160\) 0 0
\(161\) 1.95274 6.00990i 0.153897 0.473647i
\(162\) 6.36806 + 19.5989i 0.500322 + 1.53983i
\(163\) −17.5390 + 12.7428i −1.37376 + 0.998093i −0.376324 + 0.926488i \(0.622812\pi\)
−0.997433 + 0.0716050i \(0.977188\pi\)
\(164\) 21.7360 1.69729
\(165\) 0 0
\(166\) −11.2328 −0.871835
\(167\) 11.4995 8.35490i 0.889861 0.646522i −0.0459807 0.998942i \(-0.514641\pi\)
0.935842 + 0.352420i \(0.114641\pi\)
\(168\) −0.0432229 0.133026i −0.00333472 0.0102632i
\(169\) −1.57771 + 4.85569i −0.121362 + 0.373515i
\(170\) 0 0
\(171\) 7.96324 + 5.78563i 0.608964 + 0.442438i
\(172\) 0.704132 2.16709i 0.0536895 0.165239i
\(173\) −5.88217 18.1034i −0.447213 1.37638i −0.880039 0.474902i \(-0.842483\pi\)
0.432826 0.901478i \(-0.357517\pi\)
\(174\) 0.547943 0.398104i 0.0415394 0.0301802i
\(175\) 0 0
\(176\) 0.342257 0.170824i 0.0257986 0.0128764i
\(177\) 0.450865 0.0338891
\(178\) 16.7136 12.1431i 1.25274 0.910168i
\(179\) −3.28731 10.1173i −0.245705 0.756202i −0.995520 0.0945541i \(-0.969857\pi\)
0.749815 0.661648i \(-0.230143\pi\)
\(180\) 0 0
\(181\) 12.4293 + 9.03045i 0.923866 + 0.671228i 0.944483 0.328559i \(-0.106563\pi\)
−0.0206172 + 0.999787i \(0.506563\pi\)
\(182\) −5.94242 4.31742i −0.440482 0.320029i
\(183\) 0.121283 0.373269i 0.00896547 0.0275929i
\(184\) −4.95889 15.2619i −0.365574 1.12512i
\(185\) 0 0
\(186\) −0.0726584 −0.00532757
\(187\) −22.9617 + 11.4604i −1.67913 + 0.838070i
\(188\) 28.2095 2.05739
\(189\) −0.234524 + 0.170392i −0.0170591 + 0.0123942i
\(190\) 0 0
\(191\) 4.60845 14.1834i 0.333456 1.02627i −0.634022 0.773315i \(-0.718597\pi\)
0.967478 0.252956i \(-0.0814029\pi\)
\(192\) 0.442607 + 0.321573i 0.0319424 + 0.0232075i
\(193\) 5.40812 + 3.92923i 0.389285 + 0.282832i 0.765162 0.643837i \(-0.222659\pi\)
−0.375878 + 0.926669i \(0.622659\pi\)
\(194\) 4.19799 12.9201i 0.301398 0.927607i
\(195\) 0 0
\(196\) 15.0440 10.9301i 1.07457 0.780724i
\(197\) −8.96183 −0.638504 −0.319252 0.947670i \(-0.603432\pi\)
−0.319252 + 0.947670i \(0.603432\pi\)
\(198\) −15.9945 16.2623i −1.13668 1.15571i
\(199\) 13.7830 0.977053 0.488527 0.872549i \(-0.337534\pi\)
0.488527 + 0.872549i \(0.337534\pi\)
\(200\) 0 0
\(201\) 0.0877546 + 0.270081i 0.00618973 + 0.0190500i
\(202\) −6.62137 + 20.3785i −0.465878 + 1.43383i
\(203\) −6.41989 4.66433i −0.450588 0.327371i
\(204\) 0.865840 + 0.629069i 0.0606209 + 0.0440437i
\(205\) 0 0
\(206\) −7.37896 22.7101i −0.514117 1.58229i
\(207\) −13.4492 + 9.77144i −0.934786 + 0.679162i
\(208\) −0.324054 −0.0224691
\(209\) −10.7399 1.79257i −0.742896 0.123994i
\(210\) 0 0
\(211\) −7.10704 + 5.16357i −0.489269 + 0.355475i −0.804903 0.593406i \(-0.797783\pi\)
0.315634 + 0.948881i \(0.397783\pi\)
\(212\) −8.83169 27.1812i −0.606563 1.86681i
\(213\) 0.0977614 0.300879i 0.00669850 0.0206159i
\(214\) 8.21217 + 5.96649i 0.561373 + 0.407861i
\(215\) 0 0
\(216\) −0.227485 + 0.700127i −0.0154784 + 0.0476376i
\(217\) 0.263064 + 0.809627i 0.0178579 + 0.0549610i
\(218\) 5.98524 4.34853i 0.405372 0.294520i
\(219\) −0.0647899 −0.00437809
\(220\) 0 0
\(221\) 21.7405 1.46242
\(222\) −0.378874 + 0.275268i −0.0254284 + 0.0184748i
\(223\) −2.79247 8.59432i −0.186997 0.575519i 0.812980 0.582292i \(-0.197844\pi\)
−0.999977 + 0.00677342i \(0.997844\pi\)
\(224\) 1.94536 5.98721i 0.129980 0.400037i
\(225\) 0 0
\(226\) 9.00986 + 6.54605i 0.599327 + 0.435437i
\(227\) −1.75583 + 5.40389i −0.116539 + 0.358669i −0.992265 0.124139i \(-0.960383\pi\)
0.875726 + 0.482808i \(0.160383\pi\)
\(228\) 0.140322 + 0.431866i 0.00929303 + 0.0286010i
\(229\) −4.76848 + 3.46450i −0.315110 + 0.228941i −0.734086 0.679057i \(-0.762389\pi\)
0.418976 + 0.907997i \(0.362389\pi\)
\(230\) 0 0
\(231\) 0.0739531 0.142210i 0.00486576 0.00935671i
\(232\) −20.1517 −1.32302
\(233\) −0.0331172 + 0.0240610i −0.00216958 + 0.00157629i −0.588870 0.808228i \(-0.700427\pi\)
0.586700 + 0.809804i \(0.300427\pi\)
\(234\) 5.97127 + 18.3777i 0.390354 + 1.20139i
\(235\) 0 0
\(236\) −28.0558 20.3838i −1.82628 1.32687i
\(237\) 0.344063 + 0.249976i 0.0223493 + 0.0162377i
\(238\) 6.25081 19.2380i 0.405180 1.24702i
\(239\) −2.32818 7.16539i −0.150597 0.463491i 0.847091 0.531448i \(-0.178352\pi\)
−0.997688 + 0.0679571i \(0.978352\pi\)
\(240\) 0 0
\(241\) −0.718212 −0.0462641 −0.0231321 0.999732i \(-0.507364\pi\)
−0.0231321 + 0.999732i \(0.507364\pi\)
\(242\) 23.8645 + 8.19460i 1.53407 + 0.526769i
\(243\) 1.14404 0.0733904
\(244\) −24.4227 + 17.7441i −1.56350 + 1.13595i
\(245\) 0 0
\(246\) 0.200311 0.616495i 0.0127714 0.0393063i
\(247\) 7.46258 + 5.42188i 0.474833 + 0.344986i
\(248\) 1.74895 + 1.27069i 0.111058 + 0.0806886i
\(249\) −0.0641702 + 0.197496i −0.00406662 + 0.0125158i
\(250\) 0 0
\(251\) 5.22156 3.79369i 0.329582 0.239455i −0.410671 0.911783i \(-0.634706\pi\)
0.740253 + 0.672328i \(0.234706\pi\)
\(252\) 11.1452 0.702083
\(253\) 8.48452 16.3155i 0.533417 1.02575i
\(254\) 35.9075 2.25304
\(255\) 0 0
\(256\) −5.17266 15.9198i −0.323291 0.994988i
\(257\) 7.24342 22.2930i 0.451832 1.39060i −0.422982 0.906138i \(-0.639017\pi\)
0.874814 0.484459i \(-0.160983\pi\)
\(258\) −0.0549760 0.0399424i −0.00342266 0.00248671i
\(259\) 4.43903 + 3.22514i 0.275828 + 0.200401i
\(260\) 0 0
\(261\) 6.45106 + 19.8543i 0.399311 + 1.22895i
\(262\) 40.6235 29.5147i 2.50973 1.82342i
\(263\) −20.1226 −1.24081 −0.620405 0.784281i \(-0.713032\pi\)
−0.620405 + 0.784281i \(0.713032\pi\)
