# Properties

 Label 275.2.b.c.199.2 Level $275$ Weight $2$ Character 275.199 Analytic conductor $2.196$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [275,2,Mod(199,275)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(275, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([1, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("275.199");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$275 = 5^{2} \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 275.b (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$2.19588605559$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(i, \sqrt{13})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{4} + 7x^{2} + 9$$ x^4 + 7*x^2 + 9 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## Embedding invariants

 Embedding label 199.2 Root $$-1.30278i$$ of defining polynomial Character $$\chi$$ $$=$$ 275.199 Dual form 275.2.b.c.199.3

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q-1.30278i q^{2} -2.30278i q^{3} +0.302776 q^{4} -3.00000 q^{6} +0.697224i q^{7} -3.00000i q^{8} -2.30278 q^{9} +O(q^{10})$$ $$q-1.30278i q^{2} -2.30278i q^{3} +0.302776 q^{4} -3.00000 q^{6} +0.697224i q^{7} -3.00000i q^{8} -2.30278 q^{9} -1.00000 q^{11} -0.697224i q^{12} -5.00000i q^{13} +0.908327 q^{14} -3.30278 q^{16} +6.90833i q^{17} +3.00000i q^{18} +1.00000 q^{19} +1.60555 q^{21} +1.30278i q^{22} +7.30278i q^{23} -6.90833 q^{24} -6.51388 q^{26} -1.60555i q^{27} +0.211103i q^{28} -0.908327 q^{29} +10.2111 q^{31} -1.69722i q^{32} +2.30278i q^{33} +9.00000 q^{34} -0.697224 q^{36} +2.39445i q^{37} -1.30278i q^{38} -11.5139 q^{39} -5.60555 q^{41} -2.09167i q^{42} -7.21110i q^{43} -0.302776 q^{44} +9.51388 q^{46} -3.00000i q^{47} +7.60555i q^{48} +6.51388 q^{49} +15.9083 q^{51} -1.51388i q^{52} +1.30278i q^{53} -2.09167 q^{54} +2.09167 q^{56} -2.30278i q^{57} +1.18335i q^{58} +14.2111 q^{59} -7.90833 q^{61} -13.3028i q^{62} -1.60555i q^{63} -8.81665 q^{64} +3.00000 q^{66} -4.00000i q^{67} +2.09167i q^{68} +16.8167 q^{69} -2.60555 q^{71} +6.90833i q^{72} +7.90833i q^{73} +3.11943 q^{74} +0.302776 q^{76} -0.697224i q^{77} +15.0000i q^{78} +10.9083 q^{79} -10.6056 q^{81} +7.30278i q^{82} +3.51388i q^{83} +0.486122 q^{84} -9.39445 q^{86} +2.09167i q^{87} +3.00000i q^{88} -1.69722 q^{89} +3.48612 q^{91} +2.21110i q^{92} -23.5139i q^{93} -3.90833 q^{94} -3.90833 q^{96} +15.3028i q^{97} -8.48612i q^{98} +2.30278 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q - 6 q^{4} - 12 q^{6} - 2 q^{9}+O(q^{10})$$ 4 * q - 6 * q^4 - 12 * q^6 - 2 * q^9 $$4 q - 6 q^{4} - 12 q^{6} - 2 q^{9} - 4 q^{11} - 18 q^{14} - 6 q^{16} + 4 q^{19} - 8 q^{21} - 6 q^{24} + 10 q^{26} + 18 q^{29} + 12 q^{31} + 36 q^{34} - 10 q^{36} - 10 q^{39} - 8 q^{41} + 6 q^{44} + 2 q^{46} - 10 q^{49} + 42 q^{51} - 30 q^{54} + 30 q^{56} + 28 q^{59} - 10 q^{61} + 8 q^{64} + 12 q^{66} + 24 q^{69} + 4 q^{71} - 38 q^{74} - 6 q^{76} + 22 q^{79} - 28 q^{81} + 38 q^{84} - 52 q^{86} - 14 q^{89} + 50 q^{91} + 6 q^{94} + 6 q^{96} + 2 q^{99}+O(q^{100})$$ 4 * q - 6 * q^4 - 12 * q^6 - 2 * q^9 - 4 * q^11 - 18 * q^14 - 6 * q^16 + 4 * q^19 - 8 * q^21 - 6 * q^24 + 10 * q^26 + 18 * q^29 + 12 * q^31 + 36 * q^34 - 10 * q^36 - 10 * q^39 - 8 * q^41 + 6 * q^44 + 2 * q^46 - 10 * q^49 + 42 * q^51 - 30 * q^54 + 30 * q^56 + 28 * q^59 - 10 * q^61 + 8 * q^64 + 12 * q^66 + 24 * q^69 + 4 * q^71 - 38 * q^74 - 6 * q^76 + 22 * q^79 - 28 * q^81 + 38 * q^84 - 52 * q^86 - 14 * q^89 + 50 * q^91 + 6 * q^94 + 6 * q^96 + 2 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/275\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$177$$ $$\chi(n)$$ $$1$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ − 1.30278i − 0.921201i −0.887607 0.460601i $$-0.847634\pi$$
0.887607 0.460601i $$-0.152366\pi$$
$$3$$ − 2.30278i − 1.32951i −0.747062 0.664754i $$-0.768536\pi$$
0.747062 0.664754i $$-0.231464\pi$$
$$4$$ 0.302776 0.151388
$$5$$ 0 0
$$6$$ −3.00000 −1.22474
$$7$$ 0.697224i 0.263526i 0.991281 + 0.131763i $$0.0420638\pi$$
−0.991281 + 0.131763i $$0.957936\pi$$
$$8$$ − 3.00000i − 1.06066i
$$9$$ −2.30278 −0.767592
$$10$$ 0 0
$$11$$ −1.00000 −0.301511
$$12$$ − 0.697224i − 0.201271i
$$13$$ − 5.00000i − 1.38675i −0.720577 0.693375i $$-0.756123\pi$$
0.720577 0.693375i $$-0.243877\pi$$
$$14$$ 0.908327 0.242761
$$15$$ 0 0
$$16$$ −3.30278 −0.825694
$$17$$ 6.90833i 1.67552i 0.546042 + 0.837758i $$0.316134\pi$$
−0.546042 + 0.837758i $$0.683866\pi$$
$$18$$ 3.00000i 0.707107i
$$19$$ 1.00000 0.229416 0.114708 0.993399i $$-0.463407\pi$$
0.114708 + 0.993399i $$0.463407\pi$$
$$20$$ 0 0
$$21$$ 1.60555 0.350360
$$22$$ 1.30278i 0.277753i
$$23$$ 7.30278i 1.52273i 0.648321 + 0.761367i $$0.275471\pi$$
−0.648321 + 0.761367i $$0.724529\pi$$
$$24$$ −6.90833 −1.41016
$$25$$ 0 0
$$26$$ −6.51388 −1.27748
$$27$$ − 1.60555i − 0.308988i
$$28$$ 0.211103i 0.0398946i
$$29$$ −0.908327 −0.168672 −0.0843360 0.996437i $$-0.526877\pi$$
−0.0843360 + 0.996437i $$0.526877\pi$$
$$30$$ 0 0
$$31$$ 10.2111 1.83397 0.916984 0.398924i $$-0.130616\pi$$
0.916984 + 0.398924i $$0.130616\pi$$
$$32$$ − 1.69722i − 0.300030i
$$33$$ 2.30278i 0.400862i
$$34$$ 9.00000 1.54349
$$35$$ 0 0
$$36$$ −0.697224 −0.116204
$$37$$ 2.39445i 0.393645i 0.980439 + 0.196822i $$0.0630623\pi$$
