Properties

Label 275.2.bm.b.107.3
Level $275$
Weight $2$
Character 275.107
Analytic conductor $2.196$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,2,Mod(7,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([5, 14])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.7"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.bm (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 107.3
Character \(\chi\) \(=\) 275.107
Dual form 275.2.bm.b.18.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0763931 - 0.482327i) q^{2} +(1.01518 + 0.517260i) q^{3} +(1.67531 + 0.544341i) q^{4} +(0.327041 - 0.450133i) q^{6} +(1.32402 + 2.59854i) q^{7} +(0.833936 - 1.63669i) q^{8} +(-1.00032 - 1.37683i) q^{9} +(-3.15977 + 1.00788i) q^{11} +(1.41917 + 1.41917i) q^{12} +(2.89049 + 0.457808i) q^{13} +(1.35449 - 0.440102i) q^{14} +(2.12449 + 1.54353i) q^{16} +(-5.20325 + 0.824113i) q^{17} +(-0.740500 + 0.377304i) q^{18} +(-1.26677 - 3.89873i) q^{19} +3.32285i q^{21} +(0.244743 + 1.60104i) q^{22} +(2.12046 - 2.12046i) q^{23} +(1.69319 - 1.23017i) q^{24} +(0.441627 - 1.35919i) q^{26} +(-0.838037 - 5.29116i) q^{27} +(0.803656 + 5.07408i) q^{28} +(-0.817241 + 2.51521i) q^{29} +(5.45328 - 3.96204i) q^{31} +(3.50456 - 3.50456i) q^{32} +(-3.72907 - 0.611244i) q^{33} +2.57262i q^{34} +(-0.926389 - 2.85113i) q^{36} +(-1.03649 + 0.528116i) q^{37} +(-1.97724 + 0.313163i) q^{38} +(2.69755 + 1.95989i) q^{39} +(-3.38136 + 1.09867i) q^{41} +(1.60270 + 0.253843i) q^{42} +(-5.07292 - 5.07292i) q^{43} +(-5.84223 - 0.0314826i) q^{44} +(-0.860769 - 1.18475i) q^{46} +(-1.67145 + 3.28041i) q^{47} +(1.35833 + 2.66588i) q^{48} +(-0.884888 + 1.21794i) q^{49} +(-5.70851 - 1.85481i) q^{51} +(4.59325 + 2.34038i) q^{52} +(0.231169 - 1.45955i) q^{53} -2.61609 q^{54} +5.35716 q^{56} +(0.730652 - 4.61316i) q^{57} +(1.15072 + 0.586323i) q^{58} +(1.52672 + 0.496061i) q^{59} +(-4.07810 + 5.61302i) q^{61} +(-1.49441 - 2.93294i) q^{62} +(2.25330 - 4.42234i) q^{63} +(1.66445 + 2.29092i) q^{64} +(-0.579695 + 1.75194i) q^{66} +(-1.31471 - 1.31471i) q^{67} +(-9.16564 - 1.45170i) q^{68} +(3.24948 - 1.05582i) q^{69} +(-2.32441 - 1.68878i) q^{71} +(-3.08765 + 0.489036i) q^{72} +(-13.1886 + 6.71992i) q^{73} +(0.175544 + 0.540270i) q^{74} -7.22113i q^{76} +(-6.80264 - 6.87635i) q^{77} +(1.15138 - 1.15138i) q^{78} +(-12.3342 + 8.96129i) q^{79} +(0.308439 - 0.949277i) q^{81} +(0.271606 + 1.71486i) q^{82} +(1.04540 + 6.60041i) q^{83} +(-1.80876 + 5.56680i) q^{84} +(-2.83434 + 2.05927i) q^{86} +(-2.13066 + 2.13066i) q^{87} +(-0.985459 + 6.01208i) q^{88} -11.1726i q^{89} +(2.63744 + 8.11720i) q^{91} +(4.70669 - 2.39818i) q^{92} +(7.58545 - 1.20142i) q^{93} +(1.45454 + 1.05679i) q^{94} +(5.37052 - 1.74499i) q^{96} +(9.94447 + 1.57505i) q^{97} +(0.519848 + 0.519848i) q^{98} +(4.54848 + 3.34226i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 10 q^{2} + 4 q^{3} - 20 q^{6} + 10 q^{8} - 24 q^{11} - 12 q^{12} + 10 q^{13} - 8 q^{16} + 10 q^{18} - 10 q^{22} + 24 q^{23} + 20 q^{26} + 16 q^{27} - 50 q^{28} - 28 q^{31} - 66 q^{33} + 24 q^{36}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0763931 0.482327i 0.0540181 0.341057i −0.945847 0.324614i \(-0.894766\pi\)
0.999865 0.0164432i \(-0.00523428\pi\)
\(3\) 1.01518 + 0.517260i 0.586114 + 0.298640i 0.721789 0.692114i \(-0.243320\pi\)
−0.135675 + 0.990753i \(0.543320\pi\)
\(4\) 1.67531 + 0.544341i 0.837655 + 0.272170i
\(5\) 0 0
\(6\) 0.327041 0.450133i 0.133514 0.183766i
\(7\) 1.32402 + 2.59854i 0.500434 + 0.982157i 0.993678 + 0.112266i \(0.0358109\pi\)
−0.493244 + 0.869891i \(0.664189\pi\)
\(8\) 0.833936 1.63669i 0.294841 0.578658i
\(9\) −1.00032 1.37683i −0.333442 0.458943i
\(10\) 0 0
\(11\) −3.15977 + 1.00788i −0.952708 + 0.303888i
\(12\) 1.41917 + 1.41917i 0.409680 + 0.409680i
\(13\) 2.89049 + 0.457808i 0.801677 + 0.126973i 0.543811 0.839208i \(-0.316981\pi\)
0.257866 + 0.966181i \(0.416981\pi\)
\(14\) 1.35449 0.440102i 0.362004 0.117622i
\(15\) 0 0
\(16\) 2.12449 + 1.54353i 0.531123 + 0.385884i
\(17\) −5.20325 + 0.824113i −1.26197 + 0.199877i −0.751336 0.659920i \(-0.770590\pi\)
−0.510636 + 0.859797i \(0.670590\pi\)
\(18\) −0.740500 + 0.377304i −0.174538 + 0.0889313i
\(19\) −1.26677 3.89873i −0.290618 0.894429i −0.984658 0.174494i \(-0.944171\pi\)
0.694041 0.719936i \(-0.255829\pi\)
\(20\) 0 0
\(21\) 3.32285i 0.725105i
\(22\) 0.244743 + 1.60104i 0.0521795 + 0.341343i
\(23\) 2.12046 2.12046i 0.442147 0.442147i −0.450586 0.892733i \(-0.648785\pi\)
0.892733 + 0.450586i \(0.148785\pi\)
\(24\) 1.69319 1.23017i 0.345621 0.251108i
\(25\) 0 0
\(26\) 0.441627 1.35919i 0.0866101 0.266558i
\(27\) −0.838037 5.29116i −0.161280 1.01828i
\(28\) 0.803656 + 5.07408i 0.151877 + 0.958912i
\(29\) −0.817241 + 2.51521i −0.151758 + 0.467063i −0.997818 0.0660248i \(-0.978968\pi\)
0.846060 + 0.533088i \(0.178968\pi\)
\(30\) 0 0
\(31\) 5.45328 3.96204i 0.979438 0.711603i 0.0218548 0.999761i \(-0.493043\pi\)
0.957583 + 0.288158i \(0.0930429\pi\)
\(32\) 3.50456 3.50456i 0.619524 0.619524i
\(33\) −3.72907 0.611244i −0.649148 0.106404i
\(34\) 2.57262i 0.441201i
\(35\) 0 0
\(36\) −0.926389 2.85113i −0.154398 0.475189i
\(37\) −1.03649 + 0.528116i −0.170397 + 0.0868218i −0.537109 0.843513i \(-0.680484\pi\)
0.366712 + 0.930335i \(0.380484\pi\)
\(38\) −1.97724 + 0.313163i −0.320750 + 0.0508018i
\(39\) 2.69755 + 1.95989i 0.431954 + 0.313833i
\(40\) 0 0
\(41\) −3.38136 + 1.09867i −0.528080 + 0.171584i −0.560909 0.827877i \(-0.689548\pi\)
0.0328289 + 0.999461i \(0.489548\pi\)
\(42\) 1.60270 + 0.253843i 0.247302 + 0.0391688i
\(43\) −5.07292 5.07292i −0.773613 0.773613i 0.205123 0.978736i \(-0.434241\pi\)
−0.978736 + 0.205123i \(0.934241\pi\)
\(44\) −5.84223 0.0314826i −0.880749 0.00474618i
\(45\) 0 0
\(46\) −0.860769 1.18475i −0.126913 0.174681i
\(47\) −1.67145 + 3.28041i −0.243806 + 0.478497i −0.980188 0.198070i \(-0.936533\pi\)
0.736382 + 0.676566i \(0.236533\pi\)
\(48\) 1.35833 + 2.66588i 0.196058 + 0.384786i
\(49\) −0.884888 + 1.21794i −0.126413 + 0.173992i
\(50\) 0 0
\(51\) −5.70851 1.85481i −0.799351 0.259725i
\(52\) 4.59325 + 2.34038i 0.636970 + 0.324552i
\(53\) 0.231169 1.45955i 0.0317536 0.200484i −0.966712 0.255869i \(-0.917639\pi\)
0.998465 + 0.0553847i \(0.0176385\pi\)
\(54\) −2.61609 −0.356005
\(55\) 0 0
\(56\) 5.35716 0.715881
\(57\) 0.730652 4.61316i 0.0967773 0.611028i
\(58\) 1.15072 + 0.586323i 0.151097 + 0.0769879i
\(59\) 1.52672 + 0.496061i 0.198762 + 0.0645817i 0.406706 0.913559i \(-0.366677\pi\)
−0.207944 + 0.978141i \(0.566677\pi\)
\(60\) 0 0
\(61\) −4.07810 + 5.61302i −0.522147 + 0.718674i −0.985908 0.167286i \(-0.946500\pi\)
0.463761 + 0.885960i \(0.346500\pi\)
\(62\) −1.49441 2.93294i −0.189790 0.372483i
\(63\) 2.25330 4.42234i 0.283889 0.557163i
\(64\) 1.66445 + 2.29092i 0.208056 + 0.286365i
\(65\) 0 0
\(66\) −0.579695 + 1.75194i −0.0713556 + 0.215649i
\(67\) −1.31471 1.31471i −0.160617 0.160617i 0.622223 0.782840i \(-0.286230\pi\)
−0.782840 + 0.622223i \(0.786230\pi\)
\(68\) −9.16564 1.45170i −1.11150 0.176044i
\(69\) 3.24948 1.05582i 0.391192 0.127106i
\(70\) 0 0
\(71\) −2.32441 1.68878i −0.275857 0.200422i 0.441251 0.897384i \(-0.354535\pi\)