\(264\) −0.0603361 0.402551i −0.00371343 0.0247753i
\(265\) 0 0
\(266\) 6.94344 5.04470i 0.425729 0.309311i
\(267\) −0.118021 0.363230i −0.00722274 0.0222293i
\(268\) 6.74977 20.7737i 0.412308 1.26895i
\(269\) −0.570215 0.414286i −0.0347666 0.0252594i 0.570266 0.821460i \(-0.306840\pi\)
−0.605033 + 0.796200i \(0.706840\pi\)
\(270\) 0 0
\(271\) −6.31438 + 19.4337i −0.383571 + 1.18051i 0.553940 + 0.832556i \(0.313124\pi\)
−0.937512 + 0.347954i \(0.886876\pi\)
\(272\) −0.275770 0.848734i −0.0167210 0.0514620i
\(273\) −0.109857 + 0.0798155i −0.00664883 + 0.00483065i
\(274\) −21.9729 −1.32743
\(275\) 0 0
\(276\) −0.766921 −0.0461632
\(277\) 12.4119 9.01780i 0.745761 0.541827i −0.148749 0.988875i \(-0.547525\pi\)
0.894510 + 0.447048i \(0.147525\pi\)
\(278\) 8.86379 + 27.2800i 0.531615 + 1.63614i
\(279\) 0.692053 2.12992i 0.0414321 0.127515i
\(280\) 0 0
\(281\) −11.1904 8.13034i −0.667566 0.485015i 0.201644 0.979459i \(-0.435372\pi\)
−0.869210 + 0.494444i \(0.835372\pi\)
\(282\) 0.259969 0.800103i 0.0154809 0.0476454i
\(283\) −5.25199 16.1640i −0.312199 0.960848i −0.976892 0.213732i \(-0.931438\pi\)
0.664694 0.747116i \(-0.268562\pi\)
\(284\) −19.6862 + 14.3029i −1.16816 + 0.848719i
\(285\) 0 0
\(286\) −14.9889 15.2399i −0.886311 0.901152i
\(287\) −7.59479 −0.448306
\(288\) −13.3984 + 9.73453i −0.789510 + 0.573613i
\(289\) 13.2479 + 40.7728i 0.779287 + 2.39840i
\(290\) 0 0
\(291\) −0.203179 0.147618i −0.0119106 0.00865353i
\(292\) 4.03166 + 2.92917i 0.235935 + 0.171417i
\(293\) −0.259404 + 0.798364i −0.0151546 + 0.0466409i −0.958348 0.285604i \(-0.907806\pi\)
0.943193 + 0.332245i \(0.107806\pi\)
\(294\) −0.171369 0.527421i −0.00999446 0.0307598i
\(295\) 0 0
\(296\) 13.9338 0.809889
\(297\) −0.754819 + 0.376738i −0.0437990 + 0.0218606i
\(298\) 19.0540 1.10377
\(299\) −12.6037 + 9.15710i −0.728889 + 0.529569i
\(300\) 0 0
\(301\) −0.246032 + 0.757207i −0.0141810 + 0.0436447i
\(302\) −23.9939 17.4326i −1.38070 1.00313i
\(303\) 0.320469 + 0.232834i 0.0184105 + 0.0133760i
\(304\) 0.117007 0.360109i 0.00671079 0.0206537i
\(305\) 0 0
\(306\) −43.0517 + 31.2789i −2.46110 + 1.78810i
\(307\) −6.41496 −0.366121 −0.183060 0.983102i \(-0.558600\pi\)
−0.183060 + 0.983102i \(0.558600\pi\)
\(308\) −11.0312 + 5.50580i −0.628562 + 0.313722i
\(309\) −0.441444 −0.0251129
\(310\) 0 0
\(311\) 9.38914 + 28.8968i 0.532410 + 1.63859i 0.749181 + 0.662366i \(0.230447\pi\)
−0.216771 + 0.976222i \(0.569553\pi\)
\(312\) −0.106559 + 0.327956i −0.00603274 + 0.0185669i
\(313\) −1.90239 1.38217i −0.107529 0.0781247i 0.532721 0.846291i \(-0.321169\pi\)
−0.640251 + 0.768166i \(0.721169\pi\)
\(314\) 14.2980 + 10.3881i 0.806883 + 0.586235i
\(315\) 0 0
\(316\) −10.1084 31.1104i −0.568641 1.75010i
\(317\) −0.650112 + 0.472334i −0.0365139 + 0.0265289i −0.605893 0.795547i \(-0.707184\pi\)
0.569379 + 0.822075i \(0.307184\pi\)
\(318\) −0.852326 −0.0477961
\(319\) −16.1932 16.4644i −0.906646 0.921828i
\(320\) 0 0
\(321\) 0.151817 0.110302i 0.00847360 0.00615643i
\(322\) 4.47927 + 13.7858i 0.249620 + 0.768251i
\(323\) −7.84986 + 24.1594i −0.436778 + 1.34426i
\(324\) −23.7063 17.2236i −1.31702 0.956869i
\(325\) 0 0
\(326\) 15.3671 47.2951i 0.851105 2.61943i
\(327\) −0.0422638 0.130075i −0.00233720 0.00719315i
\(328\) −15.6032 + 11.3364i −0.861544 + 0.625948i
\(329\) −9.85672 −0.543418
\(330\) 0 0
\(331\) 29.5735 1.62551 0.812753 0.582608i \(-0.197968\pi\)
0.812753 + 0.582608i \(0.197968\pi\)
\(332\) 12.9220 9.38835i 0.709184 0.515253i
\(333\) −4.46058 13.7282i −0.244438 0.752303i
\(334\) −10.0755 + 31.0093i −0.551309 + 1.69676i
\(335\) 0 0
\(336\) 0.00450944 + 0.00327630i 0.000246010 + 0.000178737i
\(337\) −8.80022 + 27.0843i −0.479378 + 1.47537i 0.360582 + 0.932727i \(0.382578\pi\)
−0.839961 + 0.542648i \(0.817422\pi\)
\(338\) −3.61902 11.1382i −0.196848 0.605837i
\(339\) 0.166564 0.121016i 0.00904651 0.00657267i
\(340\) 0 0
\(341\) 0.367218 + 2.45001i 0.0198860 + 0.132676i
\(342\) −22.5785 −1.22091
\(343\) −11.7107 + 8.50831i −0.632318 + 0.459406i
\(344\) 0.624786 + 1.92290i 0.0336862 + 0.103676i
\(345\) 0 0
\(346\) 35.3245 + 25.6648i 1.89906 + 1.37975i
\(347\) 6.53075 + 4.74487i 0.350589 + 0.254718i 0.749116 0.662439i \(-0.230478\pi\)
−0.398527 + 0.917157i \(0.630478\pi\)
\(348\) −0.297606 + 0.915937i −0.0159534 + 0.0490994i
\(349\) −9.27242 28.5376i −0.496341 1.52758i −0.814856 0.579664i \(-0.803184\pi\)
0.318514 0.947918i \(-0.396816\pi\)
\(350\) 0 0
\(351\) 0.714673 0.0381464
\(352\) 8.45247 16.2539i 0.450518 0.866334i
\(353\) −3.17893 −0.169197 −0.0845987 0.996415i \(-0.526961\pi\)
−0.0845987 + 0.996415i \(0.526961\pi\)
\(354\) −0.836695 + 0.607895i −0.0444699 + 0.0323092i
\(355\) 0 0
\(356\) −9.07772 + 27.9384i −0.481118 + 1.48073i
\(357\) −0.302534 0.219804i −0.0160118 0.0116333i
\(358\) 19.7414 + 14.3430i 1.04337 + 0.758051i
\(359\) −0.905888 + 2.78804i −0.0478110 + 0.147147i −0.972112 0.234517i \(-0.924649\pi\)
0.924301 + 0.381664i \(0.124649\pi\)
\(360\) 0 0
\(361\) 6.65166 4.83271i 0.350087 0.254353i
\(362\) −35.2415 −1.85225
\(363\) 0.280410 0.372773i 0.0147177 0.0195655i
\(364\) 10.4445 0.547441
\(365\) 0 0
\(366\) 0.278203 + 0.856221i 0.0145419 + 0.0447554i
\(367\) 5.65439 17.4024i 0.295157 0.908399i −0.688012 0.725699i \(-0.741516\pi\)
0.983169 0.182700i \(-0.0584837\pi\)
\(368\) 0.517361 + 0.375885i 0.0269693 + 0.0195943i
