Properties

Label 2744.2.a.h.1.4
Level $2744$
Weight $2$
Character 2744.1
Self dual yes
Analytic conductor $21.911$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2744,2,Mod(1,2744)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2744.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2744, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2744 = 2^{3} \cdot 7^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2744.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.9109503146\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 29x^{10} + 304x^{8} - 1393x^{6} + 2574x^{4} - 1164x^{2} + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.85982\) of defining polynomial
Character \(\chi\) \(=\) 2744.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.85982 q^{3} +1.80700 q^{5} +0.458937 q^{9} +5.99266 q^{11} +4.33684 q^{13} -3.36070 q^{15} -7.43508 q^{17} +2.28797 q^{19} +3.07396 q^{23} -1.73475 q^{25} +4.72592 q^{27} +5.91158 q^{29} +3.61062 q^{31} -11.1453 q^{33} +8.67866 q^{37} -8.06575 q^{39} -11.6608 q^{41} -4.17484 q^{43} +0.829299 q^{45} +2.97955 q^{47} +13.8279 q^{51} -8.17484 q^{53} +10.8287 q^{55} -4.25522 q^{57} -13.5673 q^{59} +1.99594 q^{61} +7.83666 q^{65} +7.69990 q^{67} -5.71701 q^{69} +12.7339 q^{71} -6.60300 q^{73} +3.22633 q^{75} -0.873289 q^{79} -10.1662 q^{81} +10.4473 q^{83} -13.4352 q^{85} -10.9945 q^{87} +1.70795 q^{89} -6.71512 q^{93} +4.13437 q^{95} -7.23220 q^{97} +2.75025 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 22 q^{9} + 18 q^{11} + 28 q^{15} + 20 q^{23} + 14 q^{25} - 18 q^{29} - 18 q^{37} + 36 q^{39} + 10 q^{43} + 48 q^{51} - 38 q^{53} + 12 q^{57} + 8 q^{65} + 42 q^{67} + 56 q^{71} + 56 q^{79} + 52 q^{81}+ \cdots + 90 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.85982 −1.07377 −0.536884 0.843656i \(-0.680399\pi\)
−0.536884 + 0.843656i \(0.680399\pi\)
\(4\) 0 0
\(5\) 1.80700 0.808114 0.404057 0.914734i \(-0.367600\pi\)
0.404057 + 0.914734i \(0.367600\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0.458937 0.152979
\(10\) 0 0
\(11\) 5.99266 1.80685 0.903427 0.428742i \(-0.141043\pi\)
0.903427 + 0.428742i \(0.141043\pi\)
\(12\) 0 0
\(13\) 4.33684 1.20282 0.601411 0.798939i \(-0.294605\pi\)
0.601411 + 0.798939i \(0.294605\pi\)
\(14\) 0 0
\(15\) −3.36070 −0.867728
\(16\) 0 0
\(17\) −7.43508 −1.80327 −0.901636 0.432496i \(-0.857633\pi\)
−0.901636 + 0.432496i \(0.857633\pi\)
\(18\) 0 0
\(19\) 2.28797 0.524897 0.262449 0.964946i \(-0.415470\pi\)
0.262449 + 0.964946i \(0.415470\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.07396 0.640964 0.320482 0.947255i \(-0.396155\pi\)
0.320482 + 0.947255i \(0.396155\pi\)
\(24\) 0 0