−0.717108 + 0.696962i \(0.754535\pi\)
\(72\) −3.08765 + 0.489036i −0.363883 + 0.0576334i
\(73\) −13.1886 + 6.71992i −1.54361 + 0.786507i −0.998649 0.0519568i \(-0.983454\pi\)
−0.544957 + 0.838464i \(0.683454\pi\)
\(74\) 0.175544 + 0.540270i 0.0204066 + 0.0628051i
\(75\) 0 0
\(76\) 7.22113i 0.828321i
\(77\) −6.80264 6.87635i −0.775232 0.783633i
\(78\) 1.15138 1.15138i 0.130368 0.130368i
\(79\) −12.3342 + 8.96129i −1.38770 + 1.00822i −0.391589 + 0.920140i \(0.628074\pi\)
−0.996113 + 0.0880839i \(0.971926\pi\)
\(80\) 0 0
\(81\) 0.308439 0.949277i 0.0342710 0.105475i
\(82\) 0.271606 + 1.71486i 0.0299939 + 0.189374i
\(83\) 1.04540 + 6.60041i 0.114748 + 0.724489i 0.976236 + 0.216711i \(0.0695329\pi\)
−0.861488 + 0.507778i \(0.830467\pi\)
\(84\) −1.80876 + 5.56680i −0.197352 + 0.607388i
\(85\) 0 0
\(86\) −2.83434 + 2.05927i −0.305635 + 0.222057i
\(87\) −2.13066 + 2.13066i −0.228431 + 0.228431i
\(88\) −0.985459 + 6.01208i −0.105050 + 0.640890i
\(89\) 11.1726i 1.18429i −0.805830 0.592147i \(-0.798281\pi\)
0.805830 0.592147i \(-0.201719\pi\)
\(90\) 0 0
\(91\) 2.63744 + 8.11720i 0.276479 + 0.850914i
\(92\) 4.70669 2.39818i 0.490706 0.250027i
\(93\) 7.58545 1.20142i 0.786575 0.124581i
\(94\) 1.45454 + 1.05679i 0.150025 + 0.108999i
\(95\) 0 0
\(96\) 5.37052 1.74499i 0.548126 0.178097i
\(97\) 9.94447 + 1.57505i 1.00971 + 0.159922i 0.639308 0.768951i \(-0.279221\pi\)
0.370400 + 0.928873i \(0.379221\pi\)
\(98\) 0.519848 + 0.519848i 0.0525126 + 0.0525126i
\(99\) 4.54848 + 3.34226i 0.457140 + 0.335910i
\(100\) 0 0
\(101\) −1.12216 1.54452i −0.111659 0.153686i 0.749530 0.661971i \(-0.230280\pi\)
−0.861189 + 0.508285i \(0.830280\pi\)
\(102\) −1.33071 + 2.61167i −0.131760 + 0.258594i
\(103\) −2.80172 5.49869i −0.276062 0.541802i 0.710795 0.703399i \(-0.248335\pi\)
−0.986857 + 0.161597i \(0.948335\pi\)
\(104\) 3.15977 4.34905i 0.309841 0.426459i
\(105\) 0 0
\(106\) −0.686319 0.222999i −0.0666612 0.0216595i
\(107\) −0.388059 0.197726i −0.0375151 0.0191149i 0.435132 0.900367i \(-0.356702\pi\)
−0.472647 + 0.881252i \(0.656702\pi\)
\(108\) 1.47622 9.32051i 0.142050 0.896866i
\(109\) 9.46672 0.906748 0.453374 0.891320i \(-0.350220\pi\)
0.453374 + 0.891320i \(0.350220\pi\)
\(110\) 0 0
\(111\) −1.32539 −0.125801
\(112\) −1.19806 + 7.56426i −0.113206 + 0.714755i
\(113\) 18.0576 + 9.20080i 1.69871 + 0.865538i 0.986537 + 0.163539i \(0.0522910\pi\)
0.712178 + 0.701999i \(0.247709\pi\)
\(114\) −2.16923 0.704827i −0.203167 0.0660131i
\(115\) 0 0
\(116\) −2.73826 + 3.76890i −0.254241 + 0.349933i
\(117\) −2.26110 4.43766i −0.209039 0.410262i
\(118\) 0.355895 0.698483i 0.0327628 0.0643005i
\(119\) −9.03071 12.4297i −0.827844 1.13943i
\(120\) 0 0
\(121\) 8.96835 6.36935i 0.815305 0.579032i
\(122\) 2.39578 + 2.39578i 0.216903 + 0.216903i
\(123\) −4.00099 0.633694i −0.360757 0.0571383i
\(124\) 11.2926 3.66920i 1.01411 0.329504i
\(125\) 0 0
\(126\) −1.96088 1.42466i −0.174689 0.126919i
\(127\) 9.31359 1.47513i 0.826447 0.130896i 0.271138 0.962540i \(-0.412600\pi\)
0.555309 + 0.831644i \(0.312600\pi\)
\(128\) 10.0641 5.12793i 0.889551 0.453249i
\(129\) −2.52591 7.77394i −0.222394 0.684457i
\(130\) 0 0
\(131\) 7.51676i 0.656743i −0.944549 0.328371i \(-0.893500\pi\)
0.944549 0.328371i \(-0.106500\pi\)
\(132\) −5.91462 3.05391i −0.514802 0.265809i
\(133\) 8.45377 8.45377i 0.733035 0.733035i
\(134\) −0.734554 + 0.533685i −0.0634558 + 0.0461034i
\(135\) 0 0
\(136\) −2.99035 + 9.20336i −0.256421 + 0.789182i
\(137\) 2.40429 + 15.1801i 0.205413 + 1.29692i 0.847706 + 0.530466i \(0.177983\pi\)
−0.642294 + 0.766458i \(0.722017\pi\)
\(138\) −0.261013 1.64797i −0.0222189 0.140285i
\(139\) −1.28625 + 3.95867i −0.109098 + 0.335770i −0.990670 0.136279i \(-0.956486\pi\)
0.881572 + 0.472049i \(0.156486\pi\)
\(140\) 0 0
\(141\) −3.39364 + 2.46563i −0.285796 + 0.207643i
\(142\) −0.992116 + 0.992116i −0.0832565 + 0.0832565i
\(143\) −9.59470 + 1.46670i −0.802349 + 0.122651i
\(144\) 4.46910i 0.372425i
\(145\) 0 0
\(146\) 2.23368 + 6.87457i 0.184861 + 0.568943i
\(147\) −1.52831 + 0.778714i −0.126053 + 0.0642273i
\(148\) −2.02391 + 0.320556i −0.166364 + 0.0263495i
\(149\) 14.5440 + 10.5669i 1.19149 + 0.865672i 0.993421 0.114516i \(-0.0365316\pi\)
0.198073 + 0.980187i \(0.436532\pi\)
\(150\) 0 0
\(151\) 16.9214 5.49808i 1.37704 0.447427i 0.475345 0.879800i \(-0.342323\pi\)
0.901695 + 0.432372i \(0.142323\pi\)
\(152\) −7.43742 1.17797i −0.603254 0.0955461i
\(153\) 6.33960 + 6.33960i 0.512526 + 0.512526i
\(154\) −3.83633 + 2.75579i −0.309140 + 0.222068i
\(155\) 0 0
\(156\) 3.45239 + 4.75181i 0.276413 + 0.380449i
\(157\) −9.74483 + 19.1253i −0.777722 + 1.52636i 0.0709708 + 0.997478i \(0.477390\pi\)
−0.848693 + 0.528887i \(0.822610\pi\)
\(158\) 3.38003 + 6.63368i 0.268901 + 0.527748i
\(159\) 0.989642 1.36213i 0.0784837 0.108024i
\(160\) 0 0
\(161\) 8.31766 + 2.70257i 0.655524 + 0.212993i
\(162\) −0.434300 0.221287i −0.0341218 0.0173859i
\(163\) 1.63083 10.2967i 0.127737 0.806497i −0.837752 0.546051i \(-0.816130\pi\)
0.965488 0.260446i \(-0.0838696\pi\)
\(164\) −6.26288 −0.489049
\(165\) 0 0
\(166\) 3.26342 0.253290
\(167\) 1.76660 11.1538i 0.136703 0.863110i −0.820067 0.572267i \(-0.806064\pi\)
0.956771 0.290843i \(-0.0939359\pi\)
\(168\) 5.43848 + 2.77104i 0.419588 + 0.213791i
\(169\) −4.21842 1.37065i −0.324493 0.105434i
\(170\) 0 0
\(171\) −4.10070 + 5.64412i −0.313588 + 0.431617i
\(172\) −5.73731 11.2601i −0.437466 0.858575i
\(173\) 5.99367 11.7632i 0.455691 0.894343i −0.542823 0.839847i \(-0.682645\pi\)
0.998514 0.0544963i \(-0.0173553\pi\)
\(174\) 0.864909 + 1.19044i 0.0655686 + 0.0902474i
\(175\) 0 0
\(176\) −8.26862 2.73598i −0.623270 0.206233i
\(177\) 1.29330 + 1.29330i 0.0972104 + 0.0972104i
\(178\) −5.38885 0.853510i −0.403912 0.0639733i
\(179\) −2.11776 + 0.688100i −0.158288 + 0.0514310i −0.387089 0.922042i \(-0.626520\pi\)
0.228801 + 0.973473i \(0.426520\pi\)
\(180\) 0 0
\(181\) −3.50687 2.54789i −0.260664 0.189383i 0.449776 0.893141i \(-0.351504\pi\)
−0.710440 + 0.703758i \(0.751504\pi\)
\(182\) 4.11663 0.652010i 0.305145 0.0483302i
\(183\) −7.04339 + 3.58879i −0.520663 + 0.265291i
\(184\) −1.70221 5.23888i −0.125489 0.386215i
\(185\) 0 0
\(186\) 3.75045i 0.274996i
\(187\) 15.6105 7.84826i 1.14155 0.573922i
\(188\) −4.58586 + 4.58586i −0.334458 + 0.334458i
\(189\) 12.6397 9.18329i 0.919404 0.667986i
\(190\) 0 0
\(191\) −1.26010 + 3.87820i −0.0911779 + 0.280617i −0.986239 0.165327i \(-0.947132\pi\)
0.895061 + 0.445944i \(0.147132\pi\)
\(192\) 0.504715 + 3.18664i 0.0364247 + 0.229976i
\(193\) 3.26960 + 20.6434i 0.235351 + 1.48595i 0.768459 + 0.639899i \(0.221024\pi\)
−0.533108 + 0.846047i \(0.678976\pi\)
\(194\) 1.51938 4.67617i 0.109085 0.335729i
\(195\) 0 0
\(196\) −2.14544 + 1.55875i −0.153246 + 0.111339i
\(197\) −0.213782 + 0.213782i −0.0152313 + 0.0152313i −0.714681 0.699450i \(-0.753428\pi\)
0.699450 + 0.714681i \(0.253428\pi\)
\(198\) 1.95954 1.93853i 0.139258 0.137765i
\(199\) 11.0815i 0.785549i 0.919635 + 0.392775i \(0.128485\pi\)
−0.919635 + 0.392775i \(0.871515\pi\)
\(200\) 0 0
\(201\) −0.654619 2.01471i −0.0461733 0.142107i
\(202\) −0.830691 + 0.423258i −0.0584472 + 0.0297803i
