Properties

Label 275.2.e.a.43.2
Level $275$
Weight $2$
Character 275.43
Analytic conductor $2.196$
Analytic rank $0$
Dimension $4$
CM discriminant -11
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,2,Mod(32,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.e (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 43.2
Root \(-1.65831 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 275.43
Dual form 275.2.e.a.32.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.15831 + 2.15831i) q^{3} -2.00000i q^{4} +6.31662i q^{9} +3.31662 q^{11} +(4.31662 - 4.31662i) q^{12} -4.00000 q^{16} +(-2.84169 - 2.84169i) q^{23} +(-7.15831 + 7.15831i) q^{27} -9.94987 q^{31} +(7.15831 + 7.15831i) q^{33} +12.6332 q^{36} +(-1.47494 + 1.47494i) q^{37} -6.63325i q^{44} +(9.31662 - 9.31662i) q^{47} +(-8.63325 - 8.63325i) q^{48} -7.00000i q^{49} +(-3.63325 - 3.63325i) q^{53} +3.31662i q^{59} +8.00000i q^{64} +(-11.4749 + 11.4749i) q^{67} -12.2665i q^{69} -3.00000 q^{71} -11.9499 q^{81} -9.00000i q^{89} +(-5.68338 + 5.68338i) q^{92} +(-21.4749 - 21.4749i) q^{93} +(3.52506 - 3.52506i) q^{97} +20.9499i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} + 4 q^{12} - 16 q^{16} - 18 q^{23} - 22 q^{27} + 22 q^{33} + 24 q^{36} + 14 q^{37} + 24 q^{47} - 8 q^{48} + 12 q^{53} - 26 q^{67} - 12 q^{71} - 8 q^{81} - 36 q^{92} - 66 q^{93} + 34 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(3\) 2.15831 + 2.15831i 1.24610 + 1.24610i 0.957427 + 0.288675i \(0.0932147\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) 2.00000i 1.00000i
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(8\) 0 0
\(9\) 6.31662i 2.10554i
\(10\) 0 0
\(11\) 3.31662 1.00000
\(12\) 4.31662 4.31662i 1.24610 1.24610i
\(13\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.84169 2.84169i −0.592533 0.592533i 0.345782 0.938315i \(-0.387614\pi\)
−0.938315 + 0.345782i \(0.887614\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −7.15831 + 7.15831i −1.37762 + 1.37762i
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −9.94987 −1.78705 −0.893525 0.449013i \(-0.851776\pi\)
−0.893525 + 0.449013i \(0.851776\pi\)
\(32\) 0 0
\(33\) 7.15831 + 7.15831i 1.24610 + 1.24610i
\(34\) 0 0
\(35\) 0 0
\(36\) 12.6332 2.10554
\(37\) −1.47494 + 1.47494i −0.242478 + 0.242478i −0.817875 0.575396i \(-0.804848\pi\)
0.575396 + 0.817875i \(0.304848\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(44\) 6.63325i 1.00000i
\(45\) 0 0
\(46\) 0 0
\(47\) 9.31662 9.31662i 1.35897 1.35897i 0.483779 0.875190i \(-0.339264\pi\)
0.875190 0.483779i \(-0.160736\pi\)
\(48\) −8.63325 8.63325i −1.24610 1.24610i
\(49\) 7.00000i 1.00000i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.63325 3.63325i −0.499065 0.499065i 0.412082 0.911147i \(-0.364802\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.31662i 0.431788i 0.976417 + 0.215894i \(0.0692665\pi\)
−0.976417 + 0.215894i \(0.930733\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) 0 0
\(66\) 0 0
\(67\) −11.4749 + 11.4749i −1.40189 + 1.40189i −0.607785 + 0.794101i \(0.707942\pi\)
−0.794101 + 0.607785i \(0.792058\pi\)
\(68\) 0 0
\(69\) 12.2665i 1.47671i
\(70\) 0 0
\(71\) −3.00000 −0.356034 −0.178017 0.984027i \(-0.556968\pi\)
−0.178017 + 0.984027i \(0.556968\pi\)
\(72\) 0 0
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) −11.9499 −1.32776
\(82\) 0 0
\(83\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 9.00000i 0.953998i −0.878904 0.476999i \(-0.841725\pi\)