\(369\) 16.1641 + 11.7439i 0.841470 + 0.611364i
\(370\) 0 0
\(371\) 3.08589 + 9.49740i 0.160212 + 0.493081i
\(372\) 0.0835844 0.0607276i 0.00433365 0.00314858i
\(373\) 8.37860 0.433827 0.216914 0.976191i \(-0.430401\pi\)
0.216914 + 0.976191i \(0.430401\pi\)
\(374\) 27.1594 52.2267i 1.40438 2.70058i
\(375\) 0 0
\(376\) −20.2503 + 14.7127i −1.04433 + 0.758749i
\(377\) 6.04548 + 18.6061i 0.311358 + 0.958261i
\(378\) 0.205483 0.632411i 0.0105689 0.0325277i
\(379\) 11.6010 + 8.42861i 0.595903 + 0.432949i 0.844422 0.535678i \(-0.179944\pi\)
−0.248519 + 0.968627i \(0.579944\pi\)
\(380\) 0 0
\(381\) 0.205130 0.631327i 0.0105091 0.0323438i
\(382\) 10.5711 + 32.5344i 0.540862 + 1.66460i
\(383\) 22.0030 15.9861i 1.12430 0.816852i 0.139445 0.990230i \(-0.455468\pi\)
0.984855 + 0.173378i \(0.0554682\pi\)
\(384\) −0.786462 −0.0401340
\(385\) 0 0
\(386\) −15.3339 −0.780473
\(387\) 1.69451 1.23113i 0.0861369 0.0625821i
\(388\) 5.96929 + 18.3716i 0.303045 + 0.932677i
\(389\) 6.19659 19.0711i 0.314180 0.966945i −0.661911 0.749582i \(-0.730254\pi\)
0.976091 0.217363i \(-0.0697456\pi\)
\(390\) 0 0
\(391\) −34.7092 25.2177i −1.75532 1.27532i
\(392\) −5.09879 + 15.6924i −0.257528 + 0.792588i
\(393\) −0.286856 0.882853i −0.0144700 0.0445340i
\(394\) 16.6310 12.0831i 0.837856 0.608738i
\(395\) 0 0
\(396\) 31.9916 + 5.33962i 1.60764 + 0.268326i
\(397\) −29.4343 −1.47727 −0.738633 0.674108i \(-0.764528\pi\)
−0.738633 + 0.674108i \(0.764528\pi\)
\(398\) −25.5780 + 18.5835i −1.28211 + 0.931506i
\(399\) −0.0490300 0.150899i −0.00245457 0.00755439i
\(400\) 0 0
\(401\) −15.5521 11.2993i −0.776637 0.564260i 0.127331 0.991860i \(-0.459359\pi\)
−0.903968 + 0.427601i \(0.859359\pi\)
\(402\) −0.526997 0.382886i −0.0262842 0.0190966i
\(403\) 0.648543 1.99601i 0.0323062 0.0994283i
\(404\) −9.41521 28.9770i −0.468424 1.44166i
\(405\) 0 0
\(406\) 18.2026 0.903380
\(407\) 11.1968 + 11.3843i 0.555004 + 0.564298i
\(408\) −0.949637 −0.0470140
\(409\) 10.3483 7.51846i 0.511689 0.371764i −0.301775 0.953379i \(-0.597579\pi\)
0.813464 + 0.581615i \(0.197579\pi\)
\(410\) 0 0
\(411\) −0.125525 + 0.386327i −0.00619171 + 0.0190561i
\(412\) 27.4696 + 19.9578i 1.35333 + 0.983252i
\(413\) 9.80302 + 7.12231i 0.482375 + 0.350466i
\(414\) 11.7838 36.2668i 0.579143 1.78242i
\(415\) 0 0
\(416\) −12.5561 + 9.12251i −0.615612 + 0.447268i
\(417\) 0.530273 0.0259676
\(418\) 22.3476 11.1539i 1.09306 0.545556i
\(419\) 4.22237 0.206276 0.103138 0.994667i \(-0.467112\pi\)
0.103138 + 0.994667i \(0.467112\pi\)
\(420\) 0 0
\(421\) 0.252842 + 0.778168i 0.0123228 + 0.0379256i 0.957029 0.289993i \(-0.0936529\pi\)
−0.944706 + 0.327918i \(0.893653\pi\)
\(422\) 6.22697 19.1646i 0.303124 0.932920i
\(423\) 20.9782 + 15.2416i 1.02000 + 0.741070i
\(424\) 20.5162 + 14.9059i 0.996355 + 0.723894i
\(425\) 0 0
\(426\) 0.224249 + 0.690168i 0.0108649 + 0.0334388i
\(427\) 8.53355 6.19999i 0.412968 0.300039i
\(428\) −14.4339 −0.697687
\(429\) −0.353575 + 0.176473i −0.0170708 + 0.00852021i
\(430\) 0 0
\(431\) 4.70010 3.41482i 0.226396 0.164486i −0.468805 0.883302i \(-0.655315\pi\)
0.695201 + 0.718815i \(0.255315\pi\)
\(432\) −0.00906539 0.0279004i −0.000436159 0.00134236i
\(433\) 4.82611 14.8532i 0.231928 0.713801i −0.765586 0.643334i \(-0.777551\pi\)
0.997514 0.0704677i \(-0.0224492\pi\)
\(434\) −1.57979 1.14779i −0.0758324 0.0550954i
\(435\) 0 0
\(436\) −3.25079 + 10.0049i −0.155684 + 0.479147i
\(437\) −5.62513 17.3124i −0.269086 0.828163i
\(438\) 0.120234 0.0873553i 0.00574501 0.00417400i
\(439\) 21.6614 1.03384 0.516922 0.856032i \(-0.327078\pi\)
0.516922 + 0.856032i \(0.327078\pi\)
\(440\) 0 0
\(441\) 17.0931 0.813959
\(442\) −40.3450 + 29.3124i −1.91902 + 1.39425i
\(443\) 8.87659 + 27.3193i 0.421739 + 1.29798i 0.906082 + 0.423102i \(0.139059\pi\)
−0.484343 + 0.874878i \(0.660941\pi\)
\(444\) 0.205779 0.633324i 0.00976586 0.0300562i
\(445\) 0 0
\(446\) 16.7697 + 12.1839i 0.794071 + 0.576926i
\(447\) 0.108851 0.335008i 0.00514846 0.0158453i
\(448\) 4.54359 + 13.9837i 0.214664 + 0.660669i
\(449\) −14.1841 + 10.3053i −0.669389 + 0.486339i −0.869821 0.493368i \(-0.835766\pi\)
0.200432 + 0.979708i \(0.435766\pi\)
\(450\) 0 0
\(451\) −21.8003 3.63863i −1.02654 0.171336i
\(452\) −15.8359 −0.744858
\(453\) −0.443572 + 0.322274i −0.0208408 + 0.0151417i
\(454\) −4.02760 12.3957i −0.189024 0.581757i
\(455\) 0 0
\(456\) −0.325970 0.236831i −0.0152650 0.0110906i
\(457\) 15.9851 + 11.6139i 0.747753 + 0.543275i 0.895130 0.445806i \(-0.147083\pi\)
−0.147376 + 0.989080i \(0.547083\pi\)
\(458\) 4.17800 12.8585i 0.195225 0.600840i
\(459\) 0.608188 + 1.87181i 0.0283878 + 0.0873686i
\(460\) 0 0
\(461\) −12.9859 −0.604812 −0.302406 0.953179i \(-0.597790\pi\)
−0.302406 + 0.953179i \(0.597790\pi\)
\(462\) 0.0545004 + 0.363617i 0.00253559 + 0.0169170i
\(463\) −9.66418 −0.449133 −0.224566 0.974459i \(-0.572097\pi\)
−0.224566 + 0.974459i \(0.572097\pi\)
\(464\) 0.649684 0.472023i 0.0301608 0.0219131i
\(465\) 0 0
\(466\) 0.0290163 0.0893029i 0.00134415 0.00413688i
\(467\) 7.84274 + 5.69808i 0.362919 + 0.263676i 0.754268 0.656566i \(-0.227992\pi\)
−0.391350 + 0.920242i \(0.627992\pi\)
\(468\) −22.2292 16.1505i −1.02755 0.746556i
\(469\) −2.35845 + 7.25855i −0.108903 + 0.335169i
\(470\) 0 0
\(471\) 0.264325 0.192043i 0.0121795 0.00884889i
\(472\) 30.7711 1.41636
\(473\) −1.06899 + 2.05564i −0.0491523 + 0.0945184i
