gp: [N,k,chi] = [275,2,Mod(1,275)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(275, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("275.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [2,-1,-1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of β = 1 2 ( 1 + 13 ) \beta = \frac{1}{2}(1 + \sqrt{13}) β = 2 1 ( 1 + 1 3 ) .
We also show the integral q q q -expansion of the trace form .
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
5 5 5
+ 1 +1 + 1
11 11 1 1
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 2 2 + T 2 − 3 T_{2}^{2} + T_{2} - 3 T 2 2 + T 2 − 3
T2^2 + T2 - 3
acting on S 2 n e w ( Γ 0 ( 275 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(275)) S 2 n e w ( Γ 0 ( 2 7 5 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 + T − 3 T^{2} + T - 3 T 2 + T − 3
T^2 + T - 3
3 3 3
T 2 + T − 3 T^{2} + T - 3 T 2 + T − 3
T^2 + T - 3
5 5 5
T 2 T^{2} T 2
T^2
7 7 7
T 2 + 5 T + 3 T^{2} + 5T + 3 T 2 + 5 T + 3
T^2 + 5*T + 3
11 11 1 1
( T + 1 ) 2 (T + 1)^{2} ( T + 1 ) 2
(T + 1)^2
13 13 1 3
( T + 5 ) 2 (T + 5)^{2} ( T + 5 ) 2
(T + 5)^2
17 17 1 7
T 2 + 3 T − 27 T^{2} + 3T - 27 T 2 + 3 T − 2 7
T^2 + 3*T - 27
19 19 1 9
( T + 1 ) 2 (T + 1)^{2} ( T + 1 ) 2
(T + 1)^2
23 23 2 3
T 2 − 11 T + 27 T^{2} - 11T + 27 T 2 − 1 1 T + 2 7
T^2 - 11*T + 27
29 29 2 9
T 2 + 9 T − 9 T^{2} + 9T - 9 T 2 + 9 T − 9
T^2 + 9*T - 9
31 31 3 1
T 2 − 6 T − 43 T^{2} - 6T - 43 T 2 − 6 T − 4 3
T^2 - 6*T - 43
37 37 3 7
T 2 + 12 T + 23 T^{2} + 12T + 23 T 2 + 1 2 T + 2 3
T^2 + 12*T + 23
41 41 4 1
T 2 + 4 T − 9 T^{2} + 4T - 9 T 2 + 4 T − 9
T^2 + 4*T - 9
43 43 4 3
T 2 − 52 T^{2} - 52 T 2 − 5 2
T^2 - 52
47 47 4 7
( T − 3 ) 2 (T - 3)^{2} ( T − 3 ) 2
(T - 3)^2
53 53 5 3
T 2 + T − 3 T^{2} + T - 3 T 2 + T − 3
T^2 + T - 3
59 59 5 9
T 2 + 14 T − 3 T^{2} + 14T - 3 T 2 + 1 4 T − 3
T^2 + 14*T - 3
61 61 6 1
T 2 + 5 T − 23 T^{2} + 5T - 23 T 2 + 5 T − 2 3
T^2 + 5*T - 23
67 67 6 7
( T − 4 ) 2 (T - 4)^{2} ( T − 4 ) 2
(T - 4)^2
71 71 7 1
T 2 − 2 T − 12 T^{2} - 2T - 12 T 2 − 2 T − 1 2
T^2 - 2*T - 12
73 73 7 3
T 2 − 5 T − 23 T^{2} - 5T - 23 T 2 − 5 T − 2 3
T^2 - 5*T - 23
79 79 7 9
T 2 + 11 T + 1 T^{2} + 11T + 1 T 2 + 1 1 T + 1
T^2 + 11*T + 1
83 83 8 3
T 2 + 11 T − 51 T^{2} + 11T - 51 T 2 + 1 1 T − 5 1
T^2 + 11*T - 51
89 89 8 9
T 2 − 7 T + 9 T^{2} - 7T + 9 T 2 − 7 T + 9
T^2 - 7*T + 9
97 97 9 7
T 2 + 27 T + 179 T^{2} + 27T + 179 T 2 + 2 7 T + 1 7 9
T^2 + 27*T + 179
show more
show less