0.878904 0.476999i \(-0.158275\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −5.68338 + 5.68338i −0.592533 + 0.592533i
\(93\) −21.4749 21.4749i −2.22685 2.22685i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 3.52506 3.52506i 0.357916 0.357916i −0.505128 0.863044i \(-0.668555\pi\)
0.863044 + 0.505128i \(0.168555\pi\)
\(98\) 0 0
\(99\) 20.9499i 2.10554i
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 7.94987 + 7.94987i 0.783324 + 0.783324i 0.980390 0.197066i \(-0.0631413\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(108\) 14.3166 + 14.3166i 1.37762 + 1.37762i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) −6.36675 −0.604305
\(112\) 0 0
\(113\) 12.1583 + 12.1583i 1.14376 + 1.14376i 0.987757 + 0.156001i \(0.0498603\pi\)
0.156001 + 0.987757i \(0.450140\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 19.8997i 1.78705i
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 14.3166 14.3166i 1.24610 1.24610i
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.1082 10.1082i 0.863601 0.863601i −0.128154 0.991754i \(-0.540905\pi\)
0.991754 + 0.128154i \(0.0409051\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 40.2164 3.38683
\(142\) 0 0
\(143\) 0 0
\(144\) 25.2665i 2.10554i
\(145\) 0 0
\(146\) 0 0
\(147\) 15.1082 15.1082i 1.24610 1.24610i
\(148\) 2.94987 + 2.94987i 0.242478 + 0.242478i
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −16.4749 + 16.4749i −1.31484 + 1.31484i −0.397043 + 0.917800i \(0.629964\pi\)
−0.917800 + 0.397043i \(0.870036\pi\)
\(158\) 0 0
\(159\) 15.6834i 1.24377i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 17.9499 + 17.9499i 1.40594 + 1.40594i 0.779334 + 0.626608i \(0.215557\pi\)
0.626608 + 0.779334i \(0.284443\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(168\) 0 0
\(169\) 13.0000i 1.00000i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −13.2665 −1.00000
\(177\) −7.15831 + 7.15831i −0.538052 + 0.538052i
\(178\) 0 0
\(179\) 21.0000i 1.56961i 0.619740 + 0.784807i \(0.287238\pi\)
−0.619740 + 0.784807i \(0.712762\pi\)
\(180\) 0 0
\(181\) −9.94987 −0.739568 −0.369784 0.929118i \(-0.620568\pi\)
−0.369784 + 0.929118i \(0.620568\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −18.6332 18.6332i −1.35897 1.35897i
\(189\) 0 0
\(190\) 0 0
\(191\) 23.2164 1.67988 0.839939 0.542681i \(-0.182591\pi\)
0.839939 + 0.542681i \(0.182591\pi\)
\(192\) −17.2665 + 17.2665i −1.24610 + 1.24610i
\(193\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −14.0000 −1.00000
\(197\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(198\) 0 0
\(199\) 19.8997i 1.41066i 0.708881 + 0.705328i \(0.249200\pi\)
−0.708881 + 0.705328i \(0.750800\pi\)
\(200\) 0 0
\(201\) −49.5330 −3.49379
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 17.9499 17.9499i 1.24760 1.24760i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) −7.26650 + 7.26650i −0.499065 + 0.499065i
\(213\) −6.47494 6.47494i −0.443655 0.443655i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −14.4248 14.4248i −0.965957 0.965957i 0.0334825 0.999439i \(-0.489340\pi\)
−0.999439 + 0.0334825i \(0.989340\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(228\) 0 0
\(229\) 29.8496i 1.97252i −0.165205 0.986259i \(-0.552828\pi\)
0.165205 0.986259i \(-0.447172\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 6.63325 0.431788
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) −4.31662 4.31662i −0.276912 0.276912i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 27.0000 1.70422 0.852112 0.523359i \(-0.175321\pi\)