−0.980439 + 0.196822i $$0.936938\pi$$
$$38$$ − 1.30278i − 0.211338i
$$39$$ −11.5139 −1.84370
$$40$$ 0 0
$$41$$ −5.60555 −0.875440 −0.437720 0.899111i $$-0.644214\pi$$
−0.437720 + 0.899111i $$0.644214\pi$$
$$42$$ − 2.09167i − 0.322752i
$$43$$ − 7.21110i − 1.09968i −0.835269 0.549841i $$-0.814688\pi$$
0.835269 0.549841i $$-0.185312\pi$$
$$44$$ −0.302776 −0.0456451
$$45$$ 0 0
$$46$$ 9.51388 1.40274
$$47$$ − 3.00000i − 0.437595i −0.975770 0.218797i $$-0.929787\pi$$
0.975770 0.218797i $$-0.0702134\pi$$
$$48$$ 7.60555i 1.09777i
$$49$$ 6.51388 0.930554
$$50$$ 0 0
$$51$$ 15.9083 2.22761
$$52$$ − 1.51388i − 0.209937i
$$53$$ 1.30278i 0.178950i 0.995989 + 0.0894750i $$0.0285189\pi$$
−0.995989 + 0.0894750i $$0.971481\pi$$
$$54$$ −2.09167 −0.284641
$$55$$ 0 0
$$56$$ 2.09167 0.279512
$$57$$ − 2.30278i − 0.305010i
$$58$$ 1.18335i 0.155381i
$$59$$ 14.2111 1.85013 0.925064 0.379811i $$-0.124011\pi$$
0.925064 + 0.379811i $$0.124011\pi$$
$$60$$ 0 0
$$61$$ −7.90833 −1.01256 −0.506279 0.862370i $$-0.668979\pi$$
−0.506279 + 0.862370i $$0.668979\pi$$
$$62$$ − 13.3028i − 1.68945i
$$63$$ − 1.60555i − 0.202280i
$$64$$ −8.81665 −1.10208
$$65$$ 0 0
$$66$$ 3.00000 0.369274
$$67$$ − 4.00000i − 0.488678i −0.969690 0.244339i $$-0.921429\pi$$
0.969690 0.244339i $$-0.0785709\pi$$
$$68$$ 2.09167i 0.253653i
$$69$$ 16.8167 2.02449
$$70$$ 0 0
$$71$$ −2.60555 −0.309222 −0.154611 0.987975i $$-0.549412\pi$$
−0.154611 + 0.987975i $$0.549412\pi$$
$$72$$ 6.90833i 0.814154i
$$73$$ 7.90833i 0.925600i 0.886463 + 0.462800i $$0.153155\pi$$
−0.886463 + 0.462800i $$0.846845\pi$$
$$74$$ 3.11943 0.362626
$$75$$ 0 0
$$76$$ 0.302776 0.0347307
$$77$$ − 0.697224i − 0.0794561i
$$78$$ 15.0000i 1.69842i
$$79$$ 10.9083 1.22728 0.613641 0.789585i $$-0.289704\pi$$
0.613641 + 0.789585i $$0.289704\pi$$
$$80$$ 0 0
$$81$$ −10.6056 −1.17839
$$82$$ 7.30278i 0.806457i
$$83$$ 3.51388i 0.385698i 0.981228 + 0.192849i $$0.0617728\pi$$
−0.981228 + 0.192849i $$0.938227\pi$$
$$84$$ 0.486122 0.0530402
$$85$$ 0 0
$$86$$ −9.39445 −1.01303
$$87$$ 2.09167i 0.224251i
$$88$$ 3.00000i 0.319801i
$$89$$ −1.69722 −0.179905 −0.0899527 0.995946i $$-0.528672\pi$$
−0.0899527 + 0.995946i $$0.528672\pi$$
$$90$$ 0 0
$$91$$ 3.48612 0.365445
$$92$$ 2.21110i 0.230523i
$$93$$ − 23.5139i − 2.43828i
$$94$$ −3.90833 −0.403113
$$95$$ 0 0
$$96$$ −3.90833 −0.398892
$$97$$ 15.3028i 1.55376i 0.629648 + 0.776881i $$0.283199\pi$$
−0.629648 + 0.776881i $$0.716801\pi$$
$$98$$ − 8.48612i − 0.857228i
$$99$$ 2.30278 0.231438
$$100$$ 0 0
$$101$$ −0.513878 −0.0511328 −0.0255664 0.999673i $$-0.508139\pi$$
−0.0255664 + 0.999673i $$0.508139\pi$$
$$102$$ − 20.7250i − 2.05208i
$$103$$ − 2.90833i − 0.286566i −0.989682 0.143283i $$-0.954234\pi$$
0.989682 0.143283i $$-0.0457659\pi$$
$$104$$ −15.0000 −1.47087
$$105$$ 0 0
$$106$$ 1.69722 0.164849
$$107$$ − 3.00000i − 0.290021i −0.989430 0.145010i $$-0.953678\pi$$
0.989430 0.145010i $$-0.0463216\pi$$
$$108$$ − 0.486122i − 0.0467771i
$$109$$ −11.5139 −1.10283 −0.551415 0.834231i $$-0.685912\pi$$
−0.551415 + 0.834231i $$0.685912\pi$$
$$110$$ 0 0
$$111$$ 5.51388 0.523354
$$112$$ − 2.30278i − 0.217592i
$$113$$ 10.8167i 1.01755i 0.860901 + 0.508773i $$0.169901\pi$$
−0.860901 + 0.508773i $$0.830099\pi$$
$$114$$ −3.00000 −0.280976
$$115$$ 0 0
$$116$$ −0.275019 −0.0255349
$$117$$ 11.5139i 1.06446i
$$118$$ − 18.5139i − 1.70434i
$$119$$ −4.81665 −0.441542
$$120$$ 0 0
$$121$$ 1.00000 0.0909091
$$122$$ 10.3028i 0.932769i
$$123$$ 12.9083i 1.16390i
$$124$$ 3.09167 0.277640
$$125$$ 0 0
$$126$$ −2.09167 −0.186341
$$127$$ 8.11943i 0.720483i 0.932859 + 0.360241i $$0.117306\pi$$
−0.932859 + 0.360241i $$0.882694\pi$$
$$128$$ 8.09167i 0.715210i
$$129$$ −16.6056 −1.46204
$$130$$ 0 0
$$131$$ −9.90833 −0.865695 −0.432847 0.901467i $$-0.642491\pi$$
−0.432847 + 0.901467i $$0.642491\pi$$
$$132$$ 0.697224i 0.0606856i
$$133$$ 0.697224i 0.0604570i
$$134$$ −5.21110 −0.450171
$$135$$ 0 0
$$136$$ 20.7250 1.77715
$$137$$ − 12.9083i − 1.10283i −0.834230 0.551416i $$-0.814088\pi$$
0.834230 0.551416i $$-0.185912\pi$$
$$138$$ − 21.9083i − 1.86496i
$$139$$ 6.21110 0.526819 0.263409 0.964684i $$-0.415153\pi$$
0.263409 + 0.964684i $$0.415153\pi$$
$$140$$ 0 0
$$141$$ −6.90833 −0.581786
$$142$$ 3.39445i 0.284856i
$$143$$ 5.00000i 0.418121i
$$144$$ 7.60555 0.633796
$$145$$ 0 0
$$146$$ 10.3028 0.852664
$$147$$ − 15.0000i − 1.23718i
$$148$$ 0.724981i 0.0595930i
$$149$$ −17.2111 −1.40999 −0.704994 0.709213i $$-0.749050\pi$$
−0.704994 + 0.709213i $$0.749050\pi$$
$$150$$ 0 0
$$151$$ 0.816654 0.0664583 0.0332292 0.999448i $$-0.489421\pi$$
0.0332292 + 0.999448i $$0.489421\pi$$
$$152$$ − 3.00000i − 0.243332i
$$153$$ − 15.9083i − 1.28611i
$$154$$ −0.908327 −0.0731951
$$155$$ 0 0
$$156$$ −3.48612 −0.279113
$$157$$ 19.2111i 1.53321i 0.642117 + 0.766606i $$0.278056\pi$$
−0.642117 + 0.766606i $$0.721944\pi$$
$$158$$ − 14.2111i − 1.13057i
$$159$$ 3.00000 0.237915
$$160$$ 0 0
$$161$$ −5.09167 −0.401280
$$162$$ 13.8167i 1.08554i
$$163$$ − 9.30278i − 0.728650i −0.931272 0.364325i $$-0.881300\pi$$
0.931272 0.364325i $$-0.118700\pi$$
$$164$$ −1.69722 −0.132531
$$165$$ 0 0
$$166$$ 4.57779 0.355306
$$167$$ 13.4222i 1.03864i 0.854579 + 0.519321i $$0.173815\pi$$