\(203\) −7.61793 + 1.20656i −0.534674 + 0.0846840i
\(204\) −8.55387 6.21475i −0.598890 0.435119i
\(205\) 0 0
\(206\) −2.86620 + 0.931285i −0.199698 + 0.0648857i
\(207\) −5.04067 0.798364i −0.350351 0.0554901i
\(208\) 5.43417 + 5.43417i 0.376792 + 0.376792i
\(209\) 7.93217 + 11.0423i 0.548680 + 0.763815i
\(210\) 0 0
\(211\) −5.20512 7.16423i −0.358335 0.493206i 0.591349 0.806416i \(-0.298596\pi\)
−0.949684 + 0.313210i \(0.898596\pi\)
\(212\) 1.18177 2.31936i 0.0811644 0.159294i
\(213\) −1.48615 2.91674i −0.101830 0.199852i
\(214\) −0.125014 + 0.172067i −0.00854576 + 0.0117622i
\(215\) 0 0
\(216\) −9.35886 3.04088i −0.636790 0.206906i
\(217\) 17.5158 + 8.92474i 1.18905 + 0.605851i
\(218\) 0.723193 4.56606i 0.0489808 0.309253i
\(219\) −16.8647 −1.13961
\(220\) 0 0
\(221\) −15.4172 −1.03707
\(222\) −0.101251 + 0.639273i −0.00679551 + 0.0429052i
\(223\) −5.50839 2.80667i −0.368869 0.187948i 0.259723 0.965683i \(-0.416369\pi\)
−0.628593 + 0.777735i \(0.716369\pi\)
\(224\) 13.7469 + 4.46662i 0.918500 + 0.298439i
\(225\) 0 0
\(226\) 5.81727 8.00679i 0.386959 0.532604i
\(227\) 1.50576 + 2.95522i 0.0999406 + 0.196145i 0.935563 0.353160i \(-0.114893\pi\)
−0.835622 + 0.549304i \(0.814893\pi\)
\(228\) 3.73520 7.33074i 0.247370 0.485490i
\(229\) −3.13876 4.32013i −0.207415 0.285482i 0.692618 0.721305i \(-0.256457\pi\)
−0.900032 + 0.435823i \(0.856457\pi\)
\(230\) 0 0
\(231\) −3.34904 10.4995i −0.220350 0.690813i
\(232\) 3.43509 + 3.43509i 0.225525 + 0.225525i
\(233\) −4.36386 0.691167i −0.285886 0.0452799i 0.0118446 0.999930i \(-0.496230\pi\)
−0.297730 + 0.954650i \(0.596230\pi\)
\(234\) −2.31314 + 0.751584i −0.151215 + 0.0491326i
\(235\) 0 0
\(236\) 2.28770 + 1.66211i 0.148917 + 0.108194i
\(237\) −17.1567 + 2.71735i −1.11445 + 0.176511i
\(238\) −6.68507 + 3.40621i −0.433329 + 0.220792i
\(239\) 3.23012 + 9.94128i 0.208939 + 0.643048i 0.999529 + 0.0307017i \(0.00977418\pi\)
−0.790590 + 0.612346i \(0.790226\pi\)
\(240\) 0 0
\(241\) 27.8579i 1.79449i 0.441536 + 0.897243i \(0.354434\pi\)
−0.441536 + 0.897243i \(0.645566\pi\)
\(242\) −2.38699 4.81226i −0.153442 0.309344i
\(243\) −10.5600 + 10.5600i −0.677425 + 0.677425i
\(244\) −9.88748 + 7.18367i −0.632981 + 0.459888i
\(245\) 0 0
\(246\) −0.611296 + 1.88138i −0.0389748 + 0.119952i
\(247\) −1.87672 11.8492i −0.119413 0.753944i
\(248\) −1.93695 12.2294i −0.122996 0.776569i
\(249\) −2.35285 + 7.24134i −0.149106 + 0.458901i
\(250\) 0 0
\(251\) 8.04670 5.84627i 0.507903 0.369013i −0.304124 0.952632i \(-0.598364\pi\)
0.812028 + 0.583619i \(0.198364\pi\)
\(252\) 6.18223 6.18223i 0.389444 0.389444i
\(253\) −4.56302 + 8.83737i −0.286874 + 0.555601i
\(254\) 4.60489i 0.288936i
\(255\) 0 0
\(256\) 0.0455968 + 0.140332i 0.00284980 + 0.00877078i
\(257\) −3.77828 + 1.92513i −0.235683 + 0.120086i −0.567844 0.823136i \(-0.692222\pi\)
0.332161 + 0.943223i \(0.392222\pi\)
\(258\) −3.94254 + 0.624438i −0.245452 + 0.0388758i
\(259\) −2.74467 1.99412i −0.170545 0.123908i
\(260\) 0 0
\(261\) 4.28052 1.39083i 0.264958 0.0860899i
\(262\) −3.62554 0.574229i −0.223987 0.0354760i
\(263\) −16.1830 16.1830i −0.997884 0.997884i 0.00211364 0.999998i \(-0.499327\pi\)
−0.999998 + 0.00211364i \(0.999327\pi\)
\(264\) −4.11022 + 5.59360i −0.252967 + 0.344262i
\(265\) 0 0
\(266\) −3.43167 4.72330i −0.210409 0.289604i
\(267\) 5.77914 11.3422i 0.353677 0.694131i
\(268\) −1.48689 2.91819i −0.0908265 0.178257i
\(269\) −13.4435 + 18.5034i −0.819666 + 1.12817i 0.170094 + 0.985428i \(0.445593\pi\)
−0.989759 + 0.142745i \(0.954407\pi\)
\(270\) 0 0
\(271\) −1.32229 0.429640i −0.0803237 0.0260987i 0.268580 0.963258i \(-0.413446\pi\)
−0.348903 + 0.937159i \(0.613446\pi\)
\(272\) −12.3263 6.28057i −0.747392 0.380815i
\(273\) −1.52123 + 9.60465i −0.0920688 + 0.581300i
\(274\) 7.50545 0.453421
\(275\) 0 0
\(276\) 6.01861 0.362278
\(277\) 2.23010 14.0803i 0.133994 0.846002i −0.825527 0.564363i \(-0.809122\pi\)
0.959520 0.281639i \(-0.0908781\pi\)
\(278\) 1.81111 + 0.922808i 0.108623 + 0.0553464i
\(279\) −10.9101 3.54491i −0.653171 0.212228i
\(280\) 0 0
\(281\) 14.9161 20.5302i 0.889818 1.22473i −0.0837853 0.996484i \(-0.526701\pi\)
0.973604 0.228246i \(-0.0732990\pi\)
\(282\) 0.929988 + 1.82520i 0.0553800 + 0.108689i
\(283\) −3.36440 + 6.60300i −0.199993 + 0.392508i −0.969121 0.246587i \(-0.920691\pi\)
0.769128 + 0.639095i \(0.220691\pi\)
\(284\) −2.97484 4.09451i −0.176524 0.242964i
\(285\) 0 0
\(286\) −0.0255420 + 4.73983i −0.00151033 + 0.280272i
\(287\) −7.33195 7.33195i −0.432791 0.432791i
\(288\) −8.33087 1.31948i −0.490901 0.0777511i
\(289\) 10.2266 3.32284i 0.601567 0.195461i
\(290\) 0 0
\(291\) 9.28071 + 6.74283i 0.544045 + 0.395272i
\(292\) −25.7529 + 4.07886i −1.50707 + 0.238697i
\(293\) 13.0777 6.66340i 0.764005 0.389280i −0.0281472 0.999604i \(-0.508961\pi\)
0.792152 + 0.610324i \(0.208961\pi\)
\(294\) 0.258843 + 0.796636i 0.0150960 + 0.0464607i
\(295\) 0 0
\(296\) 2.13682i 0.124200i
\(297\) 7.98087 + 15.8742i 0.463097 + 0.921116i
\(298\) 6.20775 6.20775i 0.359606 0.359606i
\(299\) 7.09994 5.15841i 0.410600 0.298318i
\(300\) 0 0
\(301\) 6.46553 19.8989i 0.372667 1.14695i
\(302\) −1.35920 8.58165i −0.0782131 0.493818i
\(303\) −0.340276 2.14842i −0.0195483 0.123423i
\(304\) 3.32657 10.2381i 0.190792 0.587197i
\(305\) 0 0
\(306\) 3.54206 2.57346i 0.202486 0.147115i
\(307\) 0.874954 0.874954i 0.0499363 0.0499363i −0.681698 0.731634i \(-0.738758\pi\)
0.731634 + 0.681698i \(0.238758\pi\)
\(308\) −7.65344 15.2230i −0.436095 0.867409i
\(309\) 7.03137i 0.400001i
\(310\) 0 0
\(311\) 4.37162 + 13.4545i 0.247892 + 0.762933i 0.995147 + 0.0983958i \(0.0313711\pi\)
−0.747256 + 0.664537i \(0.768629\pi\)
\(312\) 5.45732 2.78064i 0.308960 0.157423i
\(313\) −0.730542 + 0.115706i −0.0412927 + 0.00654011i −0.177047 0.984202i \(-0.556654\pi\)
0.135754 + 0.990743i \(0.456654\pi\)
\(314\) 8.48022 + 6.16124i 0.478566 + 0.347699i
\(315\) 0 0
\(316\) −25.5415 + 8.29895i −1.43682 + 0.466852i
\(317\) 16.8560 + 2.66972i 0.946726 + 0.149947i 0.610661 0.791892i \(-0.290904\pi\)
0.336065 + 0.941839i \(0.390904\pi\)
\(318\) −0.581389 0.581389i −0.0326027 0.0326027i
\(319\) 0.0472661 8.77118i 0.00264640 0.491092i
\(320\) 0 0
\(321\) −0.291674 0.401454i −0.0162796 0.0224070i
\(322\) 1.93894 3.80538i 0.108053 0.212065i
\(323\) 9.80433 + 19.2421i 0.545527 + 1.07066i
\(324\) 1.03346 1.42244i 0.0574145 0.0790243i
\(325\) 0 0
\(326\) −4.84178 1.57319i −0.268161 0.0871309i
\(327\) 9.61042 + 4.89675i 0.531457 + 0.270791i
\(328\) −1.02165 + 6.45047i −0.0564114 + 0.356168i
\(329\) −10.7373 −0.591967
\(330\) 0 0
\(331\) −14.9189 −0.820016 −0.410008 0.912082i \(-0.634474\pi\)
−0.410008 + 0.912082i \(0.634474\pi\)
\(332\) −1.84150 + 11.6268i −0.101065 + 0.638102i
\(333\) 1.76395 + 0.898777i 0.0966638 + 0.0492527i
\(334\) −5.24485 1.70415i −0.286985 0.0932472i
\(335\) 0 0
\(336\) −5.12893 + 7.05937i −0.279806 + 0.385120i
\(337\) 4.28455 + 8.40891i 0.233394 + 0.458062i 0.977765 0.209705i \(-0.0672503\pi\)
−0.744370 + 0.667767i \(0.767250\pi\)
\(338\) −0.983358 + 1.92995i −0.0534876 + 0.104975i
\(339\) 13.5725 + 18.6809i 0.737156 + 1.01461i
\(340\) 0 0
\(341\) −13.2379 + 18.0154i −0.716871 + 0.975589i
