Properties

Label 275.2.a
Level $275$
Weight $2$
Character orbit 275.a
Rep. character $\chi_{275}(1,\cdot)$
Character field $\Q$
Dimension $16$
Newform subspaces $8$
Sturm bound $60$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(60\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(275))\).

Total New Old
Modular forms 36 16 20
Cusp forms 25 16 9
Eisenstein series 11 0 11

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(5\)\(11\)FrickeDim
\(+\)\(+\)\(+\)\(3\)
\(+\)\(-\)\(-\)\(5\)
\(-\)\(+\)\(-\)\(6\)
\(-\)\(-\)\(+\)\(2\)
Plus space\(+\)\(5\)
Minus space\(-\)\(11\)

Trace form

\( 16 q - q^{2} + q^{3} + 13 q^{4} - 2 q^{6} + 6 q^{7} - 3 q^{8} + 11 q^{9} - 2 q^{11} + 18 q^{12} + 2 q^{13} - 8 q^{14} + 3 q^{16} - 12 q^{17} - 11 q^{18} + 8 q^{19} - 6 q^{21} + q^{22} - 3 q^{23} - 16 q^{24}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(275))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 5 11
275.2.a.a 275.a 1.a $1$ $2.196$ \(\Q\) None 55.2.a.a \(-1\) \(0\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{4}+3q^{8}-3q^{9}-q^{11}-2q^{13}+\cdots\)
275.2.a.b 275.a 1.a $1$ $2.196$ \(\Q\) None 11.2.a.a \(2\) \(1\) \(0\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+q^{3}+2q^{4}+2q^{6}+2q^{7}+\cdots\)
275.2.a.c 275.a 1.a $2$ $2.196$ \(\Q(\sqrt{2}) \) None 55.2.a.b \(-2\) \(0\) \(0\) \(4\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{2}-2\beta q^{3}+(1-2\beta )q^{4}+\cdots\)
275.2.a.d 275.a 1.a $2$ $2.196$ \(\Q(\sqrt{5}) \) None 275.2.a.d \(-1\) \(-3\) \(0\) \(-1\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(-1-\beta )q^{3}+(-1+\beta )q^{4}+\cdots\)
275.2.a.e 275.a 1.a $2$ $2.196$ \(\Q(\sqrt{13}) \) None 275.2.a.e \(-1\) \(-1\) \(0\) \(-5\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(-1+\beta )q^{3}+(1+\beta )q^{4}-3q^{6}+\cdots\)
275.2.a.f 275.a 1.a $2$ $2.196$ \(\Q(\sqrt{13}) \) None 275.2.a.e \(1\) \(1\) \(0\) \(5\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(1-\beta )q^{3}+(1+\beta )q^{4}-3q^{6}+\cdots\)
275.2.a.g 275.a 1.a $2$ $2.196$ \(\Q(\sqrt{5}) \) None 275.2.a.d \(1\) \(3\) \(0\) \(1\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(1+\beta )q^{3}+(-1+\beta )q^{4}+(1+\cdots)q^{6}+\cdots\)
275.2.a.h 275.a 1.a $4$ $2.196$ \(\Q(\sqrt{3}, \sqrt{11})\) None 55.2.b.a \(0\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(\beta _{1}-\beta _{2})q^{3}+(2+\beta _{3})q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(275))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(275)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 2}\)