Newspace parameters
Level: | \( N \) | \(=\) | \( 275 = 5^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 275.b (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.19588605559\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | \(\Q(i, \sqrt{13})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} + 7x^{2} + 9 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} + 7x^{2} + 9 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{3} + 4\nu ) / 3 \)
|
\(\beta_{3}\) | \(=\) |
\( \nu^{2} + 4 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{3} - 4 \)
|
\(\nu^{3}\) | \(=\) |
\( 3\beta_{2} - 4\beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).
\(n\) | \(101\) | \(177\) |
\(\chi(n)\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
199.1 |
|
− | 2.30278i | − | 1.30278i | −3.30278 | 0 | −3.00000 | − | 4.30278i | 3.00000i | 1.30278 | 0 | |||||||||||||||||||||||||||
199.2 | − | 1.30278i | − | 2.30278i | 0.302776 | 0 | −3.00000 | 0.697224i | − | 3.00000i | −2.30278 | 0 | ||||||||||||||||||||||||||||
199.3 | 1.30278i | 2.30278i | 0.302776 | 0 | −3.00000 | − | 0.697224i | 3.00000i | −2.30278 | 0 | ||||||||||||||||||||||||||||||
199.4 | 2.30278i | 1.30278i | −3.30278 | 0 | −3.00000 | 4.30278i | − | 3.00000i | 1.30278 | 0 | ||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 275.2.b.c | 4 | |
3.b | odd | 2 | 1 | 2475.2.c.k | 4 | ||
4.b | odd | 2 | 1 | 4400.2.b.y | 4 | ||
5.b | even | 2 | 1 | inner | 275.2.b.c | 4 | |
5.c | odd | 4 | 1 | 275.2.a.e | ✓ | 2 | |
5.c | odd | 4 | 1 | 275.2.a.f | yes | 2 | |
15.d | odd | 2 | 1 | 2475.2.c.k | 4 | ||
15.e | even | 4 | 1 | 2475.2.a.o | 2 | ||
15.e | even | 4 | 1 | 2475.2.a.t | 2 | ||
20.d | odd | 2 | 1 | 4400.2.b.y | 4 | ||
20.e | even | 4 | 1 | 4400.2.a.bh | 2 | ||
20.e | even | 4 | 1 | 4400.2.a.bs | 2 | ||
55.e | even | 4 | 1 | 3025.2.a.h | 2 | ||
55.e | even | 4 | 1 | 3025.2.a.n | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
275.2.a.e | ✓ | 2 | 5.c | odd | 4 | 1 | |
275.2.a.f | yes | 2 | 5.c | odd | 4 | 1 | |
275.2.b.c | 4 | 1.a | even | 1 | 1 | trivial | |
275.2.b.c | 4 | 5.b | even | 2 | 1 | inner | |
2475.2.a.o | 2 | 15.e | even | 4 | 1 | ||
2475.2.a.t | 2 | 15.e | even | 4 | 1 | ||
2475.2.c.k | 4 | 3.b | odd | 2 | 1 | ||
2475.2.c.k | 4 | 15.d | odd | 2 | 1 | ||
3025.2.a.h | 2 | 55.e | even | 4 | 1 | ||
3025.2.a.n | 2 | 55.e | even | 4 | 1 | ||
4400.2.a.bh | 2 | 20.e | even | 4 | 1 | ||
4400.2.a.bs | 2 | 20.e | even | 4 | 1 | ||
4400.2.b.y | 4 | 4.b | odd | 2 | 1 | ||
4400.2.b.y | 4 | 20.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{4} + 7T_{2}^{2} + 9 \)
acting on \(S_{2}^{\mathrm{new}}(275, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} + 7T^{2} + 9 \)
$3$
\( T^{4} + 7T^{2} + 9 \)
$5$
\( T^{4} \)
$7$
\( T^{4} + 19T^{2} + 9 \)
$11$
\( (T + 1)^{4} \)
$13$
\( (T^{2} + 25)^{2} \)
$17$
\( T^{4} + 63T^{2} + 729 \)
$19$
\( (T - 1)^{4} \)
$23$
\( T^{4} + 67T^{2} + 729 \)
$29$
\( (T^{2} - 9 T - 9)^{2} \)
$31$
\( (T^{2} - 6 T - 43)^{2} \)
$37$
\( T^{4} + 98T^{2} + 529 \)
$41$
\( (T^{2} + 4 T - 9)^{2} \)
$43$
\( (T^{2} + 52)^{2} \)
$47$
\( (T^{2} + 9)^{2} \)
$53$
\( T^{4} + 7T^{2} + 9 \)
$59$
\( (T^{2} - 14 T - 3)^{2} \)
$61$
\( (T^{2} + 5 T - 23)^{2} \)
$67$
\( (T^{2} + 16)^{2} \)
$71$
\( (T^{2} - 2 T - 12)^{2} \)
$73$
\( T^{4} + 71T^{2} + 529 \)
$79$
\( (T^{2} - 11 T + 1)^{2} \)
$83$
\( T^{4} + 223T^{2} + 2601 \)
$89$
\( (T^{2} + 7 T + 9)^{2} \)
$97$
\( T^{4} + 371 T^{2} + 32041 \)
show more
show less