0.852112 + 0.523359i \(0.175321\pi\)
\(252\) 0 0
\(253\) −9.42481 9.42481i −0.592533 0.592533i
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) −22.2665 + 22.2665i −1.38895 + 1.38895i −0.561405 + 0.827541i \(0.689739\pi\)
−0.827541 + 0.561405i \(0.810261\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 19.4248 19.4248i 1.18878 1.18878i
\(268\) 22.9499 + 22.9499i 1.40189 + 1.40189i
\(269\) 13.2665i 0.808873i −0.914566 0.404436i \(-0.867468\pi\)
0.914566 0.404436i \(-0.132532\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) −24.5330 −1.47671
\(277\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(278\) 0 0
\(279\) 62.8496i 3.76271i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(284\) 6.00000i 0.356034i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 17.0000i 1.00000i
\(290\) 0 0
\(291\) 15.2164 0.892000
\(292\) 0 0
\(293\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −23.7414 + 23.7414i −1.37762 + 1.37762i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) 0 0
\(309\) 34.3166i 1.95220i
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 0 0
\(313\) −24.4248 24.4248i −1.38057 1.38057i −0.843600 0.536972i \(-0.819568\pi\)
−0.536972 0.843600i \(-0.680432\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 25.1082 25.1082i 1.41022 1.41022i 0.651981 0.758236i \(-0.273938\pi\)
0.758236 0.651981i \(-0.226062\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 23.8997i 1.32776i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −9.94987 −0.546895 −0.273447 0.961887i \(-0.588164\pi\)
−0.273447 + 0.961887i \(0.588164\pi\)
\(332\) 0 0
\(333\) −9.31662 9.31662i −0.510548 0.510548i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(338\) 0 0
\(339\) 52.4829i 2.85048i
\(340\) 0 0
\(341\) −33.0000 −1.78705
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 13.7414 + 13.7414i 0.731383 + 0.731383i 0.970894 0.239511i \(-0.0769871\pi\)
−0.239511 + 0.970894i \(0.576987\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −18.0000 −0.953998
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 23.7414 + 23.7414i 1.24610 + 1.24610i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 13.5251 13.5251i 0.706003 0.706003i −0.259690 0.965692i \(-0.583620\pi\)
0.965692 + 0.259690i \(0.0836203\pi\)
\(368\) 11.3668 + 11.3668i 0.592533 + 0.592533i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) −42.9499 + 42.9499i −2.22685 + 2.22685i
\(373\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 29.8496i 1.53327i −0.642082 0.766636i \(-0.721929\pi\)
0.642082 0.766636i \(-0.278071\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −17.8417 17.8417i −0.911668 0.911668i 0.0847358 0.996403i \(-0.472995\pi\)
−0.996403 + 0.0847358i \(0.972995\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) −7.05013 7.05013i −0.357916 0.357916i
\(389\) 36.4829i 1.84976i 0.380265 + 0.924878i \(0.375833\pi\)
−0.380265 + 0.924878i \(0.624167\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 41.8997 2.10554
\(397\) 20.8997 20.8997i 1.04893 1.04893i 0.0501886 0.998740i \(-0.484018\pi\)
0.998740 0.0501886i \(-0.0159822\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −26.5330 −1.32499 −0.662497 0.749064i \(-0.730503\pi\)
−0.662497 + 0.749064i \(0.730503\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.89181 + 4.89181i −0.242478 + 0.242478i
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 43.6332 2.15227
