Properties

Label 275.2.bf
Level $275$
Weight $2$
Character orbit 275.bf
Rep. character $\chi_{275}(28,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $224$
Newform subspaces $1$
Sturm bound $60$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.bf (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 275 \)
Character field: \(\Q(\zeta_{20})\)
Newform subspaces: \( 1 \)
Sturm bound: \(60\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(275, [\chi])\).

Total New Old
Modular forms 256 256 0
Cusp forms 224 224 0
Eisenstein series 32 32 0

Trace form

\( 224 q - 10 q^{2} - 14 q^{3} - 2 q^{5} - 10 q^{6} - 10 q^{7} + 10 q^{8} - 20 q^{9} + 20 q^{10} - 6 q^{11} - 38 q^{12} - 30 q^{13} - 10 q^{14} - 6 q^{15} - 188 q^{16} - 40 q^{18} - 20 q^{19} + 6 q^{20} + 30 q^{22}+ \cdots - 220 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(275, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
275.2.bf.a 275.bf 275.af $224$ $2.196$ None 275.2.bf.a \(-10\) \(-14\) \(-2\) \(-10\) $\mathrm{SU}(2)[C_{20}]$