Newspace parameters
Level: | \( N \) | \(=\) | \( 275 = 5^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 275.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(2.19588605559\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{2}) \) |
Defining polynomial: |
\( x^{2} - 2 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 55) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−2.41421 | 2.82843 | 3.82843 | 0 | −6.82843 | 2.00000 | −4.41421 | 5.00000 | 0 | ||||||||||||||||||||||||
1.2 | 0.414214 | −2.82843 | −1.82843 | 0 | −1.17157 | 2.00000 | −1.58579 | 5.00000 | 0 | |||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(5\) | \(1\) |
\(11\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 275.2.a.c | 2 | |
3.b | odd | 2 | 1 | 2475.2.a.x | 2 | ||
4.b | odd | 2 | 1 | 4400.2.a.bn | 2 | ||
5.b | even | 2 | 1 | 55.2.a.b | ✓ | 2 | |
5.c | odd | 4 | 2 | 275.2.b.d | 4 | ||
11.b | odd | 2 | 1 | 3025.2.a.o | 2 | ||
15.d | odd | 2 | 1 | 495.2.a.b | 2 | ||
15.e | even | 4 | 2 | 2475.2.c.l | 4 | ||
20.d | odd | 2 | 1 | 880.2.a.m | 2 | ||
20.e | even | 4 | 2 | 4400.2.b.q | 4 | ||
35.c | odd | 2 | 1 | 2695.2.a.f | 2 | ||
40.e | odd | 2 | 1 | 3520.2.a.bo | 2 | ||
40.f | even | 2 | 1 | 3520.2.a.bn | 2 | ||
55.d | odd | 2 | 1 | 605.2.a.d | 2 | ||
55.h | odd | 10 | 4 | 605.2.g.l | 8 | ||
55.j | even | 10 | 4 | 605.2.g.f | 8 | ||
60.h | even | 2 | 1 | 7920.2.a.ch | 2 | ||
65.d | even | 2 | 1 | 9295.2.a.g | 2 | ||
165.d | even | 2 | 1 | 5445.2.a.y | 2 | ||
220.g | even | 2 | 1 | 9680.2.a.bn | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
55.2.a.b | ✓ | 2 | 5.b | even | 2 | 1 | |
275.2.a.c | 2 | 1.a | even | 1 | 1 | trivial | |
275.2.b.d | 4 | 5.c | odd | 4 | 2 | ||
495.2.a.b | 2 | 15.d | odd | 2 | 1 | ||
605.2.a.d | 2 | 55.d | odd | 2 | 1 | ||
605.2.g.f | 8 | 55.j | even | 10 | 4 | ||
605.2.g.l | 8 | 55.h | odd | 10 | 4 | ||
880.2.a.m | 2 | 20.d | odd | 2 | 1 | ||
2475.2.a.x | 2 | 3.b | odd | 2 | 1 | ||
2475.2.c.l | 4 | 15.e | even | 4 | 2 | ||
2695.2.a.f | 2 | 35.c | odd | 2 | 1 | ||
3025.2.a.o | 2 | 11.b | odd | 2 | 1 | ||
3520.2.a.bn | 2 | 40.f | even | 2 | 1 | ||
3520.2.a.bo | 2 | 40.e | odd | 2 | 1 | ||
4400.2.a.bn | 2 | 4.b | odd | 2 | 1 | ||
4400.2.b.q | 4 | 20.e | even | 4 | 2 | ||
5445.2.a.y | 2 | 165.d | even | 2 | 1 | ||
7920.2.a.ch | 2 | 60.h | even | 2 | 1 | ||
9295.2.a.g | 2 | 65.d | even | 2 | 1 | ||
9680.2.a.bn | 2 | 220.g | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{2} + 2T_{2} - 1 \)
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(275))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} + 2T - 1 \)
$3$
\( T^{2} - 8 \)
$5$
\( T^{2} \)
$7$
\( (T - 2)^{2} \)
$11$
\( (T - 1)^{2} \)
$13$
\( T^{2} - 8T + 8 \)
$17$
\( T^{2} + 8T + 8 \)
$19$
\( T^{2} \)
$23$
\( T^{2} - 8 \)
$29$
\( T^{2} - 4T - 28 \)
$31$
\( T^{2} \)
$37$
\( T^{2} - 4T - 28 \)
$41$
\( (T - 6)^{2} \)
$43$
\( (T - 6)^{2} \)
$47$
\( T^{2} - 8 \)
$53$
\( T^{2} + 12T + 4 \)
$59$
\( T^{2} + 8T - 16 \)
$61$
\( T^{2} - 4T - 124 \)
$67$
\( T^{2} + 8T - 56 \)
$71$
\( T^{2} - 128 \)
$73$
\( T^{2} - 8T + 8 \)
$79$
\( (T - 4)^{2} \)
$83$
\( (T - 6)^{2} \)
$89$
\( T^{2} + 4T - 124 \)
$97$
\( T^{2} - 4T - 28 \)
show more
show less