\(412\) 15.8997 15.8997i 0.783324 0.783324i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 24.0000i 1.17248i −0.810139 0.586238i \(-0.800608\pi\)
0.810139 0.586238i \(-0.199392\pi\)
\(420\) 0 0
\(421\) 39.7995 1.93971 0.969854 0.243685i \(-0.0783563\pi\)
0.969854 + 0.243685i \(0.0783563\pi\)
\(422\) 0 0
\(423\) 58.8496 + 58.8496i 2.86137 + 2.86137i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 28.6332 28.6332i 1.37762 1.37762i
\(433\) −29.4248 29.4248i −1.41407 1.41407i −0.717241 0.696826i \(-0.754595\pi\)
−0.696826 0.717241i \(-0.745405\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 44.2164 2.10554
\(442\) 0 0
\(443\) 28.7414 + 28.7414i 1.36555 + 1.36555i 0.866677 + 0.498870i \(0.166252\pi\)
0.498870 + 0.866677i \(0.333748\pi\)
\(444\) 12.7335i 0.604305i
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 39.0000i 1.84052i −0.391303 0.920262i \(-0.627976\pi\)
0.391303 0.920262i \(-0.372024\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 24.3166 24.3166i 1.14376 1.14376i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0.575188 + 0.575188i 0.0267313 + 0.0267313i 0.720346 0.693615i \(-0.243983\pi\)
−0.693615 + 0.720346i \(0.743983\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −23.0581 + 23.0581i −1.06700 + 1.06700i −0.0694117 + 0.997588i \(0.522112\pi\)
−0.997588 + 0.0694117i \(0.977888\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −71.1161 −3.27686
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 22.9499 22.9499i 1.05080 1.05080i
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 22.0000i 1.00000i
\(485\) 0 0
\(486\) 0 0
\(487\) −26.4749 + 26.4749i −1.19969 + 1.19969i −0.225436 + 0.974258i \(0.572381\pi\)
−0.974258 + 0.225436i \(0.927619\pi\)
\(488\) 0 0
\(489\) 77.4829i 3.50390i
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 39.7995 1.78705
\(497\) 0 0
\(498\) 0 0
\(499\) 19.8997i 0.890835i 0.895323 + 0.445418i \(0.146945\pi\)
−0.895323 + 0.445418i \(0.853055\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −28.0581 + 28.0581i −1.24610 + 1.24610i
\(508\) 0 0
\(509\) 3.31662i 0.147007i 0.997295 + 0.0735034i \(0.0234180\pi\)
−0.997295 + 0.0735034i \(0.976582\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 30.8997 30.8997i 1.35897 1.35897i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −43.1161 −1.88895 −0.944476 0.328581i \(-0.893430\pi\)
−0.944476 + 0.328581i \(0.893430\pi\)
\(522\) 0 0
\(523\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −28.6332 28.6332i −1.24610 1.24610i
\(529\) 6.84962i 0.297810i
\(530\) 0 0
\(531\) −20.9499 −0.909147
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −45.3246 + 45.3246i −1.95590 + 1.95590i
\(538\) 0 0
\(539\) 23.2164i 1.00000i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) −21.4749 21.4749i −0.921578 0.921578i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(548\) −20.2164 20.2164i −0.863601 0.863601i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(564\) 80.4327i 3.38683i
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 50.1082 + 50.1082i 2.09330 + 2.09330i
\(574\) 0 0
\(575\) 0 0
\(576\) −50.5330 −2.10554
\(577\) 18.5251 18.5251i 0.771208 0.771208i −0.207109 0.978318i \(-0.566406\pi\)
0.978318 + 0.207109i \(0.0664056\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −12.0501 12.0501i −0.499065 0.499065i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −20.6834 + 20.6834i −0.853694 + 0.853694i −0.990586 0.136892i \(-0.956289\pi\)