\(474\) −0.975537 −0.0448079
\(475\) 0 0
\(476\) 8.88829 + 27.3554i 0.407394 + 1.25383i
\(477\) 8.11819 24.9852i 0.371707 1.14400i
\(478\) 13.9815 + 10.1582i 0.639501 + 0.464624i
\(479\) −4.23099 3.07400i −0.193319 0.140454i 0.486915 0.873449i \(-0.338122\pi\)
−0.680234 + 0.732995i \(0.738122\pi\)
\(480\) 0 0
\(481\) −4.18014 12.8651i −0.190598 0.586600i
\(482\) 1.33283 0.968356i 0.0607086 0.0441074i
\(483\) 0.267971 0.0121931
\(484\) −34.3022 + 10.5190i −1.55919 + 0.478137i
\(485\) 0 0
\(486\) −2.12307 + 1.54250i −0.0963043 + 0.0699692i
\(487\) −1.68511 5.18624i −0.0763597 0.235011i 0.905590 0.424155i \(-0.139429\pi\)
−0.981949 + 0.189144i \(0.939429\pi\)
\(488\) 8.27743 25.4753i 0.374702 1.15321i
\(489\) −0.743755 0.540370i −0.0336338 0.0244364i
\(490\) 0 0
\(491\) 5.00578 15.4062i 0.225908 0.695272i −0.772291 0.635269i \(-0.780889\pi\)
0.998198 0.0600028i \(-0.0191110\pi\)
\(492\) 0.284831 + 0.876620i 0.0128412 + 0.0395211i
\(493\) −43.5867 + 31.6676i −1.96305 + 1.42624i
\(494\) −21.1590 −0.951988
\(495\) 0 0
\(496\) −0.0861495 −0.00386823
\(497\) 6.87858 4.99758i 0.308547 0.224172i
\(498\) −0.147196 0.453024i −0.00659603 0.0203005i
\(499\) 3.63280 11.1806i 0.162626 0.500513i −0.836227 0.548383i \(-0.815244\pi\)
0.998854 + 0.0478706i \(0.0152435\pi\)
\(500\) 0 0
\(501\) 0.487648 + 0.354297i 0.0217865 + 0.0158288i
\(502\) −4.57497 + 14.0803i −0.204191 + 0.628435i
\(503\) −10.0505 30.9323i −0.448130 1.37920i −0.879015 0.476794i \(-0.841799\pi\)
0.430885 0.902407i \(-0.358201\pi\)
\(504\) −8.00062 + 5.81279i −0.356376 + 0.258922i
\(505\) 0 0
\(506\) 6.25274 + 41.7171i 0.277968 + 1.85455i
\(507\) −0.216506 −0.00961539
\(508\) −41.3071 + 30.0114i −1.83271 + 1.33154i
\(509\) −3.94110 12.1295i −0.174686 0.537629i 0.824933 0.565231i \(-0.191213\pi\)
−0.999619 + 0.0276020i \(0.991213\pi\)
\(510\) 0 0
\(511\) −1.40871 1.02349i −0.0623175 0.0452763i
\(512\) 1.05550 + 0.766865i 0.0466469 + 0.0338909i
\(513\) −0.258048 + 0.794190i −0.0113931 + 0.0350644i
\(514\) 16.6153 + 51.1365i 0.732868 + 2.25554i
\(515\) 0 0
\(516\) 0.0966268 0.00425376
\(517\) −28.2930 4.72231i −1.24433 0.207687i
\(518\) −12.5862 −0.553005
\(519\) 0.653038 0.474460i 0.0286652 0.0208265i
\(520\) 0 0
\(521\) 5.97920 18.4021i 0.261954 0.806210i −0.730426 0.682992i \(-0.760678\pi\)
0.992380 0.123218i \(-0.0393215\pi\)
\(522\) −38.7409 28.1469i −1.69564 1.23196i
\(523\) 12.7358 + 9.25311i 0.556898 + 0.404610i 0.830322 0.557283i \(-0.188156\pi\)
−0.273424 + 0.961894i \(0.588156\pi\)
\(524\) −22.0640 + 67.9059i −0.963869 + 2.96648i
\(525\) 0 0
\(526\) 37.3426 27.1310i 1.62821 1.18297i
\(527\) 5.77969 0.251767
\(528\) 0.0113744 + 0.0115649i 0.000495007 + 0.000503296i
\(529\) 7.74383 0.336688
\(530\) 0 0
\(531\) −9.85062 30.3171i −0.427480 1.31565i
\(532\) −3.77121 + 11.6066i −0.163503 + 0.503210i
\(533\) 15.1479 + 11.0056i 0.656127 + 0.476704i
\(534\) 0.708755 + 0.514941i 0.0306708 + 0.0222837i
\(535\) 0 0
\(536\) 5.98917 + 18.4328i 0.258693 + 0.796175i
\(537\) 0.364957 0.265157i 0.0157491 0.0114424i
\(538\) 1.61676 0.0697033
\(539\) −16.9183 + 8.44411i −0.728723 + 0.363714i
\(540\) 0 0
\(541\) −13.8001 + 10.0264i −0.593312 + 0.431067i −0.843499 0.537131i \(-0.819508\pi\)
0.250186 + 0.968198i \(0.419508\pi\)
\(542\) −14.4842 44.5777i −0.622149 1.91478i
\(543\) −0.201326 + 0.619617i −0.00863971 + 0.0265903i
\(544\) −34.5781 25.1225i −1.48253 1.07712i
\(545\) 0 0
\(546\) 0.0962530 0.296236i 0.00411925 0.0126777i
\(547\) −4.71400 14.5082i −0.201556 0.620326i −0.999837 0.0180408i \(-0.994257\pi\)
0.798281 0.602285i \(-0.205743\pi\)
\(548\) 25.2770 18.3648i 1.07978 0.784507i
\(549\) −27.7492 −1.18431
\(550\) 0 0
\(551\) −22.8591 −0.973830
\(552\) 0.550536 0.399988i 0.0234324 0.0170246i
\(553\) 3.53198 + 10.8703i 0.150195 + 0.462253i
\(554\) −10.8750 + 33.4697i −0.462033 + 1.42199i
\(555\) 0 0
\(556\) −32.9972 23.9739i −1.39939 1.01672i
\(557\) 3.13581 9.65102i 0.132868 0.408927i −0.862384 0.506255i \(-0.831030\pi\)
0.995252 + 0.0973278i \(0.0310295\pi\)
\(558\) 1.58746 + 4.88570i 0.0672025 + 0.206828i
\(559\) 1.58798 1.15373i 0.0671642 0.0487977i
\(560\) 0 0
\(561\) −0.763097 0.775875i −0.0322180 0.0327575i
\(562\) 31.7288 1.33840
\(563\) 26.5624 19.2987i 1.11947 0.813343i 0.135342 0.990799i \(-0.456787\pi\)
0.984129 + 0.177456i \(0.0567866\pi\)
\(564\) 0.369661 + 1.13770i 0.0155655 + 0.0479058i
\(565\) 0 0
\(566\) 31.5401 + 22.9152i 1.32573 + 0.963198i
\(567\) 8.28325 + 6.01814i 0.347864 + 0.252738i
\(568\) 6.67213 20.5347i 0.279956 0.861617i
\(569\) 6.96184 + 21.4263i 0.291856 + 0.898239i 0.984260 + 0.176729i \(0.0565516\pi\)
−0.692404 + 0.721510i \(0.743448\pi\)
\(570\) 0 0
\(571\) −25.5317 −1.06847 −0.534234 0.845336i \(-0.679400\pi\)
−0.534234 + 0.845336i \(0.679400\pi\)
\(572\) 29.9803 + 5.00392i 1.25354 + 0.209224i
\(573\) 0.632410 0.0264193
\(574\) 14.0941 10.2399i 0.588276 0.427407i
\(575\) 0 0
\(576\) 11.9530 36.7876i 0.498042 1.53282i
\(577\) 34.3605 + 24.9643i 1.43044 + 1.03928i 0.989934 + 0.141532i \(0.0452027\pi\)
0.440511 + 0.897747i \(0.354797\pi\)
\(578\) −79.5582 57.8024i −3.30918 2.40426i
\(579\) −0.0875985 + 0.269601i −0.00364047 + 0.0112042i
\(580\) 0 0
\(581\) −4.51508 + 3.28039i −0.187317 + 0.136094i
\(582\) 0.576083 0.0238794
\(583\) 4.30769 + 28.7401i 0.178406 + 1.19029i
\(584\) −4.42185 −0.182977
\(585\) 0 0
