Defining parameters
| Level: | \( N \) | \(=\) | \( 275 = 5^{2} \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 275.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 8 \) | ||
| Sturm bound: | \(60\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(275))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 36 | 16 | 20 |
| Cusp forms | 25 | 16 | 9 |
| Eisenstein series | 11 | 0 | 11 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(5\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(6\) | \(3\) | \(3\) | \(4\) | \(3\) | \(1\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(12\) | \(5\) | \(7\) | \(9\) | \(5\) | \(4\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(-\) | \(10\) | \(6\) | \(4\) | \(7\) | \(6\) | \(1\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(+\) | \(8\) | \(2\) | \(6\) | \(5\) | \(2\) | \(3\) | \(3\) | \(0\) | \(3\) | |||
| Plus space | \(+\) | \(14\) | \(5\) | \(9\) | \(9\) | \(5\) | \(4\) | \(5\) | \(0\) | \(5\) | ||||
| Minus space | \(-\) | \(22\) | \(11\) | \(11\) | \(16\) | \(11\) | \(5\) | \(6\) | \(0\) | \(6\) | ||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(275))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(275))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(275)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 2}\)