Newspace parameters
Level: | \( N \) | \(=\) | \( 275 = 5^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 275.b (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.19588605559\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | \(\Q(\zeta_{8})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 2^{3} \) |
Twist minimal: | no (minimal twist has level 55) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring
\(\beta_{1}\) | \(=\) |
\( \zeta_{8}^{3} + \zeta_{8}^{2} + \zeta_{8} \)
|
\(\beta_{2}\) | \(=\) |
\( -\zeta_{8}^{3} + \zeta_{8}^{2} - \zeta_{8} \)
|
\(\beta_{3}\) | \(=\) |
\( -2\zeta_{8}^{3} + 2\zeta_{8} \)
|
\(\zeta_{8}\) | \(=\) |
\( ( \beta_{3} - \beta_{2} + \beta_1 ) / 4 \)
|
\(\zeta_{8}^{2}\) | \(=\) |
\( ( \beta_{2} + \beta_1 ) / 2 \)
|
\(\zeta_{8}^{3}\) | \(=\) |
\( ( -\beta_{3} - \beta_{2} + \beta_1 ) / 4 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).
\(n\) | \(101\) | \(177\) |
\(\chi(n)\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
199.1 |
|
− | 2.41421i | − | 2.82843i | −3.82843 | 0 | −6.82843 | 2.00000i | 4.41421i | −5.00000 | 0 | ||||||||||||||||||||||||||||
199.2 | − | 0.414214i | − | 2.82843i | 1.82843 | 0 | −1.17157 | − | 2.00000i | − | 1.58579i | −5.00000 | 0 | |||||||||||||||||||||||||||
199.3 | 0.414214i | 2.82843i | 1.82843 | 0 | −1.17157 | 2.00000i | 1.58579i | −5.00000 | 0 | |||||||||||||||||||||||||||||||
199.4 | 2.41421i | 2.82843i | −3.82843 | 0 | −6.82843 | − | 2.00000i | − | 4.41421i | −5.00000 | 0 | |||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 275.2.b.d | 4 | |
3.b | odd | 2 | 1 | 2475.2.c.l | 4 | ||
4.b | odd | 2 | 1 | 4400.2.b.q | 4 | ||
5.b | even | 2 | 1 | inner | 275.2.b.d | 4 | |
5.c | odd | 4 | 1 | 55.2.a.b | ✓ | 2 | |
5.c | odd | 4 | 1 | 275.2.a.c | 2 | ||
15.d | odd | 2 | 1 | 2475.2.c.l | 4 | ||
15.e | even | 4 | 1 | 495.2.a.b | 2 | ||
15.e | even | 4 | 1 | 2475.2.a.x | 2 | ||
20.d | odd | 2 | 1 | 4400.2.b.q | 4 | ||
20.e | even | 4 | 1 | 880.2.a.m | 2 | ||
20.e | even | 4 | 1 | 4400.2.a.bn | 2 | ||
35.f | even | 4 | 1 | 2695.2.a.f | 2 | ||
40.i | odd | 4 | 1 | 3520.2.a.bn | 2 | ||
40.k | even | 4 | 1 | 3520.2.a.bo | 2 | ||
55.e | even | 4 | 1 | 605.2.a.d | 2 | ||
55.e | even | 4 | 1 | 3025.2.a.o | 2 | ||
55.k | odd | 20 | 4 | 605.2.g.f | 8 | ||
55.l | even | 20 | 4 | 605.2.g.l | 8 | ||
60.l | odd | 4 | 1 | 7920.2.a.ch | 2 | ||
65.h | odd | 4 | 1 | 9295.2.a.g | 2 | ||
165.l | odd | 4 | 1 | 5445.2.a.y | 2 | ||
220.i | odd | 4 | 1 | 9680.2.a.bn | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
55.2.a.b | ✓ | 2 | 5.c | odd | 4 | 1 | |
275.2.a.c | 2 | 5.c | odd | 4 | 1 | ||
275.2.b.d | 4 | 1.a | even | 1 | 1 | trivial | |
275.2.b.d | 4 | 5.b | even | 2 | 1 | inner | |
495.2.a.b | 2 | 15.e | even | 4 | 1 | ||
605.2.a.d | 2 | 55.e | even | 4 | 1 | ||
605.2.g.f | 8 | 55.k | odd | 20 | 4 | ||
605.2.g.l | 8 | 55.l | even | 20 | 4 | ||
880.2.a.m | 2 | 20.e | even | 4 | 1 | ||
2475.2.a.x | 2 | 15.e | even | 4 | 1 | ||
2475.2.c.l | 4 | 3.b | odd | 2 | 1 | ||
2475.2.c.l | 4 | 15.d | odd | 2 | 1 | ||
2695.2.a.f | 2 | 35.f | even | 4 | 1 | ||
3025.2.a.o | 2 | 55.e | even | 4 | 1 | ||
3520.2.a.bn | 2 | 40.i | odd | 4 | 1 | ||
3520.2.a.bo | 2 | 40.k | even | 4 | 1 | ||
4400.2.a.bn | 2 | 20.e | even | 4 | 1 | ||
4400.2.b.q | 4 | 4.b | odd | 2 | 1 | ||
4400.2.b.q | 4 | 20.d | odd | 2 | 1 | ||
5445.2.a.y | 2 | 165.l | odd | 4 | 1 | ||
7920.2.a.ch | 2 | 60.l | odd | 4 | 1 | ||
9295.2.a.g | 2 | 65.h | odd | 4 | 1 | ||
9680.2.a.bn | 2 | 220.i | odd | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{4} + 6T_{2}^{2} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(275, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} + 6T^{2} + 1 \)
$3$
\( (T^{2} + 8)^{2} \)
$5$
\( T^{4} \)
$7$
\( (T^{2} + 4)^{2} \)
$11$
\( (T - 1)^{4} \)
$13$
\( T^{4} + 48T^{2} + 64 \)
$17$
\( T^{4} + 48T^{2} + 64 \)
$19$
\( T^{4} \)
$23$
\( (T^{2} + 8)^{2} \)
$29$
\( (T^{2} + 4 T - 28)^{2} \)
$31$
\( T^{4} \)
$37$
\( T^{4} + 72T^{2} + 784 \)
$41$
\( (T - 6)^{4} \)
$43$
\( (T^{2} + 36)^{2} \)
$47$
\( (T^{2} + 8)^{2} \)
$53$
\( T^{4} + 136T^{2} + 16 \)
$59$
\( (T^{2} - 8 T - 16)^{2} \)
$61$
\( (T^{2} - 4 T - 124)^{2} \)
$67$
\( T^{4} + 176T^{2} + 3136 \)
$71$
\( (T^{2} - 128)^{2} \)
$73$
\( T^{4} + 48T^{2} + 64 \)
$79$
\( (T + 4)^{4} \)
$83$
\( (T^{2} + 36)^{2} \)
$89$
\( (T^{2} - 4 T - 124)^{2} \)
$97$
\( T^{4} + 72T^{2} + 784 \)
show more
show less