\(586\) −0.595032 1.83132i −0.0245806 0.0756512i
\(587\) −5.45316 + 16.7831i −0.225076 + 0.692712i 0.773208 + 0.634152i \(0.218651\pi\)
−0.998284 + 0.0585597i \(0.981349\pi\)
\(588\) 0.637955 + 0.463502i 0.0263088 + 0.0191145i
\(589\) 1.98392 + 1.44140i 0.0817461 + 0.0593920i
\(590\) 0 0
\(591\) −0.117437 0.361434i −0.00483071 0.0148674i
\(592\) −0.449223 + 0.326380i −0.0184630 + 0.0134141i
\(593\) 16.3570 0.671700 0.335850 0.941915i \(-0.390976\pi\)
0.335850 + 0.941915i \(0.390976\pi\)
\(594\) 0.892810 1.71685i 0.0366324 0.0704431i
\(595\) 0 0
\(596\) −21.9193 + 15.9253i −0.897848 + 0.652324i
\(597\) 0.180615 + 0.555875i 0.00739207 + 0.0227505i
\(598\) 11.0429 33.9867i 0.451580 1.38982i
\(599\) 26.4966 + 19.2509i 1.08262 + 0.786570i 0.978138 0.207956i \(-0.0666812\pi\)
0.104483 + 0.994527i \(0.466681\pi\)
\(600\) 0 0
\(601\) 1.53921 4.73719i 0.0627855 0.193234i −0.914743 0.404035i \(-0.867607\pi\)
0.977529 + 0.210801i \(0.0676073\pi\)
\(602\) −0.564357 1.73691i −0.0230015 0.0707913i
\(603\) 16.2435 11.8016i 0.661487 0.480598i
\(604\) 42.1722 1.71596
\(605\) 0 0
\(606\) −0.908640 −0.0369110
\(607\) 8.07212 5.86474i 0.327637 0.238042i −0.411790 0.911279i \(-0.635096\pi\)
0.739427 + 0.673236i \(0.235096\pi\)
\(608\) −5.60388 17.2470i −0.227267 0.699457i
\(609\) 0.103987 0.320039i 0.00421376 0.0129686i
\(610\) 0 0
\(611\) 19.6593 + 14.2833i 0.795330 + 0.577841i
\(612\) 23.3828 71.9649i 0.945195 2.90901i
\(613\) 10.6644 + 32.8216i 0.430730 + 1.32565i 0.897399 + 0.441219i \(0.145454\pi\)
−0.466669 + 0.884432i \(0.654546\pi\)
\(614\) 11.9046 8.64920i 0.480431 0.349053i
\(615\) 0 0
\(616\) 5.04724 9.70569i 0.203359 0.391053i
\(617\) 34.5830 1.39226 0.696129 0.717916i \(-0.254904\pi\)
0.696129 + 0.717916i \(0.254904\pi\)
\(618\) 0.819213 0.595193i 0.0329536 0.0239422i
\(619\) −1.25727 3.86947i −0.0505338 0.155527i 0.922605 0.385746i \(-0.126056\pi\)
−0.973139 + 0.230219i \(0.926056\pi\)
\(620\) 0 0
\(621\) −1.14100 0.828981i −0.0457866 0.0332659i
\(622\) −56.3852 40.9662i −2.26084 1.64260i
\(623\) 3.17186 9.76198i 0.127078 0.391105i
\(624\) −0.00424645 0.0130692i −0.000169994 0.000523187i
\(625\) 0 0
\(626\) 5.39393 0.215585
\(627\) −0.0684424 0.456635i −0.00273333 0.0182362i
\(628\) −25.1304 −1.00281
\(629\) 30.1380 21.8965i 1.20168 0.873071i
\(630\) 0 0
\(631\) −2.02749 + 6.23999i −0.0807133 + 0.248410i −0.983268 0.182165i \(-0.941689\pi\)
0.902555 + 0.430575i \(0.141689\pi\)
\(632\) 23.4820 + 17.0607i 0.934063 + 0.678637i
\(633\) −0.301380 0.218966i −0.0119788 0.00870310i
\(634\) 0.569608 1.75307i 0.0226220 0.0696235i
\(635\) 0 0
\(636\) 0.980495 0.712371i 0.0388792 0.0282474i
\(637\) 16.0185 0.634676
\(638\) 52.2494 + 8.72079i 2.06857 + 0.345259i
\(639\) −22.3676 −0.884850
\(640\) 0 0
\(641\) −2.04709 6.30031i −0.0808553 0.248847i 0.902455 0.430785i \(-0.141763\pi\)
−0.983310 + 0.181938i \(0.941763\pi\)
\(642\) −0.133018 + 0.409386i −0.00524978 + 0.0161572i
\(643\) −37.7911 27.4568i −1.49033 1.08279i −0.974039 0.226380i \(-0.927311\pi\)
−0.516295 0.856411i \(-0.672689\pi\)
\(644\) −16.6749 12.1151i −0.657085 0.477400i
\(645\) 0 0
\(646\) −18.0063 55.4178i −0.708450 2.18038i
\(647\) −34.7847 + 25.2725i −1.36753 + 0.993566i −0.369600 + 0.929191i \(0.620505\pi\)
−0.997926 + 0.0643747i \(0.979495\pi\)
\(648\) 26.0006 1.02140
\(649\) 24.7267 + 25.1407i 0.970606 + 0.986859i
\(650\) 0 0
\(651\) −0.0292053 + 0.0212189i −0.00114465 + 0.000831635i
\(652\) 21.8511 + 67.2509i 0.855756 + 2.63375i
\(653\) 5.68176 17.4867i 0.222345 0.684306i −0.776206 0.630480i \(-0.782858\pi\)
0.998550 0.0538266i \(-0.0171418\pi\)
\(654\) 0.253809 + 0.184403i 0.00992473 + 0.00721074i
\(655\) 0 0
\(656\) 0.237505 0.730965i 0.00927301 0.0285394i
\(657\) 1.41555 + 4.35660i 0.0552257 + 0.169967i
\(658\) 18.2917 13.2897i 0.713084 0.518085i
\(659\) 13.6816 0.532959 0.266480 0.963841i \(-0.414140\pi\)
0.266480 + 0.963841i \(0.414140\pi\)
\(660\) 0 0
\(661\) −35.5389 −1.38230 −0.691151 0.722710i \(-0.742896\pi\)
−0.691151 + 0.722710i \(0.742896\pi\)
\(662\) −54.8812 + 39.8736i −2.13302 + 1.54973i
\(663\) 0.284890 + 0.876801i 0.0110642 + 0.0340521i
\(664\) −4.37956 + 13.4789i −0.169960 + 0.523083i
\(665\) 0 0
\(666\) 26.7874 + 19.4622i 1.03799 + 0.754143i
\(667\) 11.9302 36.7175i 0.461941 1.42171i
\(668\) −14.3268 44.0935i −0.554322 1.70603i
\(669\) 0.310020 0.225242i 0.0119861 0.00870838i
\(670\) 0 0
\(671\) 27.4654 13.7083i 1.06029 0.529202i
\(672\) 0.266959 0.0102982
\(673\) −13.3679 + 9.71235i −0.515295 + 0.374384i −0.814828 0.579702i \(-0.803169\pi\)
0.299534 + 0.954086i \(0.403169\pi\)
\(674\) −20.1863 62.1271i −0.777547 2.39305i
\(675\) 0 0
\(676\) 13.4725 + 9.78833i 0.518172 + 0.376474i
\(677\) −23.0500 16.7468i −0.885882 0.643631i 0.0489193 0.998803i \(-0.484422\pi\)
−0.934801 + 0.355172i \(0.884422\pi\)
\(678\) −0.145938 + 0.449152i −0.00560472 + 0.0172496i
\(679\) −2.08574 6.41924i −0.0800433 0.246348i
\(680\) 0 0
\(681\) −0.240950 −0.00923321
\(682\) −3.98479 4.05151i −0.152585 0.155140i
\(683\) 3.48712 0.133431 0.0667156 0.997772i \(-0.478748\pi\)
0.0667156 + 0.997772i \(0.478748\pi\)
\(684\) 25.9738 18.8710i 0.993132 0.721553i
\(685\) 0 0
\(686\) 10.2605 31.5787i 0.391750 1.20568i
\(687\) −0.202211 0.146915i −0.00771485 0.00560517i
\(688\) −0.0651839 0.0473589i −0.00248511 0.00180554i
\(689\) 7.60780 23.4144i 0.289834 0.892017i
\(690\) 0 0