0.136892 + 0.990586i \(0.456289\pi\)
\(588\) −30.2164 30.2164i −1.24610 1.24610i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 5.89975 5.89975i 0.242478 0.242478i
\(593\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −42.9499 + 42.9499i −1.75782 + 1.75782i
\(598\) 0 0
\(599\) 36.0000i 1.47092i 0.677568 + 0.735460i \(0.263034\pi\)
−0.677568 + 0.735460i \(0.736966\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) −72.4829 72.4829i −2.95173 2.95173i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 7.73350 7.73350i 0.311339 0.311339i −0.534089 0.845428i \(-0.679345\pi\)
0.845428 + 0.534089i \(0.179345\pi\)
\(618\) 0 0
\(619\) 1.00000i 0.0401934i 0.999798 + 0.0200967i \(0.00639741\pi\)
−0.999798 + 0.0200967i \(0.993603\pi\)
\(620\) 0 0
\(621\) 40.6834 1.63257
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 32.9499 + 32.9499i 1.31484 + 1.31484i
\(629\) 0 0
\(630\) 0 0
\(631\) 7.00000 0.278666 0.139333 0.990246i \(-0.455504\pi\)
0.139333 + 0.990246i \(0.455504\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) −31.3668 −1.24377
\(637\) 0 0
\(638\) 0 0
\(639\) 18.9499i 0.749645i
\(640\) 0 0
\(641\) 23.2164 0.916992 0.458496 0.888697i \(-0.348388\pi\)
0.458496 + 0.888697i \(0.348388\pi\)
\(642\) 0 0
\(643\) 5.57519 + 5.57519i 0.219864 + 0.219864i 0.808441 0.588577i \(-0.200312\pi\)
−0.588577 + 0.808441i \(0.700312\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −8.05806 + 8.05806i −0.316795 + 0.316795i −0.847535 0.530740i \(-0.821914\pi\)
0.530740 + 0.847535i \(0.321914\pi\)
\(648\) 0 0
\(649\) 11.0000i 0.431788i
\(650\) 0 0
\(651\) 0 0
\(652\) 35.8997 35.8997i 1.40594 1.40594i
\(653\) 27.1583 + 27.1583i 1.06279 + 1.06279i 0.997892 + 0.0648948i \(0.0206712\pi\)
0.0648948 + 0.997892i \(0.479329\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −13.0000 −0.505641 −0.252821 0.967513i \(-0.581358\pi\)
−0.252821 + 0.967513i \(0.581358\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 62.2665i 2.40736i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 26.0000 1.00000
\(677\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −35.2164 35.2164i −1.34752 1.34752i −0.888350 0.459167i \(-0.848148\pi\)
−0.459167 0.888350i \(-0.651852\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 64.4248 64.4248i 2.45796 2.45796i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 17.0000 0.646710 0.323355 0.946278i \(-0.395189\pi\)
0.323355 + 0.946278i \(0.395189\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 26.5330i 1.00000i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 14.3166 + 14.3166i 0.538052 + 0.538052i
\(709\) 19.0000i 0.713560i −0.934188 0.356780i \(-0.883875\pi\)
0.934188 0.356780i \(-0.116125\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 28.2744 + 28.2744i 1.05889 + 1.05889i
\(714\) 0 0
\(715\) 0 0
\(716\) 42.0000 1.56961
\(717\) 0 0
\(718\) 0 0
\(719\) 51.0000i 1.90198i 0.309223 + 0.950990i \(0.399931\pi\)
−0.309223 + 0.950990i \(0.600069\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 19.8997i 0.739568i
\(725\) 0 0
\(726\) 0 0
\(727\) −31.4749 + 31.4749i −1.16734 + 1.16734i −0.184510 + 0.982831i \(0.559070\pi\)
−0.982831 + 0.184510i \(0.940930\pi\)
\(728\) 0 0
\(729\) 17.2164i 0.637643i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −38.0581 + 38.0581i −1.40189 + 1.40189i
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −23.0000 −0.839282 −0.419641 0.907690i \(-0.637844\pi\)
−0.419641 + 0.907690i \(0.637844\pi\)