−0.854579 + 0.519321i $$0.826185\pi$$
$$168$$ − 4.81665i − 0.371613i
$$169$$ −12.0000 −0.923077
$$170$$ 0 0
$$171$$ −2.30278 −0.176098
$$172$$ − 2.18335i − 0.166479i
$$173$$ 4.81665i 0.366203i 0.983094 + 0.183102i $$0.0586138\pi$$
−0.983094 + 0.183102i $$0.941386\pi$$
$$174$$ 2.72498 0.206580
$$175$$ 0 0
$$176$$ 3.30278 0.248956
$$177$$ − 32.7250i − 2.45976i
$$178$$ 2.21110i 0.165729i
$$179$$ −12.5139 −0.935331 −0.467666 0.883905i $$-0.654905\pi$$
−0.467666 + 0.883905i $$0.654905\pi$$
$$180$$ 0 0
$$181$$ −19.9083 −1.47977 −0.739887 0.672731i $$-0.765121\pi$$
−0.739887 + 0.672731i $$0.765121\pi$$
$$182$$ − 4.54163i − 0.336648i
$$183$$ 18.2111i 1.34620i
$$184$$ 21.9083 1.61510
$$185$$ 0 0
$$186$$ −30.6333 −2.24614
$$187$$ − 6.90833i − 0.505187i
$$188$$ − 0.908327i − 0.0662465i
$$189$$ 1.11943 0.0814265
$$190$$ 0 0
$$191$$ 10.3028 0.745483 0.372741 0.927935i $$-0.378418\pi$$
0.372741 + 0.927935i $$0.378418\pi$$
$$192$$ 20.3028i 1.46523i
$$193$$ − 13.2111i − 0.950956i −0.879728 0.475478i $$-0.842275\pi$$
0.879728 0.475478i $$-0.157725\pi$$
$$194$$ 19.9361 1.43133
$$195$$ 0 0
$$196$$ 1.97224 0.140875
$$197$$ 13.3028i 0.947784i 0.880583 + 0.473892i $$0.157151\pi$$
−0.880583 + 0.473892i $$0.842849\pi$$
$$198$$ − 3.00000i − 0.213201i
$$199$$ 6.48612 0.459789 0.229894 0.973216i $$-0.426162\pi$$
0.229894 + 0.973216i $$0.426162\pi$$
$$200$$ 0 0
$$201$$ −9.21110 −0.649701
$$202$$ 0.669468i 0.0471036i
$$203$$ − 0.633308i − 0.0444495i
$$204$$ 4.81665 0.337233
$$205$$ 0 0
$$206$$ −3.78890 −0.263985
$$207$$ − 16.8167i − 1.16884i
$$208$$ 16.5139i 1.14503i
$$209$$ −1.00000 −0.0691714
$$210$$ 0 0
$$211$$ −25.2389 −1.73751 −0.868757 0.495238i $$-0.835081\pi$$
−0.868757 + 0.495238i $$0.835081\pi$$
$$212$$ 0.394449i 0.0270908i
$$213$$ 6.00000i 0.411113i
$$214$$ −3.90833 −0.267168
$$215$$ 0 0
$$216$$ −4.81665 −0.327732
$$217$$ 7.11943i 0.483298i
$$218$$ 15.0000i 1.01593i
$$219$$ 18.2111 1.23059
$$220$$ 0 0
$$221$$ 34.5416 2.32352
$$222$$ − 7.18335i − 0.482115i
$$223$$ 22.6333i 1.51564i 0.652465 + 0.757819i $$0.273735\pi$$
−0.652465 + 0.757819i $$0.726265\pi$$
$$224$$ 1.18335 0.0790656
$$225$$ 0 0
$$226$$ 14.0917 0.937364
$$227$$ 1.69722i 0.112649i 0.998413 + 0.0563244i $$0.0179381\pi$$
−0.998413 + 0.0563244i $$0.982062\pi$$
$$228$$ − 0.697224i − 0.0461748i
$$229$$ 18.7250 1.23738 0.618691 0.785635i $$-0.287663\pi$$
0.618691 + 0.785635i $$0.287663\pi$$
$$230$$ 0 0
$$231$$ −1.60555 −0.105638
$$232$$ 2.72498i 0.178904i
$$233$$ − 15.9083i − 1.04219i −0.853499 0.521095i $$-0.825524\pi$$
0.853499 0.521095i $$-0.174476\pi$$
$$234$$ 15.0000 0.980581
$$235$$ 0 0
$$236$$ 4.30278 0.280087
$$237$$ − 25.1194i − 1.63168i
$$238$$ 6.27502i 0.406749i
$$239$$ −21.1194 −1.36610 −0.683051 0.730371i $$-0.739347\pi$$
−0.683051 + 0.730371i $$0.739347\pi$$
$$240$$ 0 0
$$241$$ 21.9361 1.41303 0.706514 0.707699i $$-0.250267\pi$$
0.706514 + 0.707699i $$0.250267\pi$$
$$242$$ − 1.30278i − 0.0837456i
$$243$$ 19.6056i 1.25770i
$$244$$ −2.39445 −0.153289
$$245$$ 0 0
$$246$$ 16.8167 1.07219
$$247$$ − 5.00000i − 0.318142i
$$248$$ − 30.6333i − 1.94522i
$$249$$ 8.09167 0.512789
$$250$$ 0 0
$$251$$ 6.90833 0.436050 0.218025 0.975943i $$-0.430039\pi$$
0.218025 + 0.975943i $$0.430039\pi$$
$$252$$ − 0.486122i − 0.0306228i
$$253$$ − 7.30278i − 0.459122i
$$254$$ 10.5778 0.663710
$$255$$ 0 0
$$256$$ −7.09167 −0.443230
$$257$$ − 18.0000i − 1.12281i −0.827541 0.561405i $$-0.810261\pi$$
0.827541 0.561405i $$-0.189739\pi$$
$$258$$ 21.6333i 1.34683i
$$259$$ −1.66947 −0.103736
$$260$$ 0 0
$$261$$ 2.09167 0.129471
$$262$$ 12.9083i 0.797479i
$$263$$ 22.8167i 1.40694i 0.710727 + 0.703468i $$0.248366\pi$$
−0.710727 + 0.703468i $$0.751634\pi$$
$$264$$ 6.90833 0.425178
$$265$$ 0 0
$$266$$ 0.908327 0.0556931
$$267$$ 3.90833i 0.239186i
$$268$$ − 1.21110i − 0.0739799i
$$269$$ −8.72498 −0.531971 −0.265986 0.963977i $$-0.585697\pi$$
−0.265986 + 0.963977i $$0.585697\pi$$
$$270$$ 0 0
$$271$$ −0.211103 −0.0128236 −0.00641178 0.999979i $$-0.502041\pi$$
−0.00641178 + 0.999979i $$0.502041\pi$$
$$272$$ − 22.8167i − 1.38346i
$$273$$ − 8.02776i − 0.485862i
$$274$$ −16.8167 −1.01593
$$275$$ 0 0
$$276$$ 5.09167 0.306483
$$277$$ 14.3944i 0.864879i 0.901663 + 0.432439i $$0.142347\pi$$
−0.901663 + 0.432439i $$0.857653\pi$$
$$278$$ − 8.09167i − 0.485306i
$$279$$ −23.5139 −1.40774
$$280$$ 0 0
$$281$$ −1.18335 −0.0705925 −0.0352963 0.999377i $$-0.511237\pi$$
−0.0352963 + 0.999377i $$0.511237\pi$$
$$282$$ 9.00000i 0.535942i
$$283$$ − 6.30278i − 0.374661i −0.982297 0.187331i $$-0.940016\pi$$
0.982297 0.187331i $$-0.0599836\pi$$
$$284$$ −0.788897 −0.0468125
$$285$$ 0 0
$$286$$ 6.51388 0.385174
$$287$$ − 3.90833i − 0.230701i
$$288$$ 3.90833i 0.230300i
$$289$$ −30.7250 −1.80735
$$290$$ 0 0
$$291$$ 35.2389 2.06574
$$292$$ 2.39445i 0.140125i
$$293$$ − 0.788897i − 0.0460879i −0.999734 0.0230439i $$-0.992664\pi$$
0.999734 0.0230439i $$-0.00733576\pi$$
$$294$$ −19.5416 −1.13969
$$295$$ 0 0
$$296$$ 7.18335 0.417524
$$297$$ 1.60555i 0.0931635i
$$298$$ 22.4222i 1.29888i
$$299$$ 36.5139 2.11165
$$300$$ 0 0
$$301$$ 5.02776 0.289795
$$302$$ − 1.06392i − 0.0612215i
$$303$$ 1.18335i 0.0679815i
$$304$$ −3.30278 −0.189427
$$305$$ 0 0
$$306$$ −20.7250 −1.18477