\(342\) 2.40905 + 2.40905i 0.130267 + 0.130267i
\(343\) 15.8271 + 2.50676i 0.854581 + 0.135352i
\(344\) −12.5333 + 4.07231i −0.675750 + 0.219564i
\(345\) 0 0
\(346\) −5.21586 3.78954i −0.280406 0.203727i
\(347\) 19.0026 3.00971i 1.02011 0.161570i 0.376094 0.926581i \(-0.377267\pi\)
0.644016 + 0.765012i \(0.277267\pi\)
\(348\) −4.72933 + 2.40971i −0.253518 + 0.129174i
\(349\) −4.59599 14.1450i −0.246018 0.757164i −0.995467 0.0951031i \(-0.969682\pi\)
0.749450 0.662061i \(-0.230318\pi\)
\(350\) 0 0
\(351\) 15.6777i 0.836813i
\(352\) −7.54143 + 14.6058i −0.401960 + 0.778491i
\(353\) −1.78406 + 1.78406i −0.0949560 + 0.0949560i −0.752989 0.658033i \(-0.771389\pi\)
0.658033 + 0.752989i \(0.271389\pi\)
\(354\) 0.722594 0.524995i 0.0384054 0.0279032i
\(355\) 0 0
\(356\) 6.08171 18.7176i 0.322330 0.992029i
\(357\) −2.73840 17.2896i −0.144932 0.915063i
\(358\) 0.170108 + 1.07402i 0.00899047 + 0.0567636i
\(359\) 2.62416 8.07635i 0.138498 0.426253i −0.857620 0.514285i \(-0.828058\pi\)
0.996118 + 0.0880312i \(0.0280575\pi\)
\(360\) 0 0
\(361\) 1.77596 1.29031i 0.0934717 0.0679111i
\(362\) −1.49682 + 1.49682i −0.0786711 + 0.0786711i
\(363\) 12.3991 1.82707i 0.650783 0.0958962i
\(364\) 15.0345i 0.788021i
\(365\) 0 0
\(366\) 1.19290 + 3.67138i 0.0623541 + 0.191906i
\(367\) −18.9156 + 9.63799i −0.987387 + 0.503099i −0.871622 0.490178i \(-0.836932\pi\)
−0.115765 + 0.993277i \(0.536932\pi\)
\(368\) 7.77792 1.23190i 0.405452 0.0642173i
\(369\) 4.89515 + 3.55653i 0.254831 + 0.185146i
\(370\) 0 0
\(371\) 4.09877 1.33177i 0.212797 0.0691420i
\(372\) 13.3620 + 2.11633i 0.692786 + 0.109726i
\(373\) −2.57445 2.57445i −0.133300 0.133300i 0.637309 0.770609i \(-0.280048\pi\)
−0.770609 + 0.637309i \(0.780048\pi\)
\(374\) −2.59290 8.12891i −0.134076 0.420336i
\(375\) 0 0
\(376\) 3.97513 + 5.47130i 0.205002 + 0.282161i
\(377\) −3.51371 + 6.89604i −0.180965 + 0.355164i
\(378\) −3.46377 6.79802i −0.178157 0.349653i
\(379\) 9.74713 13.4158i 0.500677 0.689122i −0.481636 0.876371i \(-0.659957\pi\)
0.982312 + 0.187249i \(0.0599572\pi\)
\(380\) 0 0
\(381\) 10.2180 + 3.32002i 0.523483 + 0.170090i
\(382\) 1.77430 + 0.904051i 0.0907810 + 0.0462553i
\(383\) −1.77402 + 11.2007i −0.0906481 + 0.572330i 0.900000 + 0.435890i \(0.143566\pi\)
−0.990648 + 0.136440i \(0.956434\pi\)
\(384\) 12.8694 0.656736
\(385\) 0 0
\(386\) 10.2067 0.519505
\(387\) −1.90998 + 12.0591i −0.0970895 + 0.612999i
\(388\) 15.8027 + 8.05188i 0.802260 + 0.408772i
\(389\) −0.777554 0.252643i −0.0394236 0.0128095i 0.289239 0.957257i \(-0.406598\pi\)
−0.328662 + 0.944447i \(0.606598\pi\)
\(390\) 0 0
\(391\) −9.28580 + 12.7808i −0.469603 + 0.646353i
\(392\) 1.25546 + 2.46398i 0.0634102 + 0.124450i
\(393\) 3.88812 7.63086i 0.196130 0.384926i
\(394\) 0.0867814 + 0.119444i 0.00437198 + 0.00601752i
\(395\) 0 0
\(396\) 5.80078 + 8.07525i 0.291500 + 0.405796i
\(397\) −11.8504 11.8504i −0.594752 0.594752i 0.344159 0.938911i \(-0.388164\pi\)
−0.938911 + 0.344159i \(0.888164\pi\)
\(398\) 5.34493 + 0.846553i 0.267917 + 0.0424339i
\(399\) 12.9549 4.20930i 0.648555 0.210728i
\(400\) 0 0
\(401\) 23.0228 + 16.7270i 1.14970 + 0.835308i 0.988441 0.151603i \(-0.0484436\pi\)
0.161262 + 0.986912i \(0.448444\pi\)
\(402\) −1.02176 + 0.161831i −0.0509607 + 0.00807137i
\(403\) 17.5765 8.95566i 0.875547 0.446113i
\(404\) −1.03922 3.19839i −0.0517032 0.159126i
\(405\) 0 0
\(406\) 3.76651i 0.186929i
\(407\) 2.74279 2.71338i 0.135955 0.134497i
\(408\) −7.79627 + 7.79627i −0.385973 + 0.385973i
\(409\) −1.95998 + 1.42401i −0.0969146 + 0.0704126i −0.635187 0.772358i \(-0.719077\pi\)
0.538273 + 0.842771i \(0.319077\pi\)
\(410\) 0 0
\(411\) −5.41127 + 16.6542i −0.266918 + 0.821490i
\(412\) −1.70059 10.7371i −0.0837820 0.528979i
\(413\) 0.732376 + 4.62404i 0.0360379 + 0.227534i
\(414\) −0.770145 + 2.37026i −0.0378506 + 0.116492i
\(415\) 0 0
\(416\) 11.7343 8.52546i 0.575321 0.417995i
\(417\) −3.35343 + 3.35343i −0.164218 + 0.164218i
\(418\) 5.93199 2.98234i 0.290143 0.145871i
\(419\) 16.4371i 0.803006i −0.915858 0.401503i \(-0.868488\pi\)
0.915858 0.401503i \(-0.131512\pi\)
\(420\) 0 0
\(421\) −3.85294 11.8581i −0.187781 0.577930i 0.812204 0.583373i \(-0.198267\pi\)
−0.999985 + 0.00544310i \(0.998267\pi\)
\(422\) −3.85314 + 1.96327i −0.187568 + 0.0955707i
\(423\) 6.18855 0.980171i 0.300898 0.0476575i
\(424\) −2.19605 1.59552i −0.106649 0.0774853i
\(425\) 0 0
\(426\) −1.52036 + 0.493994i −0.0736615 + 0.0239341i
\(427\) −19.9852 3.16534i −0.967151 0.153182i
\(428\) −0.542488 0.542488i −0.0262222 0.0262222i
\(429\) −10.4990 3.47399i −0.506896 0.167726i
\(430\) 0 0
\(431\) −11.6588 16.0470i −0.561586 0.772957i 0.429941 0.902857i \(-0.358534\pi\)
−0.991527 + 0.129900i \(0.958534\pi\)
\(432\) 6.38668 12.5346i 0.307279 0.603070i
\(433\) −12.9956 25.5054i −0.624531 1.22571i −0.959027 0.283314i \(-0.908566\pi\)
0.334496 0.942397i \(-0.391434\pi\)
\(434\) 5.64273 7.76656i 0.270860 0.372807i
\(435\) 0 0
\(436\) 15.8597 + 5.15313i 0.759541 + 0.246790i
\(437\) −10.9533 5.58097i −0.523966 0.266974i
\(438\) −1.28835 + 8.13431i −0.0615597 + 0.388672i
\(439\) −3.12279 −0.149043 −0.0745214 0.997219i \(-0.523743\pi\)
−0.0745214 + 0.997219i \(0.523743\pi\)
\(440\) 0 0
\(441\) 2.56208 0.122004
\(442\) −1.17777 + 7.43613i −0.0560207 + 0.353701i
\(443\) −28.2787 14.4087i −1.34356 0.684579i −0.373545 0.927612i \(-0.621858\pi\)
−0.970018 + 0.243033i \(0.921858\pi\)
\(444\) −2.22044 0.721465i −0.105378 0.0342392i
\(445\) 0 0
\(446\) −1.77454 + 2.44244i −0.0840267 + 0.115653i
\(447\) 9.29900 + 18.2503i 0.439827 + 0.863210i
\(448\) −3.74928 + 7.35837i −0.177137 + 0.347650i
\(449\) 20.5693 + 28.3112i 0.970726 + 1.33609i 0.941679 + 0.336511i \(0.109247\pi\)
0.0290462 + 0.999578i \(0.490753\pi\)
\(450\) 0 0
\(451\) 9.57702 6.87957i 0.450964 0.323946i
\(452\) 25.2437 + 25.2437i 1.18736 + 1.18736i
\(453\) 20.0221 + 3.17119i 0.940722 + 0.148996i
\(454\) 1.54041 0.500510i 0.0722951 0.0234901i
\(455\) 0 0
\(456\) −6.94099 5.04293i −0.325042 0.236157i
\(457\) 5.03728 0.797826i 0.235634 0.0373207i −0.0375006 0.999297i \(-0.511940\pi\)
0.273134 + 0.961976i \(0.411940\pi\)
\(458\) −2.32350 + 1.18388i −0.108570 + 0.0553191i
\(459\) 8.72103 + 26.8406i 0.407063 + 1.25281i
\(460\) 0 0
\(461\) 12.4703i 0.580801i 0.956905 + 0.290400i \(0.0937885\pi\)
−0.956905 + 0.290400i \(0.906211\pi\)
\(462\) −5.32002 + 0.813245i −0.247510 + 0.0378356i
\(463\) 19.2728 19.2728i 0.895684 0.895684i −0.0993669 0.995051i \(-0.531682\pi\)
0.995051 + 0.0993669i \(0.0316818\pi\)
\(464\) −5.61854 + 4.08211i −0.260834 + 0.189507i
\(465\) 0 0
\(466\) −0.666738 + 2.05201i −0.0308860 + 0.0950574i
\(467\) 6.20937 + 39.2044i 0.287335 + 1.81416i 0.534476 + 0.845184i \(0.320509\pi\)
−0.247141 + 0.968980i \(0.579491\pi\)
\(468\) −1.37244 8.66527i −0.0634412 0.400552i
\(469\) 1.67562 5.15703i 0.0773730 0.238130i
\(470\) 0 0
\(471\) −19.7855 + 14.3750i −0.911667 + 0.662365i
\(472\) 2.08508 2.08508i 0.0959738 0.0959738i
\(473\) 21.1422 + 10.9164i 0.972119 + 0.501936i
\(474\) 8.48273i 0.389625i
\(475\) 0 0
\(476\) −8.36324 25.7394i −0.383328 1.17976i
\(477\) −2.24079 + 1.14174i −0.102599 + 0.0522767i