\(25\) −1.73475 −0.346951
\(26\) 0 0
\(27\) 4.72592 0.909505
\(28\) 0 0
\(29\) 5.91158 1.09775 0.548876 0.835904i \(-0.315056\pi\)
0.548876 + 0.835904i \(0.315056\pi\)
\(30\) 0 0
\(31\) 3.61062 0.648487 0.324244 0.945974i \(-0.394890\pi\)
0.324244 + 0.945974i \(0.394890\pi\)
\(32\) 0 0
\(33\) −11.1453 −1.94014
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 8.67866 1.42676 0.713381 0.700776i \(-0.247163\pi\)
0.713381 + 0.700776i \(0.247163\pi\)
\(38\) 0 0
\(39\) −8.06575 −1.29155
\(40\) 0 0
\(41\) −11.6608 −1.82111 −0.910556 0.413385i \(-0.864346\pi\)
−0.910556 + 0.413385i \(0.864346\pi\)
\(42\) 0 0
\(43\) −4.17484 −0.636657 −0.318328 0.947981i \(-0.603121\pi\)
−0.318328 + 0.947981i \(0.603121\pi\)
\(44\) 0 0
\(45\) 0.829299 0.123625
\(46\) 0 0
\(47\) 2.97955 0.434612 0.217306 0.976104i \(-0.430273\pi\)
0.217306 + 0.976104i \(0.430273\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 13.8279 1.93630
\(52\) 0 0
\(53\) −8.17484 −1.12290 −0.561450 0.827511i \(-0.689756\pi\)
−0.561450 + 0.827511i \(0.689756\pi\)
\(54\) 0 0
\(55\) 10.8287 1.46014
\(56\) 0 0
\(57\) −4.25522 −0.563618
\(58\) 0 0
\(59\) −13.5673 −1.76631 −0.883156 0.469080i \(-0.844586\pi\)
−0.883156 + 0.469080i \(0.844586\pi\)
\(60\) 0 0
\(61\) 1.99594 0.255554 0.127777 0.991803i \(-0.459216\pi\)
0.127777 + 0.991803i \(0.459216\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 7.83666 0.972019
\(66\) 0 0
\(67\) 7.69990 0.940692 0.470346 0.882482i \(-0.344129\pi\)
0.470346 + 0.882482i \(0.344129\pi\)
\(68\) 0 0
\(69\) −5.71701 −0.688247
\(70\) 0 0
\(71\) 12.7339 1.51123 0.755617 0.655013i \(-0.227337\pi\)
0.755617 + 0.655013i \(0.227337\pi\)
\(72\) 0 0
\(73\) −6.60300 −0.772822 −0.386411 0.922327i \(-0.626285\pi\)
−0.386411 + 0.922327i \(0.626285\pi\)
\(74\) 0 0
\(75\) 3.22633 0.372545
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −0.873289 −0.0982527 −0.0491263 0.998793i \(-0.515644\pi\)
−0.0491263 + 0.998793i \(0.515644\pi\)
\(80\) 0 0
\(81\) −10.1662 −1.12958
\(82\) 0 0
\(83\) 10.4473 1.14674 0.573371 0.819296i \(-0.305635\pi\)
0.573371 + 0.819296i \(0.305635\pi\)
\(84\) 0 0
\(85\) −13.4352 −1.45725
\(86\) 0 0
\(87\) −10.9945 −1.17873
\(88\) 0 0
\(89\) 1.70795 0.181042 0.0905211 0.995895i \(-0.471147\pi\)
0.0905211 + 0.995895i \(0.471147\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −6.71512 −0.696325
\(94\) 0 0
\(95\) 4.13437 0.424177
\(96\) 0 0
\(97\) −7.23220 −0.734319 −0.367159 0.930158i \(-0.619670\pi\)
−0.367159 + 0.930158i \(0.619670\pi\)
\(98\) 0 0
\(99\) 2.75025 0.276411
\(100\) 0 0
\(101\) 9.32343 0.927716 0.463858 0.885910i \(-0.346465\pi\)
0.463858 + 0.885910i \(0.346465\pi\)
\(102\) 0 0