$$307$$ − 16.9083i − 0.965009i −0.875893 0.482505i $$-0.839727\pi$$
0.875893 0.482505i $$-0.160273\pi$$
$$308$$ − 0.211103i − 0.0120287i
$$309$$ −6.69722 −0.380992
$$310$$ 0 0
$$311$$ 4.81665 0.273127 0.136564 0.990631i $$-0.456394\pi$$
0.136564 + 0.990631i $$0.456394\pi$$
$$312$$ 34.5416i 1.95553i
$$313$$ − 0.183346i − 0.0103633i −0.999987 0.00518167i $$-0.998351\pi$$
0.999987 0.00518167i $$-0.00164938\pi$$
$$314$$ 25.0278 1.41240
$$315$$ 0 0
$$316$$ 3.30278 0.185796
$$317$$ − 0.908327i − 0.0510167i −0.999675 0.0255084i $$-0.991880\pi$$
0.999675 0.0255084i $$-0.00812044\pi$$
$$318$$ − 3.90833i − 0.219168i
$$319$$ 0.908327 0.0508565
$$320$$ 0 0
$$321$$ −6.90833 −0.385585
$$322$$ 6.63331i 0.369660i
$$323$$ 6.90833i 0.384390i
$$324$$ −3.21110 −0.178395
$$325$$ 0 0
$$326$$ −12.1194 −0.671233
$$327$$ 26.5139i 1.46622i
$$328$$ 16.8167i 0.928544i
$$329$$ 2.09167 0.115318
$$330$$ 0 0
$$331$$ −21.6056 −1.18755 −0.593774 0.804632i $$-0.702363\pi$$
−0.593774 + 0.804632i $$0.702363\pi$$
$$332$$ 1.06392i 0.0583900i
$$333$$ − 5.51388i − 0.302159i
$$334$$ 17.4861 0.956798
$$335$$ 0 0
$$336$$ −5.30278 −0.289290
$$337$$ − 30.8444i − 1.68020i −0.542430 0.840101i $$-0.682496\pi$$
0.542430 0.840101i $$-0.317504\pi$$
$$338$$ 15.6333i 0.850340i
$$339$$ 24.9083 1.35283
$$340$$ 0 0
$$341$$ −10.2111 −0.552962
$$342$$ 3.00000i 0.162221i
$$343$$ 9.42221i 0.508751i
$$344$$ −21.6333 −1.16639
$$345$$ 0 0
$$346$$ 6.27502 0.337347
$$347$$ − 12.5139i − 0.671780i −0.941901 0.335890i $$-0.890963\pi$$
0.941901 0.335890i $$-0.109037\pi$$
$$348$$ 0.633308i 0.0339489i
$$349$$ 5.18335 0.277458 0.138729 0.990330i $$-0.455698\pi$$
0.138729 + 0.990330i $$0.455698\pi$$
$$350$$ 0 0
$$351$$ −8.02776 −0.428490
$$352$$ 1.69722i 0.0904624i
$$353$$ − 18.6333i − 0.991751i −0.868394 0.495875i $$-0.834847\pi$$
0.868394 0.495875i $$-0.165153\pi$$
$$354$$ −42.6333 −2.26593
$$355$$ 0 0
$$356$$ −0.513878 −0.0272355
$$357$$ 11.0917i 0.587034i
$$358$$ 16.3028i 0.861628i
$$359$$ −0.788897 −0.0416364 −0.0208182 0.999783i $$-0.506627\pi$$
−0.0208182 + 0.999783i $$0.506627\pi$$
$$360$$ 0 0
$$361$$ −18.0000 −0.947368
$$362$$ 25.9361i 1.36317i
$$363$$ − 2.30278i − 0.120864i
$$364$$ 1.05551 0.0553239
$$365$$ 0 0
$$366$$ 23.7250 1.24012
$$367$$ − 20.6972i − 1.08039i −0.841541 0.540193i $$-0.818351\pi$$
0.841541 0.540193i $$-0.181649\pi$$
$$368$$ − 24.1194i − 1.25731i
$$369$$ 12.9083 0.671981
$$370$$ 0 0
$$371$$ −0.908327 −0.0471580
$$372$$ − 7.11943i − 0.369125i
$$373$$ − 27.4222i − 1.41987i −0.704268 0.709934i $$-0.748725\pi$$
0.704268 0.709934i $$-0.251275\pi$$
$$374$$ −9.00000 −0.465379
$$375$$ 0 0
$$376$$ −9.00000 −0.464140
$$377$$ 4.54163i 0.233906i
$$378$$ − 1.45837i − 0.0750102i
$$379$$ −3.18335 −0.163518 −0.0817588 0.996652i $$-0.526054\pi$$
−0.0817588 + 0.996652i $$0.526054\pi$$
$$380$$ 0 0
$$381$$ 18.6972 0.957888
$$382$$ − 13.4222i − 0.686740i
$$383$$ − 21.6333i − 1.10541i −0.833377 0.552705i $$-0.813596\pi$$
0.833377 0.552705i $$-0.186404\pi$$
$$384$$ 18.6333 0.950877
$$385$$ 0 0
$$386$$ −17.2111 −0.876022
$$387$$ 16.6056i 0.844108i
$$388$$ 4.63331i 0.235221i
$$389$$ −12.0000 −0.608424 −0.304212 0.952604i $$-0.598393\pi$$
−0.304212 + 0.952604i $$0.598393\pi$$
$$390$$ 0 0
$$391$$ −50.4500 −2.55136
$$392$$ − 19.5416i − 0.987002i
$$393$$ 22.8167i 1.15095i
$$394$$ 17.3305 0.873100
$$395$$ 0 0
$$396$$ 0.697224 0.0350368
$$397$$ 21.6972i 1.08895i 0.838776 + 0.544476i $$0.183272\pi$$
−0.838776 + 0.544476i $$0.816728\pi$$
$$398$$ − 8.44996i − 0.423558i
$$399$$ 1.60555 0.0803781
$$400$$ 0 0
$$401$$ −12.7889 −0.638647 −0.319324 0.947646i $$-0.603456\pi$$
−0.319324 + 0.947646i $$0.603456\pi$$
$$402$$ 12.0000i 0.598506i
$$403$$ − 51.0555i − 2.54326i
$$404$$ −0.155590 −0.00774088
$$405$$ 0 0
$$406$$ −0.825058 −0.0409469
$$407$$ − 2.39445i − 0.118688i
$$408$$ − 47.7250i − 2.36274i
$$409$$ 6.21110 0.307119 0.153560 0.988139i $$-0.450926\pi$$
0.153560 + 0.988139i $$0.450926\pi$$
$$410$$ 0 0
$$411$$ −29.7250 −1.46623
$$412$$ − 0.880571i − 0.0433826i
$$413$$ 9.90833i 0.487557i
$$414$$ −21.9083 −1.07674
$$415$$ 0 0
$$416$$ −8.48612 −0.416066
$$417$$ − 14.3028i − 0.700410i
$$418$$ 1.30278i 0.0637208i
$$419$$ −6.39445 −0.312389 −0.156195 0.987726i $$-0.549923\pi$$
−0.156195 + 0.987726i $$0.549923\pi$$
$$420$$ 0 0
$$421$$ 0.697224 0.0339806 0.0169903 0.999856i $$-0.494592\pi$$
0.0169903 + 0.999856i $$0.494592\pi$$
$$422$$ 32.8806i 1.60060i
$$423$$ 6.90833i 0.335894i
$$424$$ 3.90833 0.189805
$$425$$ 0 0
$$426$$ 7.81665 0.378718
$$427$$ − 5.51388i − 0.266835i
$$428$$ − 0.908327i − 0.0439056i
$$429$$ 11.5139 0.555895
$$430$$ 0 0
$$431$$ 33.0000 1.58955 0.794777 0.606902i $$-0.207588\pi$$
0.794777 + 0.606902i $$0.207588\pi$$
$$432$$ 5.30278i 0.255130i
$$433$$ − 5.00000i − 0.240285i −0.992757 0.120142i $$-0.961665\pi$$
0.992757 0.120142i $$-0.0383351\pi$$
$$434$$ 9.27502 0.445215
$$435$$ 0 0
$$436$$ −3.48612 −0.166955
$$437$$ 7.30278i 0.349339i
$$438$$ − 23.7250i − 1.13362i
$$439$$ −24.3028 −1.15991 −0.579954 0.814649i $$-0.696930\pi$$
−0.579954 + 0.814649i $$0.696930\pi$$
$$440$$ 0 0
$$441$$ −15.0000 −0.714286
$$442$$ − 45.0000i − 2.14043i
$$443$$ 8.60555i 0.408862i 0.978881 + 0.204431i $$0.0655344\pi$$
−0.978881 + 0.204431i $$0.934466\pi$$