\(478\) 5.04171 0.798528i 0.230602 0.0365238i
\(479\) −30.9491 22.4858i −1.41410 1.02740i −0.992711 0.120523i \(-0.961543\pi\)
−0.421388 0.906880i \(-0.638457\pi\)
\(480\) 0 0
\(481\) −3.23773 + 1.05200i −0.147628 + 0.0479671i
\(482\) 13.4366 + 2.12815i 0.612022 + 0.0969348i
\(483\) 7.04599 + 7.04599i 0.320603 + 0.320603i
\(484\) 18.4919 5.78879i 0.840539 0.263127i
\(485\) 0 0
\(486\) 4.28667 + 5.90009i 0.194447 + 0.267634i
\(487\) 12.3391 24.2169i 0.559139 1.09737i −0.422454 0.906384i \(-0.638831\pi\)
0.981593 0.190987i \(-0.0611688\pi\)
\(488\) 5.78591 + 11.3555i 0.261916 + 0.514039i
\(489\) 6.98164 9.60940i 0.315720 0.434552i
\(490\) 0 0
\(491\) 3.77748 + 1.22738i 0.170475 + 0.0553907i 0.393011 0.919534i \(-0.371433\pi\)
−0.222536 + 0.974925i \(0.571433\pi\)
\(492\) −6.35795 3.23954i −0.286638 0.146050i
\(493\) 2.17949 13.7608i 0.0981593 0.619753i
\(494\) −5.85854 −0.263588
\(495\) 0 0
\(496\) 17.7010 0.794798
\(497\) 1.31080 8.27608i 0.0587975 0.371233i
\(498\) 3.31295 + 1.68803i 0.148457 + 0.0756426i
\(499\) 6.11060 + 1.98546i 0.273548 + 0.0888812i 0.442579 0.896730i \(-0.354064\pi\)
−0.169031 + 0.985611i \(0.554064\pi\)
\(500\) 0 0
\(501\) 7.56284 10.4094i 0.337883 0.465056i
\(502\) −2.20510 4.32776i −0.0984186 0.193157i
\(503\) −18.4896 + 36.2878i −0.824409 + 1.61799i −0.0388190 + 0.999246i \(0.512360\pi\)
−0.785590 + 0.618747i \(0.787640\pi\)
\(504\) −5.35890 7.37590i −0.238704 0.328549i
\(505\) 0 0
\(506\) 3.91392 + 2.87598i 0.173995 + 0.127853i
\(507\) −3.57347 3.57347i −0.158703 0.158703i
\(508\) 16.4061 + 2.59847i 0.727904 + 0.115289i
\(509\) −8.83124 + 2.86944i −0.391438 + 0.127186i −0.498122 0.867107i \(-0.665977\pi\)
0.106684 + 0.994293i \(0.465977\pi\)
\(510\) 0 0
\(511\) −34.9240 25.3738i −1.54495 1.12247i
\(512\) 22.3835 3.54520i 0.989220 0.156677i
\(513\) −19.5672 + 9.96998i −0.863912 + 0.440185i
\(514\) 0.639909 + 1.96944i 0.0282252 + 0.0868681i
\(515\) 0 0
\(516\) 14.3987i 0.633868i
\(517\) 1.97515 12.0500i 0.0868669 0.529957i
\(518\) −1.17149 + 1.17149i −0.0514723 + 0.0514723i
\(519\) 12.1693 8.84152i 0.534173 0.388099i
\(520\) 0 0
\(521\) −4.57564 + 14.0824i −0.200462 + 0.616960i 0.799407 + 0.600790i \(0.205147\pi\)
−0.999869 + 0.0161698i \(0.994853\pi\)
\(522\) −0.343831 2.17086i −0.0150491 0.0950160i
\(523\) −6.07643 38.3651i −0.265704 1.67759i −0.654344 0.756197i \(-0.727055\pi\)
0.388640 0.921390i \(-0.372945\pi\)
\(524\) 4.09168 12.5929i 0.178746 0.550124i
\(525\) 0 0
\(526\) −9.04175 + 6.56922i −0.394239 + 0.286431i
\(527\) −25.1096 + 25.1096i −1.09379 + 1.09379i
\(528\) −6.97891 7.05453i −0.303718 0.307009i
\(529\) 14.0073i 0.609011i
\(530\) 0 0
\(531\) −0.844224 2.59825i −0.0366362 0.112755i
\(532\) 18.7644 9.56095i 0.813541 0.414520i
\(533\) −10.2768 + 1.62768i −0.445136 + 0.0705027i
\(534\) −5.02916 3.65390i −0.217633 0.158120i
\(535\) 0 0
\(536\) −3.24815 + 1.05539i −0.140299 + 0.0455859i
\(537\) −2.50583 0.396884i −0.108134 0.0171268i
\(538\) 7.89771 + 7.89771i 0.340495 + 0.340495i
\(539\) 1.56850 4.74029i 0.0675603 0.204179i
\(540\) 0 0
\(541\) 10.2392 + 14.0930i 0.440217 + 0.605907i 0.970260 0.242064i \(-0.0778243\pi\)
−0.530043 + 0.847971i \(0.677824\pi\)
\(542\) −0.308241 + 0.604957i −0.0132401 + 0.0259851i
\(543\) −2.24218 4.40053i −0.0962213 0.188845i
\(544\) −15.3469 + 21.1232i −0.657994 + 0.905650i
\(545\) 0 0
\(546\) 4.51637 + 1.46746i 0.193283 + 0.0628014i
\(547\) −34.9333 17.7994i −1.49364 0.761048i −0.499215 0.866478i \(-0.666378\pi\)
−0.994427 + 0.105430i \(0.966378\pi\)
\(548\) −4.23522 + 26.7401i −0.180920 + 1.14228i
\(549\) 11.8076 0.503936
\(550\) 0 0
\(551\) 10.8414 0.461858
\(552\) 0.981807 6.19888i 0.0417885 0.263842i
\(553\) −39.6170 20.1859i −1.68469 0.858391i
\(554\) −6.62094 2.15127i −0.281297 0.0913989i
\(555\) 0 0
\(556\) −4.30973 + 5.93184i −0.182773 + 0.251566i
\(557\) −16.6620 32.7010i −0.705991 1.38558i −0.913291 0.407307i \(-0.866468\pi\)
0.207301 0.978277i \(-0.433532\pi\)
\(558\) −2.54326 + 4.99143i −0.107665 + 0.211304i
\(559\) −12.3408 16.9856i −0.521959 0.718416i
\(560\) 0 0
\(561\) 19.9070 + 0.107275i 0.840475 + 0.00452915i
\(562\) −8.76280 8.76280i −0.369636 0.369636i
\(563\) −16.6732 2.64077i −0.702690 0.111295i −0.205143 0.978732i \(-0.565766\pi\)
−0.497547 + 0.867437i \(0.665766\pi\)
\(564\) −7.02754 + 2.28339i −0.295913 + 0.0961480i
\(565\) 0 0
\(566\) 2.92779 + 2.12716i 0.123064 + 0.0894114i
\(567\) 2.87512 0.455374i 0.120744 0.0191239i
\(568\) −4.70243 + 2.39601i −0.197310 + 0.100534i
\(569\) −0.818531 2.51918i −0.0343146 0.105609i 0.932432 0.361345i \(-0.117682\pi\)
−0.966747 + 0.255736i \(0.917682\pi\)
\(570\) 0 0
\(571\) 29.8675i 1.24992i −0.780658 0.624959i \(-0.785116\pi\)
0.780658 0.624959i \(-0.214884\pi\)
\(572\) −16.8725 2.76562i −0.705473 0.115636i
\(573\) −3.28527 + 3.28527i −0.137244 + 0.137244i
\(574\) −4.09651 + 2.97629i −0.170985 + 0.124228i
\(575\) 0 0
\(576\) 1.48921 4.58332i 0.0620505 0.190972i
\(577\) 0.0561437 + 0.354477i 0.00233729 + 0.0147571i 0.988829 0.149052i \(-0.0476220\pi\)
−0.986492 + 0.163809i \(0.947622\pi\)
\(578\) −0.821450 5.18643i −0.0341678 0.215727i
\(579\) −7.35878 + 22.6480i −0.305821 + 0.941219i
\(580\) 0 0
\(581\) −15.7673 + 11.4556i −0.654138 + 0.475259i
\(582\) 3.96123 3.96123i 0.164198 0.164198i
\(583\) 0.740605 + 4.84483i 0.0306727 + 0.200652i
\(584\) 27.1896i 1.12511i
\(585\) 0 0
\(586\) −2.21490 6.81675i −0.0914965 0.281597i
\(587\) 23.0298 11.7343i 0.950543 0.484326i 0.0912603 0.995827i \(-0.470910\pi\)
0.859282 + 0.511501i \(0.170910\pi\)
\(588\) −2.98428 + 0.472664i −0.123070 + 0.0194923i
\(589\) −22.3550 16.2418i −0.921121 0.669233i
\(590\) 0 0
\(591\) −0.327608 + 0.106446i −0.0134760 + 0.00437861i
\(592\) −3.01717 0.477873i −0.124005 0.0196405i
\(593\) 9.56872 + 9.56872i 0.392940 + 0.392940i 0.875734 0.482794i \(-0.160378\pi\)
−0.482794 + 0.875734i \(0.660378\pi\)
\(594\) 8.26626 2.63671i 0.339169 0.108185i
\(595\) 0 0
\(596\) 18.6138 + 25.6197i 0.762451 + 1.04942i
\(597\) −5.73203 + 11.2497i −0.234596 + 0.460421i
\(598\) −1.94565 3.81856i −0.0795637 0.156153i
\(599\) −6.65542 + 9.16040i −0.271933 + 0.374284i −0.923041 0.384701i \(-0.874304\pi\)
0.651108 + 0.758985i \(0.274304\pi\)
\(600\) 0 0
\(601\) −15.6822 5.09545i −0.639689 0.207848i −0.0288267 0.999584i \(-0.509177\pi\)
−0.610862 + 0.791737i \(0.709177\pi\)
\(602\) −9.10384 4.63864i −0.371045 0.189057i
\(603\) −0.494993 + 3.12526i −0.0201577 + 0.127271i
\(604\) 31.3413 1.27526
\(605\) 0 0
\(606\) −1.06223 −0.0431503
\(607\) 0.779724 4.92298i 0.0316480 0.199818i −0.966798 0.255541i \(-0.917746\pi\)
0.998446 + 0.0557232i \(0.0177465\pi\)
\(608\) −18.1028 9.22383i −0.734165 0.374076i
\(609\) −8.35766 2.71557i −0.338670 0.110040i
\(610\) 0 0
\(611\) −6.33310 + 8.71677i −0.256210 + 0.352643i
\(612\) 7.16989 + 14.0717i 0.289825 + 0.568814i
\(613\) −8.29879 + 16.2873i −0.335185 + 0.657837i −0.995666 0.0930058i \(-0.970352\pi\)
0.660481 + 0.750843i \(0.270352\pi\)
\(614\) −0.355174 0.488855i −0.0143337 0.0197286i
\(615\) 0 0
\(616\) −16.9274 + 5.39938i −0.682025 + 0.217547i
\(617\) −15.4942 15.4942i −0.623773 0.623773i 0.322721 0.946494i \(-0.395402\pi\)