\(691\) 29.1311 21.1650i 1.10820 0.805153i 0.125819 0.992053i \(-0.459844\pi\)
0.982379 + 0.186900i \(0.0598442\pi\)
\(692\) −62.0870 −2.36019
\(693\) −11.1782 1.86572i −0.424626 0.0708730i
\(694\) −18.5169 −0.702893
\(695\) 0 0
\(696\) −0.264070 0.812725i −0.0100096 0.0308063i
\(697\) −15.9340 + 49.0397i −0.603542 + 1.85751i
\(698\) 55.6842 + 40.4569i 2.10768 + 1.53132i
\(699\) −0.00140436 0.00102033i −5.31179e−5 3.85924e-5i
\(700\) 0 0
\(701\) 15.6182 + 48.0679i 0.589891 + 1.81550i 0.578671 + 0.815561i \(0.303571\pi\)
0.0112198 + 0.999937i \(0.496429\pi\)
\(702\) −1.32626 + 0.963584i −0.0500564 + 0.0363681i
\(703\) 15.8059 0.596131
\(704\) 6.34253 + 42.3162i 0.239043 + 1.59485i
\(705\) 0 0
\(706\) 5.89932 4.28611i 0.222024 0.161310i
\(707\) 3.28978 + 10.1249i 0.123725 + 0.380786i
\(708\) 0.454437 1.39861i 0.0170788 0.0525631i
\(709\) −20.8602 15.1559i −0.783423 0.569190i 0.122582 0.992458i \(-0.460883\pi\)
−0.906004 + 0.423269i \(0.860883\pi\)
\(710\) 0 0
\(711\) 9.29174 28.5970i 0.348468 1.07247i
\(712\) −8.05480 24.7901i −0.301866 0.929049i
\(713\) −3.35068 + 2.43441i −0.125484 + 0.0911694i
\(714\) 0.857788 0.0321019
\(715\) 0 0
\(716\) −34.6979 −1.29672
\(717\) 0.258474 0.187793i 0.00965290 0.00701324i
\(718\) −2.07796 6.39532i −0.0775490 0.238671i
\(719\) −8.30636 + 25.5643i −0.309775 + 0.953389i 0.668077 + 0.744092i \(0.267118\pi\)
−0.977852 + 0.209297i \(0.932882\pi\)
\(720\) 0 0
\(721\) −9.59819 6.97349i −0.357455 0.259706i
\(722\) −5.82798 + 17.9367i −0.216895 + 0.667534i
\(723\) −0.00941155 0.0289658i −0.000350019 0.00107725i
\(724\) 40.5409 29.4547i 1.50669 1.09468i
\(725\) 0 0
\(726\) −0.0177673 + 1.06985i −0.000659408 + 0.0397058i
\(727\) 6.40984 0.237728 0.118864 0.992911i \(-0.462075\pi\)
0.118864 + 0.992911i \(0.462075\pi\)
\(728\) −7.49762 + 5.44734i −0.277880 + 0.201892i
\(729\) −8.31347 25.5862i −0.307906 0.947638i
\(730\) 0 0
\(731\) 4.37313 + 3.17726i 0.161746 + 0.117515i
\(732\) −1.03566 0.752454i −0.0382793 0.0278115i
\(733\) 3.18009 9.78732i 0.117459 0.361503i −0.874993 0.484136i \(-0.839134\pi\)
0.992452 + 0.122633i \(0.0391339\pi\)
\(734\) 12.9703 + 39.9184i 0.478742 + 1.47342i
\(735\) 0 0
\(736\) 30.6277 1.12895
\(737\) −10.2473 + 19.7053i −0.377464 + 0.725853i
\(738\) −45.8308 −1.68706
\(739\) 19.2572 13.9912i 0.708387 0.514673i −0.174266 0.984699i \(-0.555755\pi\)
0.882653 + 0.470026i \(0.155755\pi\)
\(740\) 0 0
\(741\) −0.120876 + 0.372018i −0.00444049 + 0.0136664i
\(742\) −18.5319 13.4642i −0.680327 0.494286i
\(743\) −9.61970 6.98912i −0.352913 0.256406i 0.397177 0.917742i \(-0.369990\pi\)
−0.750090 + 0.661336i \(0.769990\pi\)
\(744\) −0.0283288 + 0.0871870i −0.00103858 + 0.00319643i
\(745\) 0 0
\(746\) −15.5486 + 11.2968i −0.569276 + 0.413603i
\(747\) 14.6820 0.537187
\(748\) 12.4074 + 82.7801i 0.453660 + 3.02674i
\(749\) 5.04335 0.184280
\(750\) 0 0
\(751\) 13.4213 + 41.3065i 0.489750 + 1.50730i 0.824982 + 0.565159i \(0.191185\pi\)
−0.335232 + 0.942136i \(0.608815\pi\)
\(752\) 0.308240 0.948666i 0.0112404 0.0345943i
\(753\) 0.221425 + 0.160875i 0.00806917 + 0.00586260i
\(754\) −36.3052 26.3773i −1.32216 0.960605i
\(755\) 0 0
\(756\) 0.292184 + 0.899251i 0.0106266 + 0.0327055i
\(757\) −9.71204 + 7.05621i −0.352990 + 0.256462i −0.750122 0.661299i \(-0.770005\pi\)
0.397132 + 0.917761i \(0.370005\pi\)
\(758\) −32.8928 −1.19472
\(759\) 0.769192 + 0.128384i 0.0279199 + 0.00466003i
\(760\) 0 0
\(761\) −21.8907 + 15.9045i −0.793536 + 0.576537i −0.909011 0.416773i \(-0.863161\pi\)
0.115475 + 0.993310i \(0.463161\pi\)
\(762\) 0.470537 + 1.44816i 0.0170457 + 0.0524614i
\(763\) 1.13586 3.49582i 0.0411209 0.126557i
\(764\) −39.3528 28.5915i −1.42373 1.03440i
\(765\) 0 0
\(766\) −19.2784 + 59.3327i −0.696555 + 2.14378i
\(767\) −9.23130 28.4110i −0.333323 1.02586i
\(768\) 0.574269 0.417231i 0.0207221 0.0150555i
\(769\) 22.0504 0.795158 0.397579 0.917568i \(-0.369850\pi\)
0.397579 + 0.917568i \(0.369850\pi\)
\(770\) 0 0
\(771\) 0.994003 0.0357981
\(772\) 17.6397 12.8160i 0.634867 0.461258i
\(773\) −12.3303 37.9487i −0.443489 1.36492i −0.884132 0.467237i \(-0.845250\pi\)
0.440643 0.897682i \(-0.354750\pi\)
\(774\) −1.48468 + 4.56937i −0.0533657 + 0.164243i
\(775\) 0 0
\(776\) −13.8668 10.0748i −0.497789 0.361665i
\(777\) −0.0719016 + 0.221290i −0.00257946 + 0.00793875i
\(778\) 14.2140 + 43.7462i 0.509597 + 1.56838i
\(779\) −17.6995 + 12.8595i −0.634152 + 0.460738i
\(780\) 0 0
\(781\) 22.1388 11.0497i 0.792190 0.395390i
\(782\) 98.4126 3.51923
\(783\) −1.43282 + 1.04101i −0.0512049 + 0.0372026i
\(784\) −0.203189 0.625352i −0.00725675 0.0223340i
\(785\) 0 0
\(786\) 1.72267 + 1.25160i 0.0614458 + 0.0446430i
\(787\) 19.0068 + 13.8093i 0.677521 + 0.492247i 0.872534 0.488553i \(-0.162475\pi\)
−0.195014 + 0.980801i \(0.562475\pi\)
\(788\) −9.03284 + 27.8002i −0.321782 + 0.990342i
\(789\) −0.263689 0.811551i −0.00938757 0.0288920i
\(790\) 0 0
\(791\) 5.53324 0.196739
\(792\) −25.7501 + 12.8522i −0.914992 + 0.456682i
\(793\) −26.0046 −0.923451
\(794\) 54.6229 39.6859i 1.93850 1.40840i
\(795\) 0 0
\(796\) 13.8922 42.7559i 0.492398 1.51544i
\(797\) −4.79548 3.48412i −0.169865 0.123414i 0.499605 0.866253i \(-0.333479\pi\)
−0.669470 + 0.742839i \(0.733479\pi\)
\(798\) 0.294443 + 0.213925i 0.0104232 + 0.00757286i
\(799\) −20.6795 + 63.6450i −0.731589 + 2.25160i
\(800\) 0 0