$$444$$ 1.66947 0.0792294
$$445$$ 0 0
$$446$$ 29.4861 1.39621
$$447$$ 39.6333i 1.87459i
$$448$$ − 6.14719i − 0.290427i
$$449$$ −23.4861 −1.10838 −0.554189 0.832391i $$-0.686972\pi$$
−0.554189 + 0.832391i $$0.686972\pi$$
$$450$$ 0 0
$$451$$ 5.60555 0.263955
$$452$$ 3.27502i 0.154044i
$$453$$ − 1.88057i − 0.0883569i
$$454$$ 2.21110 0.103772
$$455$$ 0 0
$$456$$ −6.90833 −0.323512
$$457$$ − 20.6972i − 0.968175i −0.875020 0.484088i $$-0.839152\pi$$
0.875020 0.484088i $$-0.160848\pi$$
$$458$$ − 24.3944i − 1.13988i
$$459$$ 11.0917 0.517715
$$460$$ 0 0
$$461$$ 32.2111 1.50022 0.750110 0.661313i $$-0.230000\pi$$
0.750110 + 0.661313i $$0.230000\pi$$
$$462$$ 2.09167i 0.0973134i
$$463$$ − 11.7889i − 0.547877i −0.961747 0.273938i $$-0.911674\pi$$
0.961747 0.273938i $$-0.0883264\pi$$
$$464$$ 3.00000 0.139272
$$465$$ 0 0
$$466$$ −20.7250 −0.960066
$$467$$ − 18.6333i − 0.862247i −0.902293 0.431123i $$-0.858117\pi$$
0.902293 0.431123i $$-0.141883\pi$$
$$468$$ 3.48612i 0.161146i
$$469$$ 2.78890 0.128779
$$470$$ 0 0
$$471$$ 44.2389 2.03842
$$472$$ − 42.6333i − 1.96236i
$$473$$ 7.21110i 0.331567i
$$474$$ −32.7250 −1.50311
$$475$$ 0 0
$$476$$ −1.45837 −0.0668441
$$477$$ − 3.00000i − 0.137361i
$$478$$ 27.5139i 1.25846i
$$479$$ 34.8167 1.59081 0.795407 0.606076i $$-0.207257\pi$$
0.795407 + 0.606076i $$0.207257\pi$$
$$480$$ 0 0
$$481$$ 11.9722 0.545887
$$482$$ − 28.5778i − 1.30168i
$$483$$ 11.7250i 0.533505i
$$484$$ 0.302776 0.0137625
$$485$$ 0 0
$$486$$ 25.5416 1.15859
$$487$$ 4.21110i 0.190823i 0.995438 + 0.0954116i $$0.0304167\pi$$
−0.995438 + 0.0954116i $$0.969583\pi$$
$$488$$ 23.7250i 1.07398i
$$489$$ −21.4222 −0.968746
$$490$$ 0 0
$$491$$ −9.78890 −0.441767 −0.220883 0.975300i $$-0.570894\pi$$
−0.220883 + 0.975300i $$0.570894\pi$$
$$492$$ 3.90833i 0.176201i
$$493$$ − 6.27502i − 0.282613i
$$494$$ −6.51388 −0.293073
$$495$$ 0 0
$$496$$ −33.7250 −1.51430
$$497$$ − 1.81665i − 0.0814881i
$$498$$ − 10.5416i − 0.472382i
$$499$$ 3.48612 0.156060 0.0780301 0.996951i $$-0.475137\pi$$
0.0780301 + 0.996951i $$0.475137\pi$$
$$500$$ 0 0
$$501$$ 30.9083 1.38088
$$502$$ − 9.00000i − 0.401690i
$$503$$ − 9.39445i − 0.418878i −0.977822 0.209439i $$-0.932836\pi$$
0.977822 0.209439i $$-0.0671637\pi$$
$$504$$ −4.81665 −0.214551
$$505$$ 0 0
$$506$$ −9.51388 −0.422943
$$507$$ 27.6333i 1.22724i
$$508$$ 2.45837i 0.109072i
$$509$$ 22.6972 1.00604 0.503018 0.864276i $$-0.332223\pi$$
0.503018 + 0.864276i $$0.332223\pi$$
$$510$$ 0 0
$$511$$ −5.51388 −0.243920
$$512$$ 25.4222i 1.12351i
$$513$$ − 1.60555i − 0.0708868i
$$514$$ −23.4500 −1.03433
$$515$$ 0 0
$$516$$ −5.02776 −0.221335
$$517$$ 3.00000i 0.131940i
$$518$$ 2.17494i 0.0955615i
$$519$$ 11.0917 0.486870
$$520$$ 0 0
$$521$$ −41.4500 −1.81596 −0.907978 0.419018i $$-0.862374\pi$$
−0.907978 + 0.419018i $$0.862374\pi$$
$$522$$ − 2.72498i − 0.119269i
$$523$$ 32.4222i 1.41772i 0.705347 + 0.708862i $$0.250791\pi$$
−0.705347 + 0.708862i $$0.749209\pi$$
$$524$$ −3.00000 −0.131056
$$525$$ 0 0
$$526$$ 29.7250 1.29607
$$527$$ 70.5416i 3.07284i
$$528$$ − 7.60555i − 0.330989i
$$529$$ −30.3305 −1.31872
$$530$$ 0 0
$$531$$ −32.7250 −1.42014
$$532$$ 0.211103i 0.00915246i
$$533$$ 28.0278i 1.21402i
$$534$$ 5.09167 0.220338
$$535$$ 0 0
$$536$$ −12.0000 −0.518321
$$537$$ 28.8167i 1.24353i
$$538$$ 11.3667i 0.490053i
$$539$$ −6.51388 −0.280573
$$540$$ 0 0
$$541$$ 25.7250 1.10600 0.553002 0.833180i $$-0.313482\pi$$
0.553002 + 0.833180i $$0.313482\pi$$
$$542$$ 0.275019i 0.0118131i
$$543$$ 45.8444i 1.96737i
$$544$$ 11.7250 0.502704
$$545$$ 0 0
$$546$$ −10.4584 −0.447577
$$547$$ − 7.11943i − 0.304405i −0.988349 0.152202i $$-0.951363\pi$$
0.988349 0.152202i $$-0.0486366\pi$$
$$548$$ − 3.90833i − 0.166955i
$$549$$ 18.2111 0.777231
$$550$$ 0 0
$$551$$ −0.908327 −0.0386960
$$552$$ − 50.4500i − 2.14729i
$$553$$ 7.60555i 0.323421i
$$554$$ 18.7527 0.796727
$$555$$ 0 0
$$556$$ 1.88057 0.0797540
$$557$$ 19.4222i 0.822945i 0.911422 + 0.411473i $$0.134985\pi$$
−0.911422 + 0.411473i $$0.865015\pi$$
$$558$$ 30.6333i 1.29681i
$$559$$ −36.0555 −1.52499
$$560$$ 0 0
$$561$$ −15.9083 −0.671650
$$562$$ 1.54163i 0.0650299i
$$563$$ − 8.09167i − 0.341023i −0.985356 0.170512i $$-0.945458\pi$$
0.985356 0.170512i $$-0.0545421\pi$$
$$564$$ −2.09167 −0.0880753
$$565$$ 0 0
$$566$$ −8.21110 −0.345138
$$567$$ − 7.39445i − 0.310538i
$$568$$ 7.81665i 0.327980i
$$569$$ 46.1472 1.93459 0.967295 0.253653i $$-0.0816321\pi$$
0.967295 + 0.253653i $$0.0816321\pi$$
$$570$$ 0 0
$$571$$ 22.3305 0.934504 0.467252 0.884124i $$-0.345244\pi$$
0.467252 + 0.884124i $$0.345244\pi$$
$$572$$ 1.51388i 0.0632984i
$$573$$ − 23.7250i − 0.991125i
$$574$$ −5.09167 −0.212522
$$575$$ 0 0
$$576$$ 20.3028 0.845949
$$577$$ 44.3583i 1.84666i 0.384008 + 0.923330i $$0.374544\pi$$
−0.384008 + 0.923330i $$0.625456\pi$$
$$578$$ 40.0278i 1.66494i
$$579$$ −30.4222 −1.26430
$$580$$ 0 0
$$581$$ −2.44996 −0.101642
$$582$$ − 45.9083i − 1.90296i
$$583$$ − 1.30278i − 0.0539555i
$$584$$ 23.7250 0.981747
$$585$$ 0 0
$$586$$ −1.02776 −0.0424562
$$587$$ 16.5416i 0.682746i 0.939928 + 0.341373i $$0.110892\pi$$
−0.939928 + 0.341373i $$0.889108\pi$$
$$588$$ − 4.54163i − 0.187294i
$$589$$ 10.2111 0.420741
$$590$$ 0 0
$$591$$ 30.6333 1.26009
$$592$$ − 7.90833i − 0.325030i