−0.946494 + 0.322721i \(0.895402\pi\)
\(618\) −3.39142 0.537149i −0.136423 0.0216073i
\(619\) −46.8070 + 15.2085i −1.88133 + 0.611282i −0.895114 + 0.445837i \(0.852906\pi\)
−0.986219 + 0.165445i \(0.947094\pi\)
\(620\) 0 0
\(621\) −12.9967 9.44269i −0.521541 0.378922i
\(622\) 6.82342 1.08072i 0.273594 0.0433330i
\(623\) 29.0325 14.7928i 1.16316 0.592661i
\(624\) 2.70578 + 8.32754i 0.108318 + 0.333368i
\(625\) 0 0
\(626\) 0.361199i 0.0144364i
\(627\) 2.34082 + 15.3129i 0.0934832 + 0.611540i
\(628\) −26.7363 + 26.7363i −1.06689 + 1.06689i
\(629\) 4.95787 3.60210i 0.197683 0.143625i
\(630\) 0 0
\(631\) −2.79731 + 8.60924i −0.111359 + 0.342729i −0.991170 0.132595i \(-0.957669\pi\)
0.879811 + 0.475324i \(0.157669\pi\)
\(632\) 4.38097 + 27.6604i 0.174266 + 1.10027i
\(633\) −1.57836 9.96538i −0.0627342 0.396088i
\(634\) 2.57536 7.92615i 0.102281 0.314788i
\(635\) 0 0
\(636\) 2.39942 1.74328i 0.0951431 0.0691255i
\(637\) −3.11534 + 3.11534i −0.123434 + 0.123434i
\(638\) −4.22697 0.692856i −0.167347 0.0274304i
\(639\) 4.88965i 0.193432i
\(640\) 0 0
\(641\) −8.63030 26.5613i −0.340876 1.04911i −0.963755 0.266791i \(-0.914037\pi\)
0.622878 0.782319i \(-0.285963\pi\)
\(642\) −0.215914 + 0.110014i −0.00852146 + 0.00434190i
\(643\) 9.51085 1.50637i 0.375071 0.0594055i 0.0339470 0.999424i \(-0.489192\pi\)
0.341124 + 0.940018i \(0.389192\pi\)
\(644\) 12.4635 + 9.05529i 0.491132 + 0.356828i
\(645\) 0 0
\(646\) 10.0300 3.25893i 0.394624 0.128221i
\(647\) −30.5702 4.84185i −1.20184 0.190353i −0.476770 0.879028i \(-0.658193\pi\)
−0.725070 + 0.688675i \(0.758193\pi\)
\(648\) −1.29645 1.29645i −0.0509296 0.0509296i
\(649\) −5.32406 0.0286903i −0.208988 0.00112619i
\(650\) 0 0
\(651\) 13.1653 + 18.1204i 0.515987 + 0.710195i
\(652\) 8.33705 16.3624i 0.326504 0.640800i
\(653\) −2.77406 5.44440i −0.108557 0.213056i 0.830337 0.557262i \(-0.188148\pi\)
−0.938894 + 0.344206i \(0.888148\pi\)
\(654\) 3.09601 4.26129i 0.121063 0.166630i
\(655\) 0 0
\(656\) −8.87952 2.88513i −0.346687 0.112645i
\(657\) 22.4450 + 11.4363i 0.875665 + 0.446173i
\(658\) −0.820257 + 5.17890i −0.0319770 + 0.201895i
\(659\) 12.0647 0.469975 0.234988 0.971998i \(-0.424495\pi\)
0.234988 + 0.971998i \(0.424495\pi\)
\(660\) 0 0
\(661\) −29.6228 −1.15219 −0.576097 0.817382i \(-0.695425\pi\)
−0.576097 + 0.817382i \(0.695425\pi\)
\(662\) −1.13970 + 7.19579i −0.0442957 + 0.279672i
\(663\) −15.6512 7.97469i −0.607843 0.309711i
\(664\) 11.6746 + 3.79331i 0.453063 + 0.147209i
\(665\) 0 0
\(666\) 0.568258 0.782140i 0.0220196 0.0303073i
\(667\) 3.60048 + 7.06635i 0.139411 + 0.273610i
\(668\) 9.03109 17.7245i 0.349423 0.685782i
\(669\) −4.14023 5.69854i −0.160071 0.220318i
\(670\) 0 0
\(671\) 7.22862 21.8461i 0.279058 0.843361i
\(672\) 11.6451 + 11.6451i 0.449220 + 0.449220i
\(673\) 4.97380 + 0.787773i 0.191726 + 0.0303664i 0.251559 0.967842i \(-0.419057\pi\)
−0.0598329 + 0.998208i \(0.519057\pi\)
\(674\) 4.38316 1.42417i 0.168833 0.0548571i
\(675\) 0 0
\(676\) −6.32105 4.59251i −0.243117 0.176635i
\(677\) 35.9579 5.69516i 1.38197 0.218883i 0.579208 0.815180i \(-0.303362\pi\)
0.802764 + 0.596297i \(0.203362\pi\)
\(678\) 10.0472 5.11928i 0.385859 0.196605i
\(679\) 9.07388 + 27.9265i 0.348223 + 1.07172i
\(680\) 0 0
\(681\) 3.77894i 0.144809i
\(682\) 7.67804 + 7.76124i 0.294007 + 0.297193i
\(683\) 8.07353 8.07353i 0.308925 0.308925i −0.535567 0.844492i \(-0.679902\pi\)
0.844492 + 0.535567i \(0.179902\pi\)
\(684\) −9.94226 + 7.22348i −0.380152 + 0.276197i
\(685\) 0 0
\(686\) 2.41816 7.44232i 0.0923257 0.284149i
\(687\) −0.951773 6.00926i −0.0363124 0.229267i
\(688\) −2.94716 18.6076i −0.112359 0.709408i
\(689\) 1.33638 4.11297i 0.0509122 0.156692i
\(690\) 0 0
\(691\) 9.61076 6.98263i 0.365611 0.265632i −0.389778 0.920909i \(-0.627448\pi\)
0.755388 + 0.655277i \(0.227448\pi\)
\(692\) 16.4445 16.4445i 0.625125 0.625125i
\(693\) −2.66271 + 16.2447i −0.101148 + 0.617083i
\(694\) 9.39538i 0.356644i
\(695\) 0 0
\(696\) 1.71040 + 5.26407i 0.0648326 + 0.199534i
\(697\) 16.6886 8.50329i 0.632127 0.322085i
\(698\) −7.17362 + 1.13619i −0.271526 + 0.0430054i
\(699\) −4.07258 2.95891i −0.154039 0.111916i
\(700\) 0 0
\(701\) −25.2475 + 8.20342i −0.953586 + 0.309839i −0.744172 0.667988i \(-0.767156\pi\)
−0.209414 + 0.977827i \(0.567156\pi\)
\(702\) −7.56177 1.19767i −0.285401 0.0452030i
\(703\) 3.37197 + 3.37197i 0.127176 + 0.127176i
\(704\) −7.56826 5.56122i −0.285239 0.209596i
\(705\) 0 0
\(706\) 0.724212 + 0.996792i 0.0272561 + 0.0375148i
\(707\) 2.52774 4.96097i 0.0950654 0.186576i
\(708\) 1.46268 + 2.87068i 0.0549710 + 0.107887i
\(709\) 10.4984 14.4498i 0.394275 0.542673i −0.565021 0.825077i \(-0.691132\pi\)
0.959296 + 0.282404i \(0.0911318\pi\)
\(710\) 0 0
\(711\) 24.6763 + 8.01783i 0.925435 + 0.300692i
\(712\) −18.2861 9.31723i −0.685301 0.349178i
\(713\) 3.16212 19.9648i 0.118422 0.747689i
\(714\) −8.54844 −0.319917
\(715\) 0 0
\(716\) −3.92246 −0.146589
\(717\) −1.86307 + 11.7630i −0.0695778 + 0.439297i
\(718\) −3.69497 1.88268i −0.137895 0.0702611i
\(719\) 31.1609 + 10.1248i 1.16211 + 0.377592i 0.825691 0.564122i \(-0.190785\pi\)
0.336416 + 0.941714i \(0.390785\pi\)
\(720\) 0 0
\(721\) 10.5790 14.5608i 0.393984 0.542272i
\(722\) −0.486681 0.955166i −0.0181124 0.0355476i
\(723\) −14.4098 + 28.2808i −0.535905 + 1.05177i
\(724\) −4.48818 6.17744i −0.166802 0.229583i
\(725\) 0 0
\(726\) 0.0659608 6.12000i 0.00244803 0.227134i
\(727\) −0.964903 0.964903i −0.0357863 0.0357863i 0.688987 0.724773i \(-0.258056\pi\)
−0.724773 + 0.688987i \(0.758056\pi\)
\(728\) 15.4848 + 2.45255i 0.573905 + 0.0908976i
\(729\) −19.0304 + 6.18335i −0.704830 + 0.229013i
\(730\) 0 0
\(731\) 30.5763 + 22.2150i 1.13091 + 0.821651i
\(732\) −13.7534 + 2.17832i −0.508340 + 0.0805131i
\(733\) 10.5079 5.35405i 0.388119 0.197756i −0.249033 0.968495i \(-0.580113\pi\)
0.637151 + 0.770739i \(0.280113\pi\)
\(734\) 3.20364 + 9.85979i 0.118249 + 0.363932i
\(735\) 0 0
\(736\) 14.8626i 0.547842i
\(737\) 5.47925 + 2.82911i 0.201831 + 0.104212i
\(738\) 2.08937 2.08937i 0.0769107 0.0769107i
\(739\) 34.8645 25.3305i 1.28251 0.931798i 0.282884 0.959154i \(-0.408709\pi\)
0.999626 + 0.0273561i \(0.00870880\pi\)
\(740\) 0 0
\(741\) 4.22388 12.9998i 0.155168 0.477558i
\(742\) −0.329231 2.07868i −0.0120865 0.0763109i
\(743\) 5.93105 + 37.4472i 0.217589 + 1.37380i 0.818509 + 0.574494i \(0.194801\pi\)
−0.600920 + 0.799309i \(0.705199\pi\)
\(744\) 4.35943 13.4170i 0.159825 0.491889i
\(745\) 0 0
\(746\) −1.43840 + 1.04506i −0.0526636 + 0.0382623i
\(747\) 8.04189 8.04189i 0.294237 0.294237i
\(748\) 30.4245 4.65085i 1.11243 0.170052i
\(749\) 1.27018i 0.0464114i
\(750\) 0 0
\(751\) 10.7881 + 33.2025i 0.393665 + 1.21158i 0.929996 + 0.367569i \(0.119810\pi\)
−0.536331 + 0.844008i \(0.680190\pi\)
\(752\) −8.61441 + 4.38926i −0.314135 + 0.160060i
\(753\) 11.1929 1.77278i 0.407891 0.0646036i
\(754\) 3.05772 + 2.22157i 0.111356 + 0.0809047i
\(755\) 0 0
\(756\) 26.1743 8.50454i 0.951950 0.309307i
\(757\) −34.0513 5.39320i −1.23762 0.196019i −0.496883 0.867818i \(-0.665522\pi\)
−0.740734 + 0.671798i \(0.765522\pi\)
\(758\) −5.72618 5.72618i −0.207984 0.207984i