\(103\) −8.89097 −0.876053 −0.438027 0.898962i \(-0.644322\pi\)
−0.438027 + 0.898962i \(0.644322\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 11.6375 1.12503 0.562517 0.826785i \(-0.309833\pi\)
0.562517 + 0.826785i \(0.309833\pi\)
\(108\) 0 0
\(109\) 9.06830 0.868586 0.434293 0.900772i \(-0.356998\pi\)
0.434293 + 0.900772i \(0.356998\pi\)
\(110\) 0 0
\(111\) −16.1408 −1.53201
\(112\) 0 0
\(113\) 5.29983 0.498566 0.249283 0.968431i \(-0.419805\pi\)
0.249283 + 0.968431i \(0.419805\pi\)
\(114\) 0 0
\(115\) 5.55463 0.517972
\(116\) 0 0
\(117\) 1.99034 0.184007
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 24.9119 2.26472
\(122\) 0 0
\(123\) 21.6870 1.95545
\(124\) 0 0
\(125\) −12.1697 −1.08849
\(126\) 0 0
\(127\) −3.54943 −0.314961 −0.157480 0.987522i \(-0.550337\pi\)
−0.157480 + 0.987522i \(0.550337\pi\)
\(128\) 0 0
\(129\) 7.76445 0.683622
\(130\) 0 0
\(131\) 11.0014 0.961192 0.480596 0.876942i \(-0.340420\pi\)
0.480596 + 0.876942i \(0.340420\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 8.53974 0.734984
\(136\) 0 0
\(137\) −2.94330 −0.251463 −0.125731 0.992064i \(-0.540128\pi\)
−0.125731 + 0.992064i \(0.540128\pi\)
\(138\) 0 0
\(139\) −6.99908 −0.593654 −0.296827 0.954931i \(-0.595928\pi\)
−0.296827 + 0.954931i \(0.595928\pi\)
\(140\) 0 0
\(141\) −5.54143 −0.466673
\(142\) 0 0
\(143\) 25.9892 2.17333
\(144\) 0 0
\(145\) 10.6822 0.887110
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 10.9583 0.897738 0.448869 0.893598i \(-0.351827\pi\)
0.448869 + 0.893598i \(0.351827\pi\)
\(150\) 0 0
\(151\) 12.8927 1.04920 0.524598 0.851350i \(-0.324216\pi\)
0.524598 + 0.851350i \(0.324216\pi\)
\(152\) 0 0
\(153\) −3.41223 −0.275863
\(154\) 0 0
\(155\) 6.52440 0.524052
\(156\) 0 0
\(157\) 8.38484 0.669183 0.334592 0.942363i \(-0.391402\pi\)
0.334592 + 0.942363i \(0.391402\pi\)
\(158\) 0 0
\(159\) 15.2037 1.20574
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −6.77875 −0.530953 −0.265477 0.964117i \(-0.585529\pi\)
−0.265477 + 0.964117i \(0.585529\pi\)
\(164\) 0 0
\(165\) −20.1395 −1.56786
\(166\) 0 0
\(167\) 15.0494 1.16456 0.582279 0.812989i \(-0.302161\pi\)
0.582279 + 0.812989i \(0.302161\pi\)
\(168\) 0 0
\(169\) 5.80818 0.446783
\(170\) 0 0
\(171\) 1.05004 0.0802982
\(172\) 0 0
\(173\) −6.85693 −0.521323 −0.260661 0.965430i \(-0.583941\pi\)
−0.260661 + 0.965430i \(0.583941\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 25.2328 1.89661
\(178\) 0 0
\(179\) 2.99752 0.224045 0.112023 0.993706i \(-0.464267\pi\)
0.112023 + 0.993706i \(0.464267\pi\)
\(180\) 0 0
\(181\) 20.4597 1.52076 0.760380 0.649478i \(-0.225013\pi\)
0.760380 + 0.649478i \(0.225013\pi\)
\(182\) 0 0
\(183\) −3.71210 −0.274406