\(801\) −21.8458 + 15.8719i −0.771883 + 0.560806i
\(802\) 44.0957 1.55707
\(803\) −3.55325 3.61275i −0.125392 0.127491i
\(804\) 0.926260 0.0326667
\(805\) 0 0
\(806\) 1.48766 + 4.57853i 0.0524004 + 0.161272i
\(807\) 0.00923612 0.0284259i 0.000325127 0.00100064i
\(808\) 21.8717 + 15.8907i 0.769445 + 0.559034i
\(809\) 6.82259 + 4.95690i 0.239869 + 0.174275i 0.701225 0.712940i \(-0.252637\pi\)
−0.461356 + 0.887215i \(0.652637\pi\)
\(810\) 0 0
\(811\) 2.17579 + 6.69640i 0.0764024 + 0.235143i 0.981963 0.189075i \(-0.0605491\pi\)
−0.905560 + 0.424218i \(0.860549\pi\)
\(812\) −20.9398 + 15.2137i −0.734844 + 0.533895i
\(813\) −0.866511 −0.0303899
\(814\) −36.1278 6.02998i −1.26628 0.211351i
\(815\) 0 0
\(816\) 0.0306160 0.0222438i 0.00107178 0.000778690i
\(817\) 0.708728 + 2.18124i 0.0247953 + 0.0763119i
\(818\) −9.06684 + 27.9049i −0.317015 + 0.975671i
\(819\) 7.76714 + 5.64316i 0.271406 + 0.197188i
\(820\) 0 0
\(821\) −12.7675 + 39.2942i −0.445588 + 1.37138i 0.436251 + 0.899825i \(0.356306\pi\)
−0.881838 + 0.471552i \(0.843694\pi\)
\(822\) −0.287935 0.886174i −0.0100429 0.0309089i
\(823\) 25.1250 18.2544i 0.875804 0.636309i −0.0563341 0.998412i \(-0.517941\pi\)
0.932138 + 0.362103i \(0.117941\pi\)
\(824\) −30.1282 −1.04956
\(825\) 0 0
\(826\) −27.7949 −0.967110
\(827\) 20.9918 15.2514i 0.729957 0.530345i −0.159593 0.987183i \(-0.551018\pi\)
0.889550 + 0.456838i \(0.151018\pi\)
\(828\) 16.7559 + 51.5693i 0.582308 + 1.79216i
\(829\) −0.0250171 + 0.0769948i −0.000868881 + 0.00267414i −0.951490 0.307680i \(-0.900448\pi\)
0.950621 + 0.310354i \(0.100448\pi\)
\(830\) 0 0
\(831\) 0.526339 + 0.382408i 0.0182585 + 0.0132656i
\(832\) 11.2015 34.4747i 0.388343 1.19520i
\(833\) 13.6318 + 41.9542i 0.472312 + 1.45363i
\(834\) −0.984059 + 0.714961i −0.0340752 + 0.0247571i
\(835\) 0 0
\(836\) −16.3857 + 31.5092i −0.566711 + 1.08977i
\(837\) 0.189995 0.00656720
\(838\) −7.83570 + 5.69297i −0.270680 + 0.196660i
\(839\) −4.54279 13.9813i −0.156835 0.482688i 0.841507 0.540245i \(-0.181669\pi\)
−0.998342 + 0.0575579i \(0.981669\pi\)
\(840\) 0 0
\(841\) −15.7608 11.4509i −0.543477 0.394859i
\(842\) −1.51841 1.10319i −0.0523278 0.0380184i
\(843\) 0.181258 0.557856i 0.00624287 0.0192136i
\(844\) 8.85439 + 27.2510i 0.304781 + 0.938019i
\(845\) 0 0
\(846\) −59.4805 −2.04498
\(847\) 11.9856 3.67547i 0.411829 0.126290i
\(848\) −1.01059 −0.0347036
\(849\) 0.583076 0.423630i 0.0200111 0.0145389i
\(850\) 0 0
\(851\) −8.24915 + 25.3883i −0.282777 + 0.870299i
\(852\) −0.834811 0.606526i −0.0286002 0.0207792i
\(853\) −35.6270 25.8845i −1.21985 0.886270i −0.223759 0.974645i \(-0.571833\pi\)
−0.996087 + 0.0883747i \(0.971833\pi\)
\(854\) −7.47684 + 23.0114i −0.255852 + 0.787432i
\(855\) 0 0
\(856\) 10.3614 7.52799i 0.354145 0.257301i
\(857\) 29.9206 1.02207 0.511035 0.859560i \(-0.329262\pi\)
0.511035 + 0.859560i \(0.329262\pi\)
\(858\) 0.418214 0.804213i 0.0142776 0.0274554i
\(859\) −52.2985 −1.78440 −0.892200 0.451640i \(-0.850839\pi\)
−0.892200 + 0.451640i \(0.850839\pi\)
\(860\) 0 0
\(861\) −0.0995232 0.306301i −0.00339174 0.0104387i
\(862\) −4.11808 + 12.6742i −0.140262 + 0.431683i
\(863\) 29.9594 + 21.7668i 1.01983 + 0.740949i 0.966248 0.257614i \(-0.0829363\pi\)
0.0535814 + 0.998563i \(0.482936\pi\)
\(864\) −1.13669 0.825851i −0.0386708 0.0280960i
\(865\) 0 0
\(866\) 11.0703 + 34.0710i 0.376185 + 1.15778i
\(867\) −1.47078 + 1.06858i −0.0499503 + 0.0362910i
\(868\) 2.77667 0.0942462
\(869\) 4.93040 + 32.8947i 0.167252 + 1.11588i
\(870\) 0 0
\(871\) 15.2223 11.0596i 0.515787 0.374741i
\(872\) −2.88447 8.87749i −0.0976805 0.300630i
\(873\) −5.48704 + 16.8874i −0.185708 + 0.571551i
\(874\) 33.7809 + 24.5433i 1.14266 + 0.830188i
\(875\) 0 0
\(876\) −0.0653032 + 0.200983i −0.00220639 + 0.00679058i
\(877\) −6.69350 20.6005i −0.226023 0.695629i −0.998186 0.0602037i \(-0.980825\pi\)
0.772163 0.635425i \(-0.219175\pi\)
\(878\) −40.1984 + 29.2058i −1.35663 + 0.985649i
\(879\) −0.0355976 −0.00120068
\(880\) 0 0
\(881\) −5.86710 −0.197668 −0.0988339 0.995104i \(-0.531511\pi\)
−0.0988339 + 0.995104i \(0.531511\pi\)
\(882\) −31.7207 + 23.0465i −1.06809 + 0.776015i
\(883\) 0.0940535 + 0.289467i 0.00316515 + 0.00974134i 0.952627 0.304142i \(-0.0983698\pi\)
−0.949461 + 0.313884i \(0.898370\pi\)
\(884\) 21.9127 67.4404i 0.737005 2.26827i
\(885\) 0 0
\(886\) −53.3071 38.7299i −1.79089 1.30115i
\(887\) −4.49937 + 13.8476i −0.151074 + 0.464959i −0.997742 0.0671633i \(-0.978605\pi\)
0.846668 + 0.532122i \(0.178605\pi\)
\(888\) 0.182591 + 0.561958i 0.00612736 + 0.0188581i
\(889\) 14.4332 10.4863i 0.484073 0.351699i
\(890\) 0 0
\(891\) 20.8933 + 21.2431i 0.699951 + 0.711672i
\(892\) −29.4748 −0.986889
\(893\) −22.9709 + 16.6894i −0.768693 + 0.558488i
\(894\) 0.249686 + 0.768455i 0.00835076 + 0.0257010i
\(895\) 0 0
\(896\) −17.0998 12.4237i −0.571265 0.415048i
\(897\) −0.534470 0.388315i −0.0178454 0.0129655i
\(898\) 12.4277 38.2484i 0.414717 1.27637i
\(899\) 1.60719 + 4.94641i 0.0536027 + 0.164972i
\(900\) 0 0
\(901\) 67.7992 2.25872
\(902\) 45.3620 22.6407i 1.51039 0.753852i
\(903\) −0.0337625 −0.00112355
\(904\) 11.3678 8.25922i 0.378089 0.274698i
\(905\) 0 0
\(906\) 0.388644 1.19612i 0.0129118 0.0397386i
\(907\) 0.277567 + 0.201664i 0.00921647 + 0.00669615i 0.592384 0.805656i \(-0.298187\pi\)
−0.583167 + 0.812352i \(0.698187\pi\)
\(908\) 14.9935 + 10.8934i 0.497577 + 0.361511i