$$593$$ 6.39445i 0.262589i 0.991343 + 0.131294i $$0.0419133\pi$$
−0.991343 + 0.131294i $$0.958087\pi$$
$$594$$ 2.09167 0.0858224
$$595$$ 0 0
$$596$$ −5.21110 −0.213455
$$597$$ − 14.9361i − 0.611293i
$$598$$ − 47.5694i − 1.94526i
$$599$$ 24.9083 1.01773 0.508863 0.860847i $$-0.330066\pi$$
0.508863 + 0.860847i $$0.330066\pi$$
$$600$$ 0 0
$$601$$ −1.90833 −0.0778423 −0.0389211 0.999242i $$-0.512392\pi$$
−0.0389211 + 0.999242i $$0.512392\pi$$
$$602$$ − 6.55004i − 0.266960i
$$603$$ 9.21110i 0.375105i
$$604$$ 0.247263 0.0100610
$$605$$ 0 0
$$606$$ 1.54163 0.0626246
$$607$$ 7.21110i 0.292690i 0.989234 + 0.146345i $$0.0467509\pi$$
−0.989234 + 0.146345i $$0.953249\pi$$
$$608$$ − 1.69722i − 0.0688315i
$$609$$ −1.45837 −0.0590959
$$610$$ 0 0
$$611$$ −15.0000 −0.606835
$$612$$ − 4.81665i − 0.194702i
$$613$$ 15.8806i 0.641410i 0.947179 + 0.320705i $$0.103920\pi$$
−0.947179 + 0.320705i $$0.896080\pi$$
$$614$$ −22.0278 −0.888968
$$615$$ 0 0
$$616$$ −2.09167 −0.0842759
$$617$$ 3.39445i 0.136655i 0.997663 + 0.0683277i $$0.0217663\pi$$
−0.997663 + 0.0683277i $$0.978234\pi$$
$$618$$ 8.72498i 0.350970i
$$619$$ 11.4222 0.459097 0.229549 0.973297i $$-0.426275\pi$$
0.229549 + 0.973297i $$0.426275\pi$$
$$620$$ 0 0
$$621$$ 11.7250 0.470507
$$622$$ − 6.27502i − 0.251605i
$$623$$ − 1.18335i − 0.0474098i
$$624$$ 38.0278 1.52233
$$625$$ 0 0
$$626$$ −0.238859 −0.00954672
$$627$$ 2.30278i 0.0919640i
$$628$$ 5.81665i 0.232110i
$$629$$ −16.5416 −0.659558
$$630$$ 0 0
$$631$$ 6.93608 0.276121 0.138061 0.990424i $$-0.455913\pi$$
0.138061 + 0.990424i $$0.455913\pi$$
$$632$$ − 32.7250i − 1.30173i
$$633$$ 58.1194i 2.31004i
$$634$$ −1.18335 −0.0469967
$$635$$ 0 0
$$636$$ 0.908327 0.0360175
$$637$$ − 32.5694i − 1.29045i
$$638$$ − 1.18335i − 0.0468491i
$$639$$ 6.00000 0.237356
$$640$$ 0 0
$$641$$ 27.7889 1.09760 0.548798 0.835955i $$-0.315086\pi$$
0.548798 + 0.835955i $$0.315086\pi$$
$$642$$ 9.00000i 0.355202i
$$643$$ 22.0000i 0.867595i 0.901010 + 0.433798i $$0.142827\pi$$
−0.901010 + 0.433798i $$0.857173\pi$$
$$644$$ −1.54163 −0.0607489
$$645$$ 0 0
$$646$$ 9.00000 0.354100
$$647$$ − 33.2389i − 1.30675i −0.757033 0.653377i $$-0.773352\pi$$
0.757033 0.653377i $$-0.226648\pi$$
$$648$$ 31.8167i 1.24988i
$$649$$ −14.2111 −0.557835
$$650$$ 0 0
$$651$$ 16.3944 0.642549
$$652$$ − 2.81665i − 0.110309i
$$653$$ − 6.11943i − 0.239472i −0.992806 0.119736i $$-0.961795\pi$$
0.992806 0.119736i $$-0.0382048\pi$$
$$654$$ 34.5416 1.35068
$$655$$ 0 0
$$656$$ 18.5139 0.722846
$$657$$ − 18.2111i − 0.710483i
$$658$$ − 2.72498i − 0.106231i
$$659$$ 30.9083 1.20402 0.602009 0.798489i $$-0.294367\pi$$
0.602009 + 0.798489i $$0.294367\pi$$
$$660$$ 0 0
$$661$$ −8.81665 −0.342928 −0.171464 0.985190i $$-0.554850\pi$$
−0.171464 + 0.985190i $$0.554850\pi$$
$$662$$ 28.1472i 1.09397i
$$663$$ − 79.5416i − 3.08914i
$$664$$ 10.5416 0.409095
$$665$$ 0 0
$$666$$ −7.18335 −0.278349
$$667$$ − 6.63331i − 0.256843i
$$668$$ 4.06392i 0.157238i
$$669$$ 52.1194 2.01505
$$670$$ 0 0
$$671$$ 7.90833 0.305298
$$672$$ − 2.72498i − 0.105118i
$$673$$ − 30.0278i − 1.15748i −0.815510 0.578742i $$-0.803544\pi$$
0.815510 0.578742i $$-0.196456\pi$$
$$674$$ −40.1833 −1.54780
$$675$$ 0 0
$$676$$ −3.63331 −0.139743
$$677$$ 24.2389i 0.931575i 0.884897 + 0.465788i $$0.154229\pi$$
−0.884897 + 0.465788i $$0.845771\pi$$
$$678$$ − 32.4500i − 1.24623i
$$679$$ −10.6695 −0.409457
$$680$$ 0 0
$$681$$ 3.90833 0.149767
$$682$$ 13.3028i 0.509390i
$$683$$ − 47.8444i − 1.83072i −0.402642 0.915358i $$-0.631908\pi$$
0.402642 0.915358i $$-0.368092\pi$$
$$684$$ −0.697224 −0.0266590
$$685$$ 0 0
$$686$$ 12.2750 0.468662
$$687$$ − 43.1194i − 1.64511i
$$688$$ 23.8167i 0.908001i
$$689$$ 6.51388 0.248159
$$690$$ 0 0
$$691$$ 27.5416 1.04773 0.523867 0.851800i $$-0.324489\pi$$
0.523867 + 0.851800i $$0.324489\pi$$
$$692$$ 1.45837i 0.0554387i
$$693$$ 1.60555i 0.0609898i
$$694$$ −16.3028 −0.618845
$$695$$ 0 0
$$696$$ 6.27502 0.237854
$$697$$ − 38.7250i − 1.46681i
$$698$$ − 6.75274i − 0.255595i
$$699$$ −36.6333 −1.38560
$$700$$ 0 0
$$701$$ −41.2111 −1.55652 −0.778261 0.627941i $$-0.783898\pi$$
−0.778261 + 0.627941i $$0.783898\pi$$
$$702$$ 10.4584i 0.394726i
$$703$$ 2.39445i 0.0903083i
$$704$$ 8.81665 0.332290
$$705$$ 0 0
$$706$$ −24.2750 −0.913602
$$707$$ − 0.358288i − 0.0134748i
$$708$$ − 9.90833i − 0.372378i
$$709$$ 31.6333 1.18801 0.594007 0.804460i $$-0.297545\pi$$
0.594007 + 0.804460i $$0.297545\pi$$
$$710$$ 0 0
$$711$$ −25.1194 −0.942052
$$712$$ 5.09167i 0.190819i
$$713$$ 74.5694i 2.79265i
$$714$$ 14.4500 0.540776
$$715$$ 0 0
$$716$$ −3.78890 −0.141598
$$717$$ 48.6333i 1.81624i
$$718$$ 1.02776i 0.0383555i
$$719$$ −7.18335 −0.267894 −0.133947 0.990989i $$-0.542765\pi$$
−0.133947 + 0.990989i $$0.542765\pi$$
$$720$$ 0 0
$$721$$ 2.02776 0.0755176
$$722$$ 23.4500i 0.872717i
$$723$$ − 50.5139i − 1.87863i
$$724$$ −6.02776 −0.224020
$$725$$ 0 0
$$726$$ −3.00000 −0.111340
$$727$$ − 39.3305i − 1.45869i −0.684147 0.729344i $$-0.739825\pi$$
0.684147 0.729344i $$-0.260175\pi$$
$$728$$ − 10.4584i − 0.387613i
$$729$$ 13.3305 0.493723
$$730$$ 0 0
$$731$$ 49.8167 1.84254
$$732$$ 5.51388i 0.203799i
$$733$$ − 19.6056i − 0.724148i −0.932149 0.362074i $$-0.882069\pi$$
0.932149 0.362074i $$-0.117931\pi$$