\(759\) −9.20349 + 6.61125i −0.334065 + 0.239973i
\(760\) 0 0
\(761\) −8.17878 11.2571i −0.296481 0.408071i 0.634625 0.772820i \(-0.281155\pi\)
−0.931106 + 0.364750i \(0.881155\pi\)
\(762\) 2.38192 4.67478i 0.0862879 0.169350i
\(763\) 12.5342 + 24.5997i 0.453767 + 0.890568i
\(764\) −4.22213 + 5.81126i −0.152751 + 0.210244i
\(765\) 0 0
\(766\) 5.26689 + 1.71132i 0.190300 + 0.0618323i
\(767\) 4.18586 + 2.13280i 0.151143 + 0.0770110i
\(768\) −0.0262994 + 0.166048i −0.000948998 + 0.00599174i
\(769\) −13.3273 −0.480596 −0.240298 0.970699i \(-0.577245\pi\)
−0.240298 + 0.970699i \(0.577245\pi\)
\(770\) 0 0
\(771\) −4.83143 −0.174000
\(772\) −5.75948 + 36.3639i −0.207288 + 1.30877i
\(773\) −11.1372 5.67471i −0.400579 0.204105i 0.242082 0.970256i \(-0.422170\pi\)
−0.642661 + 0.766151i \(0.722170\pi\)
\(774\) 5.67053 + 1.84247i 0.203823 + 0.0662261i
\(775\) 0 0
\(776\) 10.8709 14.9625i 0.390243 0.537124i
\(777\) −1.75485 3.44409i −0.0629549 0.123556i
\(778\) −0.181256 + 0.355735i −0.00649835 + 0.0127537i
\(779\) 8.56685 + 11.7913i 0.306939 + 0.422465i
\(780\) 0 0
\(781\) 9.04671 + 2.99345i 0.323717 + 0.107114i
\(782\) 5.45516 + 5.45516i 0.195076 + 0.195076i
\(783\) 13.9933 + 2.21631i 0.500078 + 0.0792046i
\(784\) −3.75988 + 1.22166i −0.134281 + 0.0436306i
\(785\) 0 0
\(786\) −3.38355 2.45829i −0.120687 0.0876843i
\(787\) 6.21530 0.984406i 0.221551 0.0350903i −0.0446718 0.999002i \(-0.514224\pi\)
0.266223 + 0.963911i \(0.414224\pi\)
\(788\) −0.474521 + 0.241781i −0.0169041 + 0.00861308i
\(789\) −8.05781 24.7994i −0.286866 0.882882i
\(790\) 0 0
\(791\) 59.1055i 2.10155i
\(792\) 9.26339 4.65723i 0.329160 0.165487i
\(793\) −14.3574 + 14.3574i −0.509846 + 0.509846i
\(794\) −6.62104 + 4.81046i −0.234972 + 0.170717i
\(795\) 0 0
\(796\) −6.03213 + 18.5650i −0.213803 + 0.658019i
\(797\) 0.276667 + 1.74680i 0.00980003 + 0.0618750i 0.992104 0.125420i \(-0.0400279\pi\)
−0.982304 + 0.187295i \(0.940028\pi\)
\(798\) −1.04059 6.57006i −0.0368367 0.232577i
\(799\) 5.99354 18.4462i 0.212036 0.652581i
\(800\) 0 0
\(801\) −15.3828 + 11.1762i −0.543523 + 0.394893i
\(802\) 9.82669 9.82669i 0.346992 0.346992i
\(803\) 34.9001 34.5259i 1.23160 1.21839i
\(804\) 3.73160i 0.131603i
\(805\) 0 0
\(806\) −2.97684 9.16176i −0.104855 0.322709i
\(807\) −23.2186 + 11.8305i −0.817335 + 0.416453i
\(808\) −3.46372 + 0.548599i −0.121853 + 0.0192996i
\(809\) 14.9294 + 10.8468i 0.524889 + 0.381354i 0.818443 0.574588i \(-0.194838\pi\)
−0.293553 + 0.955943i \(0.594838\pi\)
\(810\) 0 0
\(811\) −12.4057 + 4.03086i −0.435624 + 0.141543i −0.518616 0.855007i \(-0.673552\pi\)
0.0829918 + 0.996550i \(0.473552\pi\)
\(812\) −13.4192 2.12539i −0.470920 0.0745865i
\(813\) −1.12013 1.12013i −0.0392847 0.0392847i
\(814\) −1.09921 1.53020i −0.0385273 0.0536336i
\(815\) 0 0
\(816\) −9.26472 12.7518i −0.324330 0.446402i
\(817\) −13.3517 + 26.2042i −0.467117 + 0.916768i
\(818\) 0.537108 + 1.05413i 0.0187796 + 0.0368569i
\(819\) 8.53770 11.7511i 0.298331 0.410618i
\(820\) 0 0
\(821\) −24.7703 8.04835i −0.864489 0.280889i −0.156987 0.987601i \(-0.550178\pi\)
−0.707502 + 0.706711i \(0.750178\pi\)
\(822\) 7.61938 + 3.88227i 0.265756 + 0.135410i
\(823\) −0.785962 + 4.96237i −0.0273969 + 0.172977i −0.997593 0.0693449i \(-0.977909\pi\)
0.970196 + 0.242322i \(0.0779091\pi\)
\(824\) −11.3361 −0.394912
\(825\) 0 0
\(826\) 2.28625 0.0795488
\(827\) −1.90393 + 12.0210i −0.0662062 + 0.418010i 0.932218 + 0.361897i \(0.117871\pi\)
−0.998424 + 0.0561130i \(0.982129\pi\)
\(828\) −8.01010 4.08135i −0.278370 0.141837i
\(829\) −10.4727 3.40277i −0.363730 0.118183i 0.121449 0.992598i \(-0.461246\pi\)
−0.485180 + 0.874415i \(0.661246\pi\)
\(830\) 0 0
\(831\) 9.54711 13.1405i 0.331185 0.455838i
\(832\) 3.76227 + 7.38386i 0.130433 + 0.255989i
\(833\) 3.60057 7.06651i 0.124752 0.244840i
\(834\) 1.36127 + 1.87363i 0.0471370 + 0.0648785i
\(835\) 0 0
\(836\) 7.27804 + 22.8171i 0.251716 + 0.789148i
\(837\) −25.5338 25.5338i −0.882578 0.882578i
\(838\) −7.92807 1.25568i −0.273871 0.0433769i
\(839\) 8.83685 2.87127i 0.305082 0.0991272i −0.152475 0.988307i \(-0.548724\pi\)
0.457557 + 0.889180i \(0.348724\pi\)
\(840\) 0 0
\(841\) 17.8031 + 12.9347i 0.613900 + 0.446024i
\(842\) −6.01384 + 0.952498i −0.207251 + 0.0328253i
\(843\) 25.7619 13.1264i 0.887288 0.452096i
\(844\) −4.82040 14.8357i −0.165925 0.510665i
\(845\) 0 0
\(846\) 3.05979i 0.105198i
\(847\) 28.4253 + 14.8715i 0.976706 + 0.510990i
\(848\) 2.74398 2.74398i 0.0942286 0.0942286i
\(849\) −6.83093 + 4.96296i −0.234437 + 0.170328i
\(850\) 0 0
\(851\) −1.07798 + 3.31768i −0.0369527 + 0.113729i
\(852\) −0.902066 5.69542i −0.0309043 0.195122i
\(853\) −4.23097 26.7133i −0.144866 0.914645i −0.947867 0.318667i \(-0.896765\pi\)
0.803001 0.595978i \(-0.203235\pi\)
\(854\) −3.05346 + 9.39759i −0.104487 + 0.321579i
\(855\) 0 0
\(856\) −0.647232 + 0.470242i −0.0221220 + 0.0160725i
\(857\) −33.1497 + 33.1497i −1.13237 + 1.13237i −0.142591 + 0.989782i \(0.545543\pi\)
−0.989782 + 0.142591i \(0.954457\pi\)
\(858\) −2.47765 + 4.79856i −0.0845857 + 0.163820i
\(859\) 47.2517i 1.61221i −0.591775 0.806103i \(-0.701573\pi\)
0.591775 0.806103i \(-0.298427\pi\)
\(860\) 0 0
\(861\) −3.65072 11.2358i −0.124416 0.382914i
\(862\) −8.63057 + 4.39749i −0.293958 + 0.149779i
\(863\) −15.3690 + 2.43422i −0.523168 + 0.0828617i −0.412432 0.910988i \(-0.635321\pi\)
−0.110736 + 0.993850i \(0.535321\pi\)
\(864\) −21.4801 15.6062i −0.730768 0.530934i
\(865\) 0 0
\(866\) −13.2947 + 4.31972i −0.451773 + 0.146790i
\(867\) 12.1006 + 1.91655i 0.410959 + 0.0650896i
\(868\) 24.4863 + 24.4863i 0.831118 + 0.831118i
\(869\) 29.9413 40.7470i 1.01569 1.38225i
\(870\) 0 0
\(871\) −3.19826 4.40203i −0.108369 0.149157i
\(872\) 7.89464 15.4941i 0.267346 0.524696i
\(873\) −7.77913 15.2674i −0.263284 0.516723i
\(874\) −3.52861 + 4.85671i −0.119357 + 0.164281i
\(875\) 0 0
\(876\) −28.2536 9.18015i −0.954601 0.310169i
\(877\) 25.9562 + 13.2254i 0.876480 + 0.446589i 0.833521 0.552488i \(-0.186321\pi\)
0.0429592 + 0.999077i \(0.486321\pi\)
\(878\) −0.238560 + 1.50621i −0.00805101 + 0.0508321i
\(879\) 16.7229 0.564048
\(880\) 0 0
\(881\) 4.18815 0.141102 0.0705512 0.997508i \(-0.477524\pi\)
0.0705512 + 0.997508i \(0.477524\pi\)
\(882\) 0.195725 1.23576i 0.00659041 0.0416102i
\(883\) 40.7349 + 20.7555i 1.37084 + 0.698477i 0.975488 0.220053i \(-0.0706229\pi\)
0.395351 + 0.918530i \(0.370623\pi\)
\(884\) −25.8286 8.39221i −0.868709 0.282261i
\(885\) 0 0
\(886\) −9.11003 + 12.5389i −0.306057 + 0.421252i
\(887\) 15.6438 + 30.7027i 0.525267 + 1.03090i 0.989412 + 0.145136i \(0.0463619\pi\)
−0.464144 + 0.885760i \(0.653638\pi\)
\(888\) −1.10529 + 2.16926i −0.0370912 + 0.0727955i
\(889\) 16.1646 + 22.2487i 0.542143 + 0.746196i
\(890\) 0 0
\(891\) −0.0178389 + 3.31037i −0.000597626 + 0.110902i
\(892\) −7.70048 7.70048i −0.257831 0.257831i
\(893\) 14.9068 + 2.36100i 0.498836 + 0.0790078i
\(894\) 9.51300 3.09096i 0.318162 0.103377i
\(895\) 0 0
\(896\) 26.6503 + 19.3626i 0.890323 + 0.646857i
\(897\) 9.87594 1.56420i 0.329748 0.0522270i
\(898\) 15.2266 7.75836i 0.508119 0.258900i
\(899\) 5.50871 + 16.9541i 0.183726 + 0.565450i
\(900\) 0 0
\(901\) 7.78489i 0.259352i