\(184\) 0 0
\(185\) 15.6823 1.15299
\(186\) 0 0
\(187\) −44.5559 −3.25825
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 17.1479 1.24078 0.620391 0.784293i \(-0.286974\pi\)
0.620391 + 0.784293i \(0.286974\pi\)
\(192\) 0 0
\(193\) −3.36178 −0.241986 −0.120993 0.992653i \(-0.538608\pi\)
−0.120993 + 0.992653i \(0.538608\pi\)
\(194\) 0 0
\(195\) −14.5748 −1.04372
\(196\) 0 0
\(197\) 2.14378 0.152738 0.0763690 0.997080i \(-0.475667\pi\)
0.0763690 + 0.997080i \(0.475667\pi\)
\(198\) 0 0
\(199\) 24.3084 1.72317 0.861587 0.507609i \(-0.169471\pi\)
0.861587 + 0.507609i \(0.169471\pi\)
\(200\) 0 0
\(201\) −14.3204 −1.01009
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −21.0711 −1.47167
\(206\) 0 0
\(207\) 1.41075 0.0980540
\(208\) 0 0
\(209\) 13.7110 0.948413
\(210\) 0 0
\(211\) 4.51994 0.311165 0.155583 0.987823i \(-0.450275\pi\)
0.155583 + 0.987823i \(0.450275\pi\)
\(212\) 0 0
\(213\) −23.6828 −1.62272
\(214\) 0 0
\(215\) −7.54393 −0.514492
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 12.2804 0.829833
\(220\) 0 0
\(221\) −32.2448 −2.16902
\(222\) 0 0
\(223\) −2.21440 −0.148287 −0.0741437 0.997248i \(-0.523622\pi\)
−0.0741437 + 0.997248i \(0.523622\pi\)
\(224\) 0 0
\(225\) −0.796143 −0.0530762
\(226\) 0 0
\(227\) −22.1957 −1.47318 −0.736589 0.676341i \(-0.763565\pi\)
−0.736589 + 0.676341i \(0.763565\pi\)
\(228\) 0 0
\(229\) 14.5988 0.964716 0.482358 0.875974i \(-0.339780\pi\)
0.482358 + 0.875974i \(0.339780\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −25.6948 −1.68332 −0.841660 0.540008i \(-0.818421\pi\)
−0.841660 + 0.540008i \(0.818421\pi\)
\(234\) 0 0
\(235\) 5.38404 0.351216
\(236\) 0 0
\(237\) 1.62416 0.105501
\(238\) 0 0
\(239\) −16.0732 −1.03969 −0.519844 0.854261i \(-0.674010\pi\)
−0.519844 + 0.854261i \(0.674010\pi\)
\(240\) 0 0
\(241\) −2.09340 −0.134848 −0.0674239 0.997724i \(-0.521478\pi\)
−0.0674239 + 0.997724i \(0.521478\pi\)
\(242\) 0 0
\(243\) 4.72952 0.303399
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 9.92257 0.631358
\(248\) 0 0
\(249\) −19.4301 −1.23134
\(250\) 0 0
\(251\) 4.64927 0.293459 0.146730 0.989177i \(-0.453125\pi\)
0.146730 + 0.989177i \(0.453125\pi\)
\(252\) 0 0
\(253\) 18.4212 1.15813
\(254\) 0 0
\(255\) 24.9870 1.56475
\(256\) 0 0
\(257\) 27.9240 1.74185 0.870926 0.491414i \(-0.163520\pi\)
0.870926 + 0.491414i \(0.163520\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 2.71304 0.167933
\(262\) 0 0
\(263\) −3.43195 −0.211623 −0.105812 0.994386i \(-0.533744\pi\)
−0.105812 + 0.994386i \(0.533744\pi\)
\(264\) 0 0
\(265\) −14.7719 −0.907432
\(266\) 0 0
\(267\) −3.17648 −0.194397
\(268\) 0 0
\(269\) −5.79142 −0.353109 −0.176555 0.984291i \(-0.556495\pi\)