$$734$$ −26.9638 −0.995253
$$735$$ 0 0
$$736$$ 12.3944 0.456865
$$737$$ 4.00000i 0.147342i
$$738$$ − 16.8167i − 0.619030i
$$739$$ −35.1194 −1.29189 −0.645945 0.763384i $$-0.723536\pi$$
−0.645945 + 0.763384i $$0.723536\pi$$
$$740$$ 0 0
$$741$$ −11.5139 −0.422973
$$742$$ 1.18335i 0.0434420i
$$743$$ − 40.6972i − 1.49304i −0.665365 0.746518i $$-0.731724\pi$$
0.665365 0.746518i $$-0.268276\pi$$
$$744$$ −70.5416 −2.58618
$$745$$ 0 0
$$746$$ −35.7250 −1.30798
$$747$$ − 8.09167i − 0.296059i
$$748$$ − 2.09167i − 0.0764791i
$$749$$ 2.09167 0.0764281
$$750$$ 0 0
$$751$$ −45.3305 −1.65413 −0.827067 0.562103i $$-0.809992\pi$$
−0.827067 + 0.562103i $$0.809992\pi$$
$$752$$ 9.90833i 0.361320i
$$753$$ − 15.9083i − 0.579732i
$$754$$ 5.91673 0.215475
$$755$$ 0 0
$$756$$ 0.338936 0.0123270
$$757$$ 49.0555i 1.78295i 0.453067 + 0.891476i $$0.350330\pi$$
−0.453067 + 0.891476i $$0.649670\pi$$
$$758$$ 4.14719i 0.150633i
$$759$$ −16.8167 −0.610406
$$760$$ 0 0
$$761$$ −13.5778 −0.492195 −0.246097 0.969245i $$-0.579148\pi$$
−0.246097 + 0.969245i $$0.579148\pi$$
$$762$$ − 24.3583i − 0.882408i
$$763$$ − 8.02776i − 0.290624i
$$764$$ 3.11943 0.112857
$$765$$ 0 0
$$766$$ −28.1833 −1.01831
$$767$$ − 71.0555i − 2.56567i
$$768$$ 16.3305i 0.589277i
$$769$$ 5.18335 0.186916 0.0934581 0.995623i $$-0.470208\pi$$
0.0934581 + 0.995623i $$0.470208\pi$$
$$770$$ 0 0
$$771$$ −41.4500 −1.49278
$$772$$ − 4.00000i − 0.143963i
$$773$$ − 3.11943i − 0.112198i −0.998425 0.0560990i $$-0.982134\pi$$
0.998425 0.0560990i $$-0.0178663\pi$$
$$774$$ 21.6333 0.777593
$$775$$ 0 0
$$776$$ 45.9083 1.64801
$$777$$ 3.84441i 0.137917i
$$778$$ 15.6333i 0.560481i
$$779$$ −5.60555 −0.200840
$$780$$ 0 0
$$781$$ 2.60555 0.0932340
$$782$$ 65.7250i 2.35032i
$$783$$ 1.45837i 0.0521177i
$$784$$ −21.5139 −0.768353
$$785$$ 0 0
$$786$$ 29.7250 1.06025
$$787$$ 10.2111i 0.363986i 0.983300 + 0.181993i $$0.0582549\pi$$
−0.983300 + 0.181993i $$0.941745\pi$$
$$788$$ 4.02776i 0.143483i
$$789$$ 52.5416 1.87053
$$790$$ 0 0
$$791$$ −7.54163 −0.268150
$$792$$ − 6.90833i − 0.245477i
$$793$$ 39.5416i 1.40416i
$$794$$ 28.2666 1.00314
$$795$$ 0 0
$$796$$ 1.96384 0.0696065
$$797$$ 3.51388i 0.124468i 0.998062 + 0.0622340i $$0.0198225\pi$$
−0.998062 + 0.0622340i $$0.980178\pi$$
$$798$$ − 2.09167i − 0.0740444i
$$799$$ 20.7250 0.733197
$$800$$ 0 0
$$801$$ 3.90833 0.138094
$$802$$ 16.6611i 0.588323i
$$803$$ − 7.90833i − 0.279079i
$$804$$ −2.78890 −0.0983568
$$805$$ 0 0
$$806$$ −66.5139 −2.34285
$$807$$ 20.0917i 0.707260i
$$808$$ 1.54163i 0.0542345i
$$809$$ −39.6333 −1.39343 −0.696716 0.717347i $$-0.745356\pi$$
−0.696716 + 0.717347i $$0.745356\pi$$
$$810$$ 0 0
$$811$$ 38.8722 1.36499 0.682493 0.730892i $$-0.260896\pi$$
0.682493 + 0.730892i $$0.260896\pi$$
$$812$$ − 0.191750i − 0.00672911i
$$813$$ 0.486122i 0.0170490i
$$814$$ −3.11943 −0.109336
$$815$$ 0 0
$$816$$ −52.5416 −1.83933
$$817$$ − 7.21110i − 0.252285i
$$818$$ − 8.09167i − 0.282919i
$$819$$ −8.02776 −0.280513
$$820$$ 0 0
$$821$$ 12.0000 0.418803 0.209401 0.977830i $$-0.432848\pi$$
0.209401 + 0.977830i $$0.432848\pi$$
$$822$$ 38.7250i 1.35069i
$$823$$ − 18.4222i − 0.642158i −0.947052 0.321079i $$-0.895955\pi$$
0.947052 0.321079i $$-0.104045\pi$$
$$824$$ −8.72498 −0.303949
$$825$$ 0 0
$$826$$ 12.9083 0.449138
$$827$$ 13.8167i 0.480452i 0.970717 + 0.240226i $$0.0772216\pi$$
−0.970717 + 0.240226i $$0.922778\pi$$
$$828$$ − 5.09167i − 0.176948i
$$829$$ −29.7527 −1.03336 −0.516678 0.856180i $$-0.672831\pi$$
−0.516678 + 0.856180i $$0.672831\pi$$
$$830$$ 0 0
$$831$$ 33.1472 1.14986
$$832$$ 44.0833i 1.52831i
$$833$$ 45.0000i 1.55916i
$$834$$ −18.6333 −0.645219
$$835$$ 0 0
$$836$$ −0.302776 −0.0104717
$$837$$ − 16.3944i − 0.566675i
$$838$$ 8.33053i 0.287773i
$$839$$ 9.11943 0.314838 0.157419 0.987532i $$-0.449683\pi$$
0.157419 + 0.987532i $$0.449683\pi$$
$$840$$ 0 0
$$841$$ −28.1749 −0.971550
$$842$$ − 0.908327i − 0.0313030i
$$843$$ 2.72498i 0.0938533i
$$844$$ −7.64171 −0.263039
$$845$$ 0 0
$$846$$ 9.00000 0.309426
$$847$$ 0.697224i 0.0239569i
$$848$$ − 4.30278i − 0.147758i
$$849$$ −14.5139 −0.498115
$$850$$ 0 0
$$851$$ −17.4861 −0.599417
$$852$$ 1.81665i 0.0622375i
$$853$$ 12.7250i 0.435695i 0.975983 + 0.217848i $$0.0699035\pi$$
−0.975983 + 0.217848i $$0.930096\pi$$
$$854$$ −7.18335 −0.245809
$$855$$ 0 0
$$856$$ −9.00000 −0.307614
$$857$$ − 3.00000i − 0.102478i −0.998686 0.0512390i $$-0.983683\pi$$
0.998686 0.0512390i $$-0.0163170\pi$$
$$858$$ − 15.0000i − 0.512092i
$$859$$ −41.3944 −1.41236 −0.706180 0.708032i $$-0.749583\pi$$
−0.706180 + 0.708032i $$0.749583\pi$$
$$860$$ 0 0
$$861$$ −9.00000 −0.306719
$$862$$ − 42.9916i − 1.46430i
$$863$$ 12.3944i 0.421912i 0.977496 + 0.210956i $$0.0676577\pi$$
−0.977496 + 0.210956i $$0.932342\pi$$
$$864$$ −2.72498 −0.0927057
$$865$$ 0 0
$$866$$ −6.51388 −0.221351
$$867$$ 70.7527i 2.40289i
$$868$$ 2.15559i 0.0731655i
$$869$$ −10.9083 −0.370040
$$870$$ 0 0
$$871$$ −20.0000 −0.677674
$$872$$ 34.5416i 1.16973i
$$873$$ − 35.2389i − 1.19265i
$$874$$ 9.51388 0.321812
$$875$$ 0 0
$$876$$ 5.51388 0.186297
$$877$$ 20.0000i 0.675352i 0.941262 + 0.337676i $$0.109641\pi$$
−0.941262 + 0.337676i $$0.890359\pi$$
$$878$$ 31.6611i 1.06851i
$$879$$ −1.81665 −0.0612742