\(909\) 8.65457 26.6360i 0.287054 0.883461i
\(910\) 0 0
\(911\) 23.8975 17.3625i 0.791759 0.575246i −0.116726 0.993164i \(-0.537240\pi\)
0.908485 + 0.417918i \(0.137240\pi\)
\(912\) 0.0160566 0.000531688
\(913\) −14.5318 + 7.25300i −0.480934 + 0.240039i
\(914\) −45.3234 −1.49916
\(915\) 0 0
\(916\) 5.94087 + 18.2841i 0.196292 + 0.604124i
\(917\) 7.70940 23.7271i 0.254587 0.783538i
\(918\) −3.65239 2.65361i −0.120547 0.0875823i
\(919\) −21.6574 15.7350i −0.714413 0.519051i 0.170182 0.985413i \(-0.445565\pi\)
−0.884594 + 0.466362i \(0.845565\pi\)
\(920\) 0 0
\(921\) −0.0840625 0.258718i −0.00276995 0.00852504i
\(922\) 24.0986 17.5087i 0.793645 0.576617i
\(923\) −20.9614 −0.689951
\(924\) −0.366606 0.372744i −0.0120604 0.0122624i
\(925\) 0 0
\(926\) 17.9344 13.0301i 0.589360 0.428195i
\(927\) 9.64479 + 29.6836i 0.316776 + 0.974938i
\(928\) 11.8852 36.5788i 0.390150 1.20076i
\(929\) 12.2548 + 8.90365i 0.402068 + 0.292119i 0.770383 0.637582i \(-0.220065\pi\)
−0.368315 + 0.929701i \(0.620065\pi\)
\(930\) 0 0
\(931\) −5.78382 + 17.8008i −0.189557 + 0.583396i
\(932\) 0.0412594 + 0.126984i 0.00135150 + 0.00415948i
\(933\) −1.04238 + 0.757336i −0.0341261 + 0.0247941i
\(934\) −22.2369 −0.727612
\(935\) 0 0
\(936\) 24.3806 0.796905
\(937\) −42.1876 + 30.6510i −1.37821 + 1.00133i −0.381162 + 0.924508i \(0.624476\pi\)
−0.997045 + 0.0768179i \(0.975524\pi\)
\(938\) −5.40990 16.6500i −0.176640 0.543641i
\(939\) 0.0308142 0.0948362i 0.00100558 0.00309486i
\(940\) 0 0
\(941\) 31.1630 + 22.6412i 1.01588 + 0.738082i 0.965435 0.260644i \(-0.0839350\pi\)
0.0504483 + 0.998727i \(0.483935\pi\)
\(942\) −0.231594 + 0.712772i −0.00754572 + 0.0232234i
\(943\) −11.4181 35.1414i −0.371825 1.14436i
\(944\) −0.992052 + 0.720768i −0.0322886 + 0.0234590i
\(945\) 0 0
\(946\) −0.787803 5.25608i −0.0256137 0.170890i
\(947\) −48.1131 −1.56347 −0.781733 0.623613i \(-0.785664\pi\)
−0.781733 + 0.623613i \(0.785664\pi\)
\(948\) 1.12223 0.815350i 0.0364484 0.0264813i
\(949\) 1.32655 + 4.08270i 0.0430616 + 0.132530i
\(950\) 0 0
\(951\) −0.0275686 0.0200297i −0.000893972 0.000649509i
\(952\) −20.6477 15.0014i −0.669195 0.486199i
\(953\) −12.1252 + 37.3175i −0.392773 + 1.20883i 0.537909 + 0.843003i \(0.319215\pi\)
−0.930682 + 0.365829i \(0.880785\pi\)
\(954\) 18.6219 + 57.3122i 0.602905 + 1.85555i
\(955\) 0 0
\(956\) −24.5742 −0.794786
\(957\) 0.451817 0.868830i 0.0146052 0.0280853i
\(958\) 11.9963 0.387584
\(959\) −8.83208 + 6.41688i −0.285203 + 0.207212i
\(960\) 0 0
\(961\) −9.40711 + 28.9521i −0.303455 + 0.933939i
\(962\) 25.1032 + 18.2386i 0.809360 + 0.588035i
\(963\) −10.7338 7.79860i −0.345893 0.251306i
\(964\) −0.723904 + 2.22795i −0.0233154 + 0.0717573i
\(965\) 0 0
\(966\) −0.497289 + 0.361301i −0.0160000 + 0.0116247i
\(967\) −38.7795 −1.24706 −0.623532 0.781798i \(-0.714303\pi\)
−0.623532 + 0.781798i \(0.714303\pi\)
\(968\) 19.1377 25.4414i 0.615109 0.817719i
\(969\) −1.07722 −0.0346054
\(970\) 0 0
\(971\) −13.2053 40.6418i −0.423779 1.30426i −0.904159 0.427196i \(-0.859501\pi\)
0.480380 0.877060i \(-0.340499\pi\)
\(972\) 1.15311 3.54891i 0.0369860 0.113831i
\(973\) 11.5296 + 8.37674i 0.369622 + 0.268546i
\(974\) 10.1197 + 7.35238i 0.324256 + 0.235586i
\(975\) 0 0
\(976\) 0.329860 + 1.01520i 0.0105586 + 0.0324959i
\(977\) −38.9099 + 28.2697i −1.24484 + 0.904427i −0.997911 0.0646067i \(-0.979421\pi\)
−0.246927 + 0.969034i \(0.579421\pi\)
\(978\) 2.10880 0.0674320
\(979\) 13.7815 26.5015i 0.440460 0.846991i
\(980\) 0 0
\(981\) −7.82310 + 5.68382i −0.249772 + 0.181470i
\(982\) 11.4825 + 35.3394i 0.366420 + 1.12773i
\(983\) 16.8685 51.9158i 0.538021 1.65586i −0.199009 0.979998i \(-0.563772\pi\)
0.737030 0.675861i \(-0.236228\pi\)
\(984\) −0.661668 0.480730i −0.0210932 0.0153251i
\(985\) 0 0
\(986\) 38.1893 117.535i 1.21620 3.74307i
\(987\) −0.129164 0.397525i −0.00411133 0.0126534i
\(988\) 24.3408 17.6846i 0.774383 0.562622i
\(989\) −3.87351 −0.123171
\(990\) 0 0
\(991\) 1.26477 0.0401766 0.0200883 0.999798i \(-0.493605\pi\)
0.0200883 + 0.999798i \(0.493605\pi\)
\(992\) −3.33802 + 2.42522i −0.105982 + 0.0770007i
\(993\) 0.387535 + 1.19271i 0.0122981 + 0.0378495i
\(994\) −6.02681 + 18.5486i −0.191159 + 0.588326i
\(995\) 0 0
\(996\) 0.547967 + 0.398121i 0.0173630 + 0.0126150i
\(997\) −1.74655 + 5.37532i −0.0553137 + 0.170238i −0.974897 0.222658i \(-0.928527\pi\)
0.919583 + 0.392896i \(0.128527\pi\)
\(998\) 8.33307 + 25.6465i 0.263779 + 0.811827i
\(999\) 0.990724 0.719803i 0.0313451 0.0227736i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.h.c.201.1 yes 16
5.2 odd 4 275.2.z.c.124.2 32
5.3 odd 4 275.2.z.c.124.7 32
5.4 even 2 275.2.h.e.201.4 yes 16
11.2 odd 10 3025.2.a.bm.1.1 8
11.4 even 5 inner 275.2.h.c.26.1 16
11.9 even 5 3025.2.a.bi.1.8 8
55.4 even 10 275.2.h.e.26.4 yes 16
55.9 even 10 3025.2.a.bn.1.1 8
55.24 odd 10 3025.2.a.bj.1.8 8
55.37 odd 20 275.2.z.c.224.7 32
55.48 odd 20 275.2.z.c.224.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.2.h.c.26.1 16 11.4 even 5 inner
275.2.h.c.201.1 yes 16 1.1 even 1 trivial
275.2.h.e.26.4 yes 16 55.4 even 10
275.2.h.e.201.4 yes 16 5.4 even 2
275.2.z.c.124.2 32 5.2 odd 4
275.2.z.c.124.7 32 5.3 odd 4
275.2.z.c.224.2 32 55.48 odd 20
275.2.z.c.224.7 32 55.37 odd 20
3025.2.a.bi.1.8 8 11.9 even 5
3025.2.a.bj.1.8 8 55.24 odd 10
3025.2.a.bm.1.1 8 11.2 odd 10
3025.2.a.bn.1.1 8 55.9 even 10