\(752\) −37.2665 + 37.2665i −1.35897 + 1.35897i
\(753\) 58.2744 + 58.2744i 2.12364 + 2.12364i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0.899749 0.899749i 0.0327019 0.0327019i −0.690567 0.723269i \(-0.742639\pi\)
0.723269 + 0.690567i \(0.242639\pi\)
\(758\) 0 0
\(759\) 40.6834i 1.47671i
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 46.4327i 1.67988i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 34.5330 + 34.5330i 1.24610 + 1.24610i
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) −96.1161 −3.46154
\(772\) 0 0
\(773\) −33.6332 33.6332i −1.20970 1.20970i −0.971123 0.238581i \(-0.923318\pi\)
−0.238581 0.971123i \(-0.576682\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −9.94987 −0.356034
\(782\) 0 0
\(783\) 0 0
\(784\) 28.0000i 1.00000i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 39.7995 1.41066
\(797\) 26.6913 26.6913i 0.945455 0.945455i −0.0531327 0.998587i \(-0.516921\pi\)
0.998587 + 0.0531327i \(0.0169206\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 56.8496 2.00868
\(802\) 0 0
\(803\) 0 0
\(804\) 99.0660i 3.49379i
\(805\) 0 0
\(806\) 0 0
\(807\) 28.6332 28.6332i 1.00794 1.00794i
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) −39.4248 39.4248i −1.37426 1.37426i −0.854016 0.520246i \(-0.825840\pi\)
−0.520246 0.854016i \(-0.674160\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(828\) −35.8997 35.8997i −1.24760 1.24760i
\(829\) 29.0000i 1.00721i −0.863934 0.503606i \(-0.832006\pi\)
0.863934 0.503606i \(-0.167994\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 71.2243 71.2243i 2.46187 2.46187i
\(838\) 0 0
\(839\) 36.4829i 1.25953i 0.776786 + 0.629764i \(0.216849\pi\)
−0.776786 + 0.629764i \(0.783151\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 14.5330 + 14.5330i 0.499065 + 0.499065i
\(849\) 0 0
\(850\) 0 0
\(851\) 8.38262 0.287353
\(852\) −12.9499 + 12.9499i −0.443655 + 0.443655i
\(853\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(858\) 0 0
\(859\) 31.0000i 1.05771i 0.848713 + 0.528853i \(0.177378\pi\)
−0.848713 + 0.528853i \(0.822622\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −5.21637 5.21637i −0.177567 0.177567i 0.612727 0.790295i \(-0.290072\pi\)
−0.790295 + 0.612727i \(0.790072\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 36.6913 36.6913i 1.24610 1.24610i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 22.2665 + 22.2665i 0.753607 + 0.753607i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 57.0000 1.92038 0.960189 0.279350i \(-0.0901189\pi\)
0.960189 + 0.279350i \(0.0901189\pi\)
\(882\) 0 0
\(883\) 37.9499 + 37.9499i 1.27711 + 1.27711i 0.942275 + 0.334840i \(0.108682\pi\)
0.334840 + 0.942275i \(0.391318\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −39.6332 −1.32776
\(892\) −28.8496 + 28.8496i −0.965957 + 0.965957i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −33.8496 + 33.8496i −1.12396 + 1.12396i −0.132818 + 0.991140i \(0.542403\pi\)
−0.991140 + 0.132818i \(0.957597\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 6.63325 0.219769 0.109885 0.993944i \(-0.464952\pi\)
0.109885 + 0.993944i \(0.464952\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −59.6992 −1.97252
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −50.2164 + 50.2164i −1.64932 + 1.64932i
\(928\) 0 0
\(929\) 53.0660i 1.74104i 0.492134 + 0.870519i \(0.336217\pi\)
−0.492134 + 0.870519i \(0.663783\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 25.8997 + 25.8997i 0.847920 + 0.847920i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(938\) 0 0