$$880$$ 0 0
$$881$$ 19.5416 0.658374 0.329187 0.944265i $$-0.393225\pi$$
0.329187 + 0.944265i $$0.393225\pi$$
$$882$$ 19.5416i 0.658001i
$$883$$ − 52.4500i − 1.76508i −0.470236 0.882541i $$-0.655831\pi$$
0.470236 0.882541i $$-0.344169\pi$$
$$884$$ 10.4584 0.351753
$$885$$ 0 0
$$886$$ 11.2111 0.376644
$$887$$ − 3.23886i − 0.108750i −0.998521 0.0543751i $$-0.982683\pi$$
0.998521 0.0543751i $$-0.0173167\pi$$
$$888$$ − 16.5416i − 0.555101i
$$889$$ −5.66106 −0.189866
$$890$$ 0 0
$$891$$ 10.6056 0.355299
$$892$$ 6.85281i 0.229449i
$$893$$ − 3.00000i − 0.100391i
$$894$$ 51.6333 1.72688
$$895$$ 0 0
$$896$$ −5.64171 −0.188476
$$897$$ − 84.0833i − 2.80746i
$$898$$ 30.5971i 1.02104i
$$899$$ −9.27502 −0.309339
$$900$$ 0 0
$$901$$ −9.00000 −0.299833
$$902$$ − 7.30278i − 0.243156i
$$903$$ − 11.5778i − 0.385285i
$$904$$ 32.4500 1.07927
$$905$$ 0 0
$$906$$ −2.44996 −0.0813945
$$907$$ − 4.00000i − 0.132818i −0.997792 0.0664089i $$-0.978846\pi$$
0.997792 0.0664089i $$-0.0211542\pi$$
$$908$$ 0.513878i 0.0170536i
$$909$$ 1.18335 0.0392491
$$910$$ 0 0
$$911$$ −24.7889 −0.821293 −0.410646 0.911795i $$-0.634697\pi$$
−0.410646 + 0.911795i $$0.634697\pi$$
$$912$$ 7.60555i 0.251845i
$$913$$ − 3.51388i − 0.116292i
$$914$$ −26.9638 −0.891885
$$915$$ 0 0
$$916$$ 5.66947 0.187324
$$917$$ − 6.90833i − 0.228133i
$$918$$ − 14.4500i − 0.476920i
$$919$$ −26.7889 −0.883684 −0.441842 0.897093i $$-0.645675\pi$$
−0.441842 + 0.897093i $$0.645675\pi$$
$$920$$ 0 0
$$921$$ −38.9361 −1.28299
$$922$$ − 41.9638i − 1.38201i
$$923$$ 13.0278i 0.428814i
$$924$$ −0.486122 −0.0159922
$$925$$ 0 0
$$926$$ −15.3583 −0.504705
$$927$$ 6.69722i 0.219966i
$$928$$ 1.54163i 0.0506066i
$$929$$ −53.6056 −1.75874 −0.879371 0.476138i $$-0.842036\pi$$
−0.879371 + 0.476138i $$0.842036\pi$$
$$930$$ 0 0
$$931$$ 6.51388 0.213484
$$932$$ − 4.81665i − 0.157775i
$$933$$ − 11.0917i − 0.363125i
$$934$$ −24.2750 −0.794303
$$935$$ 0 0
$$936$$ 34.5416 1.12903
$$937$$ − 9.21110i − 0.300914i −0.988617 0.150457i $$-0.951926\pi$$
0.988617 0.150457i $$-0.0480744\pi$$
$$938$$ − 3.63331i − 0.118632i
$$939$$ −0.422205 −0.0137781
$$940$$ 0 0
$$941$$ 59.6056 1.94309 0.971543 0.236864i $$-0.0761197\pi$$
0.971543 + 0.236864i $$0.0761197\pi$$
$$942$$ − 57.6333i − 1.87779i
$$943$$ − 40.9361i − 1.33306i
$$944$$ −46.9361 −1.52764
$$945$$ 0 0
$$946$$ 9.39445 0.305440
$$947$$ 6.63331i 0.215554i 0.994175 + 0.107777i $$0.0343732\pi$$
−0.994175 + 0.107777i $$0.965627\pi$$
$$948$$ − 7.60555i − 0.247017i
$$949$$ 39.5416 1.28358
$$950$$ 0 0
$$951$$ −2.09167 −0.0678271
$$952$$ 14.4500i 0.468326i
$$953$$ − 37.2666i − 1.20718i −0.797293 0.603592i $$-0.793736\pi$$
0.797293 0.603592i $$-0.206264\pi$$
$$954$$ −3.90833 −0.126537
$$955$$ 0 0
$$956$$ −6.39445 −0.206811
$$957$$ − 2.09167i − 0.0676142i
$$958$$ − 45.3583i − 1.46546i
$$959$$ 9.00000 0.290625
$$960$$ 0 0
$$961$$ 73.2666 2.36344
$$962$$ − 15.5971i − 0.502872i
$$963$$ 6.90833i 0.222618i
$$964$$ 6.64171 0.213915
$$965$$ 0 0
$$966$$ 15.2750 0.491466
$$967$$ 14.9083i 0.479419i 0.970845 + 0.239710i $$0.0770523\pi$$
−0.970845 + 0.239710i $$0.922948\pi$$
$$968$$ − 3.00000i − 0.0964237i
$$969$$ 15.9083 0.511049
$$970$$ 0 0
$$971$$ 45.3583 1.45562 0.727808 0.685781i $$-0.240539\pi$$
0.727808 + 0.685781i $$0.240539\pi$$
$$972$$ 5.93608i 0.190400i
$$973$$ 4.33053i 0.138830i
$$974$$ 5.48612 0.175787
$$975$$ 0 0
$$976$$ 26.1194 0.836063
$$977$$ − 52.0278i − 1.66452i −0.554389 0.832258i $$-0.687048\pi$$
0.554389 0.832258i $$-0.312952\pi$$
$$978$$ 27.9083i 0.892410i
$$979$$ 1.69722 0.0542435
$$980$$ 0 0
$$981$$ 26.5139 0.846523
$$982$$ 12.7527i 0.406956i
$$983$$ − 8.84441i − 0.282093i −0.990003 0.141046i $$-0.954953\pi$$
0.990003 0.141046i $$-0.0450467\pi$$
$$984$$ 38.7250 1.23451
$$985$$ 0 0
$$986$$ −8.17494 −0.260343
$$987$$ − 4.81665i − 0.153316i
$$988$$ − 1.51388i − 0.0481629i
$$989$$ 52.6611 1.67452
$$990$$ 0 0
$$991$$ −16.9083 −0.537111 −0.268555 0.963264i $$-0.586546\pi$$
−0.268555 + 0.963264i $$0.586546\pi$$
$$992$$ − 17.3305i − 0.550245i
$$993$$ 49.7527i 1.57886i
$$994$$ −2.36669 −0.0750669
$$995$$ 0 0
$$996$$ 2.44996 0.0776300
$$997$$ 46.7250i 1.47979i 0.672720 + 0.739897i $$0.265126\pi$$
−0.672720 + 0.739897i $$0.734874\pi$$
$$998$$ − 4.54163i − 0.143763i
$$999$$ 3.84441 0.121632
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.b.c.199.2 4
3.2 odd 2 2475.2.c.k.199.3 4
4.3 odd 2 4400.2.b.y.4049.4 4
5.2 odd 4 275.2.a.e.1.2 2
5.3 odd 4 275.2.a.f.1.1 yes 2
5.4 even 2 inner 275.2.b.c.199.3 4
15.2 even 4 2475.2.a.t.1.1 2
15.8 even 4 2475.2.a.o.1.2 2
15.14 odd 2 2475.2.c.k.199.2 4
20.3 even 4 4400.2.a.bh.1.1 2
20.7 even 4 4400.2.a.bs.1.2 2
20.19 odd 2 4400.2.b.y.4049.1 4
55.32 even 4 3025.2.a.n.1.1 2
55.43 even 4 3025.2.a.h.1.2 2

By twisted newform
Twist Min Dim Char Parity Ord Type
275.2.a.e.1.2 2 5.2 odd 4
275.2.a.f.1.1 yes 2 5.3 odd 4
275.2.b.c.199.2 4 1.1 even 1 trivial
275.2.b.c.199.3 4 5.4 even 2 inner
2475.2.a.o.1.2 2 15.8 even 4
2475.2.a.t.1.1 2 15.2 even 4
2475.2.c.k.199.2 4 15.14 odd 2
2475.2.c.k.199.3 4 3.2 odd 2
3025.2.a.h.1.2 2 55.43 even 4
3025.2.a.n.1.1 2 55.32 even 4
4400.2.a.bh.1.1 2 20.3 even 4
4400.2.a.bs.1.2 2 20.7 even 4
4400.2.b.y.4049.1 4 20.19 odd 2
4400.2.b.y.4049.4 4 4.3 odd 2