\(902\) −2.58659 5.14481i −0.0861239 0.171303i
\(903\) 16.8566 16.8566i 0.560951 0.560951i
\(904\) 30.1177 21.8818i 1.00170 0.727778i
\(905\) 0 0
\(906\) 3.05911 9.41497i 0.101632 0.312791i
\(907\) −6.02474 38.0387i −0.200048 1.26306i −0.859433 0.511249i \(-0.829183\pi\)
0.659384 0.751806i \(-0.270817\pi\)
\(908\) 0.913965 + 5.77055i 0.0303310 + 0.191502i
\(909\) −1.00402 + 3.09005i −0.0333012 + 0.102490i
\(910\) 0 0
\(911\) 29.8280 21.6713i 0.988244 0.718002i 0.0287085 0.999588i \(-0.490861\pi\)
0.959536 + 0.281586i \(0.0908605\pi\)
\(912\) 8.67283 8.67283i 0.287186 0.287186i
\(913\) −9.95566 19.8022i −0.329484 0.655356i
\(914\) 2.49056i 0.0823805i
\(915\) 0 0
\(916\) −2.90677 8.94611i −0.0960423 0.295588i
\(917\) 19.5326 9.95237i 0.645024 0.328656i
\(918\) 13.6122 2.15595i 0.449268 0.0711571i
\(919\) 24.5973 + 17.8710i 0.811392 + 0.589510i 0.914234 0.405187i \(-0.132794\pi\)
−0.102842 + 0.994698i \(0.532794\pi\)
\(920\) 0 0
\(921\) 1.34081 0.435657i 0.0441813 0.0143554i
\(922\) 6.01478 + 0.952647i 0.198086 + 0.0313738i
\(923\) −5.94554 5.94554i −0.195700 0.195700i
\(924\) 0.104612 19.4129i 0.00344148 0.638636i
\(925\) 0 0
\(926\) −7.82350 10.7681i −0.257096 0.353862i
\(927\) −4.76812 + 9.35797i −0.156606 + 0.307356i
\(928\) 5.95063 + 11.6788i 0.195339 + 0.383374i
\(929\) −13.6936 + 18.8477i −0.449273 + 0.618372i −0.972241 0.233981i \(-0.924825\pi\)
0.522968 + 0.852352i \(0.324825\pi\)
\(930\) 0 0
\(931\) 5.86938 + 1.90708i 0.192361 + 0.0625020i
\(932\) −6.93458 3.53335i −0.227150 0.115739i
\(933\) −2.52147 + 15.9199i −0.0825493 + 0.521196i
\(934\) 19.3837 0.634254
\(935\) 0 0
\(936\) −9.14869 −0.299034
\(937\) −1.25828 + 7.94449i −0.0411063 + 0.259535i −0.999680 0.0253108i \(-0.991942\pi\)
0.958573 + 0.284846i \(0.0919425\pi\)
\(938\) −2.35937 1.20216i −0.0770362 0.0392519i
\(939\) −0.801481 0.260417i −0.0261553 0.00849838i
\(940\) 0 0
\(941\) 28.1490 38.7438i 0.917631 1.26301i −0.0468615 0.998901i \(-0.514922\pi\)
0.964493 0.264110i \(-0.0850781\pi\)
\(942\) 5.42198 + 10.6412i 0.176658 + 0.346710i
\(943\) −4.84037 + 9.49976i −0.157624 + 0.309355i
\(944\) 2.47782 + 3.41042i 0.0806460 + 0.111000i
\(945\) 0 0
\(946\) 6.88039 9.36352i 0.223701 0.304434i
\(947\) −9.38618 9.38618i −0.305010 0.305010i 0.537960 0.842970i \(-0.319195\pi\)
−0.842970 + 0.537960i \(0.819195\pi\)
\(948\) −30.2219 4.78668i −0.981563 0.155464i
\(949\) −41.1978 + 13.3860i −1.33734 + 0.434528i
\(950\) 0 0
\(951\) 15.7309 + 11.4292i 0.510109 + 0.370616i
\(952\) −27.8746 + 4.41491i −0.903422 + 0.143088i
\(953\) −47.4428 + 24.1733i −1.53682 + 0.783051i −0.998228 0.0595128i \(-0.981045\pi\)
−0.538597 + 0.842564i \(0.681045\pi\)
\(954\) 0.379511 + 1.16802i 0.0122871 + 0.0378159i
\(955\) 0 0
\(956\) 18.4130i 0.595519i
\(957\) 4.58496 8.87987i 0.148211 0.287045i
\(958\) −13.2098 + 13.2098i −0.426790 + 0.426790i
\(959\) −36.2628 + 26.3465i −1.17099 + 0.850772i
\(960\) 0 0
\(961\) 4.46097 13.7294i 0.143902 0.442885i
\(962\) 0.260069 + 1.64201i 0.00838495 + 0.0529405i
\(963\) 0.115950 + 0.732081i 0.00373644 + 0.0235910i
\(964\) −15.1642 + 46.6706i −0.488406 + 1.50316i
\(965\) 0 0
\(966\) 3.93674 2.86021i 0.126662 0.0920256i
\(967\) 38.6475 38.6475i 1.24282 1.24282i 0.283994 0.958826i \(-0.408340\pi\)
0.958826 0.283994i \(-0.0916596\pi\)
\(968\) −2.94563 19.9901i −0.0946763 0.642505i
\(969\) 24.6055i 0.790443i
\(970\) 0 0
\(971\) 2.55556 + 7.86521i 0.0820119 + 0.252407i 0.983652 0.180081i \(-0.0576360\pi\)
−0.901640 + 0.432487i \(0.857636\pi\)
\(972\) −23.4395 + 11.9430i −0.751823 + 0.383073i
\(973\) −11.9898 + 1.89900i −0.384375 + 0.0608790i
\(974\) −10.7378 7.80149i −0.344062 0.249976i
\(975\) 0 0
\(976\) −17.3278 + 5.63014i −0.554649 + 0.180216i
\(977\) 54.0805 + 8.56551i 1.73019 + 0.274035i 0.940579 0.339575i \(-0.110283\pi\)
0.789610 + 0.613610i \(0.210283\pi\)
\(978\) −4.10153 4.10153i −0.131152 0.131152i
\(979\) 11.2607 + 35.3029i 0.359892 + 1.12829i
\(980\) 0 0
\(981\) −9.46980 13.0341i −0.302347 0.416145i
\(982\) 0.880571 1.72822i 0.0281001 0.0551496i
\(983\) 6.19202 + 12.1525i 0.197495 + 0.387606i 0.968422 0.249318i \(-0.0802065\pi\)
−0.770927 + 0.636924i \(0.780207\pi\)
\(984\) −4.37373 + 6.01992i −0.139429 + 0.191908i
\(985\) 0 0
\(986\) −6.47069 2.10245i −0.206069 0.0669558i
\(987\) −10.9003 5.55398i −0.346960 0.176785i
\(988\) 3.30589 20.8726i 0.105174 0.664045i
\(989\) −21.5139 −0.684102
\(990\) 0 0
\(991\) 6.43457 0.204401 0.102200 0.994764i \(-0.467412\pi\)
0.102200 + 0.994764i \(0.467412\pi\)
\(992\) 5.22613 32.9965i 0.165930 1.04764i
\(993\) −15.1453 7.71694i −0.480623 0.244890i
\(994\) −3.89164 1.26447i −0.123435 0.0401066i
\(995\) 0 0
\(996\) −7.88351 + 10.8507i −0.249799 + 0.343818i
\(997\) 9.65934 + 18.9575i 0.305914 + 0.600391i 0.991870 0.127252i \(-0.0406158\pi\)
−0.685956 + 0.727643i \(0.740616\pi\)
\(998\) 1.42445 2.79564i 0.0450901 0.0884943i
\(999\) 3.66296 + 5.04163i 0.115891 + 0.159510i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.bm.b.107.3 32
5.2 odd 4 55.2.l.a.8.3 yes 32
5.3 odd 4 inner 275.2.bm.b.118.2 32
5.4 even 2 55.2.l.a.52.2 yes 32
11.7 odd 10 inner 275.2.bm.b.7.2 32
15.2 even 4 495.2.bj.a.118.2 32
15.14 odd 2 495.2.bj.a.217.3 32
20.7 even 4 880.2.cm.a.833.2 32
20.19 odd 2 880.2.cm.a.657.3 32
55.2 even 20 605.2.e.b.483.9 32
55.4 even 10 605.2.m.e.282.2 32
55.7 even 20 55.2.l.a.18.2 yes 32
55.9 even 10 605.2.e.b.362.9 32
55.14 even 10 605.2.m.c.457.3 32
55.17 even 20 605.2.m.c.233.3 32
55.18 even 20 inner 275.2.bm.b.18.3 32
55.19 odd 10 605.2.m.d.457.2 32
55.24 odd 10 605.2.e.b.362.8 32
55.27 odd 20 605.2.m.d.233.2 32
55.29 odd 10 55.2.l.a.7.3 32
55.32 even 4 605.2.m.e.118.2 32
55.37 odd 20 605.2.m.e.403.3 32
55.39 odd 10 605.2.m.c.112.3 32
55.42 odd 20 605.2.e.b.483.8 32
55.47 odd 20 605.2.m.c.578.3 32
55.49 even 10 605.2.m.d.112.2 32
55.52 even 20 605.2.m.d.578.2 32
55.54 odd 2 605.2.m.e.602.3 32
165.29 even 10 495.2.bj.a.172.2 32
165.62 odd 20 495.2.bj.a.73.3 32
220.7 odd 20 880.2.cm.a.513.3 32
220.139 even 10 880.2.cm.a.337.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.l.a.7.3 32 55.29 odd 10
55.2.l.a.8.3 yes 32 5.2 odd 4
55.2.l.a.18.2 yes 32 55.7 even 20
55.2.l.a.52.2 yes 32 5.4 even 2
275.2.bm.b.7.2 32 11.7 odd 10 inner
275.2.bm.b.18.3 32 55.18 even 20 inner
275.2.bm.b.107.3 32 1.1 even 1 trivial
275.2.bm.b.118.2 32 5.3 odd 4 inner
495.2.bj.a.73.3 32 165.62 odd 20
495.2.bj.a.118.2 32 15.2 even 4
495.2.bj.a.172.2 32 165.29 even 10
495.2.bj.a.217.3 32 15.14 odd 2
605.2.e.b.362.8 32 55.24 odd 10
605.2.e.b.362.9 32 55.9 even 10
605.2.e.b.483.8 32 55.42 odd 20
605.2.e.b.483.9 32 55.2 even 20
605.2.m.c.112.3 32 55.39 odd 10
605.2.m.c.233.3 32 55.17 even 20
605.2.m.c.457.3 32 55.14 even 10
605.2.m.c.578.3 32 55.47 odd 20
605.2.m.d.112.2 32 55.49 even 10
605.2.m.d.233.2 32 55.27 odd 20
605.2.m.d.457.2 32 55.19 odd 10
605.2.m.d.578.2 32 55.52 even 20
605.2.m.e.118.2 32 55.32 even 4
605.2.m.e.282.2 32 55.4 even 10
605.2.m.e.403.3 32 55.37 odd 20
605.2.m.e.602.3 32 55.54 odd 2
880.2.cm.a.337.2 32 220.139 even 10
880.2.cm.a.513.3 32 220.7 odd 20
880.2.cm.a.657.3 32 20.19 odd 2
880.2.cm.a.833.2 32 20.7 even 4