\(939\) 105.433i 3.44067i
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 13.2665i 0.431788i
\(945\) 0 0
\(946\) 0 0
\(947\) 40.1082 40.1082i 1.30334 1.30334i 0.377215 0.926126i \(-0.376882\pi\)
0.926126 0.377215i \(-0.123118\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 108.383 3.51455
\(952\) 0 0
\(953\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 68.0000 2.19355
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −43.1161 −1.38366 −0.691831 0.722059i \(-0.743196\pi\)
−0.691831 + 0.722059i \(0.743196\pi\)
\(972\) −8.63325 + 8.63325i −0.276912 + 0.276912i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 41.6913 41.6913i 1.33382 1.33382i 0.431903 0.901920i \(-0.357842\pi\)
0.901920 0.431903i \(-0.142158\pi\)
\(978\) 0 0
\(979\) 29.8496i 0.953998i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 43.7414 + 43.7414i 1.39514 + 1.39514i 0.813324 + 0.581811i \(0.197656\pi\)
0.581811 + 0.813324i \(0.302344\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −59.6992 −1.89641 −0.948205 0.317660i \(-0.897103\pi\)
−0.948205 + 0.317660i \(0.897103\pi\)
\(992\) 0 0
\(993\) −21.4749 21.4749i −0.681487 0.681487i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(998\) 0 0
\(999\) 21.1161i 0.668085i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.e.a.43.2 4
5.2 odd 4 inner 275.2.e.a.32.2 4
5.3 odd 4 55.2.e.b.32.1 4
5.4 even 2 55.2.e.b.43.1 yes 4
11.10 odd 2 CM 275.2.e.a.43.2 4
15.8 even 4 495.2.k.a.307.1 4
15.14 odd 2 495.2.k.a.208.1 4
20.3 even 4 880.2.bd.d.417.2 4
20.19 odd 2 880.2.bd.d.593.2 4
55.3 odd 20 605.2.m.a.112.2 16
55.4 even 10 605.2.m.a.578.2 16
55.8 even 20 605.2.m.a.112.2 16
55.9 even 10 605.2.m.a.403.1 16
55.13 even 20 605.2.m.a.282.2 16
55.14 even 10 605.2.m.a.233.2 16
55.18 even 20 605.2.m.a.457.2 16
55.19 odd 10 605.2.m.a.233.2 16
55.24 odd 10 605.2.m.a.403.1 16
55.28 even 20 605.2.m.a.602.1 16
55.29 odd 10 605.2.m.a.578.2 16
55.32 even 4 inner 275.2.e.a.32.2 4
55.38 odd 20 605.2.m.a.602.1 16
55.39 odd 10 605.2.m.a.118.2 16
55.43 even 4 55.2.e.b.32.1 4
55.48 odd 20 605.2.m.a.457.2 16
55.49 even 10 605.2.m.a.118.2 16
55.53 odd 20 605.2.m.a.282.2 16
55.54 odd 2 55.2.e.b.43.1 yes 4
165.98 odd 4 495.2.k.a.307.1 4
165.164 even 2 495.2.k.a.208.1 4
220.43 odd 4 880.2.bd.d.417.2 4
220.219 even 2 880.2.bd.d.593.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.e.b.32.1 4 5.3 odd 4
55.2.e.b.32.1 4 55.43 even 4
55.2.e.b.43.1 yes 4 5.4 even 2
55.2.e.b.43.1 yes 4 55.54 odd 2
275.2.e.a.32.2 4 5.2 odd 4 inner
275.2.e.a.32.2 4 55.32 even 4 inner
275.2.e.a.43.2 4 1.1 even 1 trivial
275.2.e.a.43.2 4 11.10 odd 2 CM
495.2.k.a.208.1 4 15.14 odd 2
495.2.k.a.208.1 4 165.164 even 2
495.2.k.a.307.1 4 15.8 even 4
495.2.k.a.307.1 4 165.98 odd 4
605.2.m.a.112.2 16 55.3 odd 20
605.2.m.a.112.2 16 55.8 even 20
605.2.m.a.118.2 16 55.39 odd 10
605.2.m.a.118.2 16 55.49 even 10
605.2.m.a.233.2 16 55.14 even 10
605.2.m.a.233.2 16 55.19 odd 10
605.2.m.a.282.2 16 55.13 even 20
605.2.m.a.282.2 16 55.53 odd 20
605.2.m.a.403.1 16 55.9 even 10
605.2.m.a.403.1 16 55.24 odd 10
605.2.m.a.457.2 16 55.18 even 20
605.2.m.a.457.2 16 55.48 odd 20
605.2.m.a.578.2 16 55.4 even 10
605.2.m.a.578.2 16 55.29 odd 10
605.2.m.a.602.1 16 55.28 even 20
605.2.m.a.602.1 16 55.38 odd 20
880.2.bd.d.417.2 4 20.3 even 4
880.2.bd.d.417.2 4 220.43 odd 4
880.2.bd.d.593.2 4 20.19 odd 2
880.2.bd.d.593.2 4 220.219 even 2