−0.176555 + 0.984291i \(0.556495\pi\)
\(270\) 0 0
\(271\) 5.58288 0.339136 0.169568 0.985518i \(-0.445763\pi\)
0.169568 + 0.985518i \(0.445763\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −10.3958 −0.626890
\(276\) 0 0
\(277\) 2.16895 0.130320 0.0651598 0.997875i \(-0.479244\pi\)
0.0651598 + 0.997875i \(0.479244\pi\)
\(278\) 0 0
\(279\) 1.65705 0.0992050
\(280\) 0 0
\(281\) −8.58262 −0.511996 −0.255998 0.966677i \(-0.582404\pi\)
−0.255998 + 0.966677i \(0.582404\pi\)
\(282\) 0 0
\(283\) 0.259317 0.0154148 0.00770741 0.999970i \(-0.497547\pi\)
0.00770741 + 0.999970i \(0.497547\pi\)
\(284\) 0 0
\(285\) −7.68918 −0.455468
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 38.2804 2.25179
\(290\) 0 0
\(291\) 13.4506 0.788488
\(292\) 0 0
\(293\) 29.5313 1.72524 0.862620 0.505853i \(-0.168822\pi\)
0.862620 + 0.505853i \(0.168822\pi\)
\(294\) 0 0
\(295\) −24.5161 −1.42738
\(296\) 0 0
\(297\) 28.3208 1.64334
\(298\) 0 0
\(299\) 13.3313 0.770966
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −17.3399 −0.996152
\(304\) 0 0
\(305\) 3.60667 0.206517
\(306\) 0 0
\(307\) 21.9179 1.25092 0.625459 0.780257i \(-0.284912\pi\)
0.625459 + 0.780257i \(0.284912\pi\)
\(308\) 0 0
\(309\) 16.5356 0.940679
\(310\) 0 0
\(311\) −10.8680 −0.616267 −0.308134 0.951343i \(-0.599704\pi\)
−0.308134 + 0.951343i \(0.599704\pi\)
\(312\) 0 0
\(313\) −8.22083 −0.464669 −0.232334 0.972636i \(-0.574636\pi\)
−0.232334 + 0.972636i \(0.574636\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −20.3888 −1.14515 −0.572574 0.819853i \(-0.694055\pi\)
−0.572574 + 0.819853i \(0.694055\pi\)
\(318\) 0 0
\(319\) 35.4261 1.98348
\(320\) 0 0
\(321\) −21.6436 −1.20803
\(322\) 0 0
\(323\) −17.0113 −0.946532
\(324\) 0 0
\(325\) −7.52335 −0.417321
\(326\) 0 0
\(327\) −16.8654 −0.932660
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −23.0167 −1.26511 −0.632556 0.774514i \(-0.717994\pi\)
−0.632556 + 0.774514i \(0.717994\pi\)
\(332\) 0 0
\(333\) 3.98296 0.218265
\(334\) 0 0
\(335\) 13.9137 0.760187
\(336\) 0 0
\(337\) 15.5469 0.846892 0.423446 0.905921i \(-0.360820\pi\)
0.423446 + 0.905921i \(0.360820\pi\)
\(338\) 0 0
\(339\) −9.85674 −0.535344
\(340\) 0 0
\(341\) 21.6372 1.17172
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −10.3306 −0.556182
\(346\) 0 0
\(347\) −31.0992 −1.66949 −0.834746 0.550635i \(-0.814385\pi\)
−0.834746 + 0.550635i \(0.814385\pi\)
\(348\) 0 0
\(349\) 27.4632 1.47007 0.735035 0.678029i \(-0.237166\pi\)
0.735035 + 0.678029i \(0.237166\pi\)
\(350\) 0 0
\(351\) 20.4956 1.09397
\(352\) 0 0
\(353\) 9.02473 0.480338 0.240169 0.970731i \(-0.422797\pi\)
0.240169 + 0.970731i \(0.422797\pi\)
\(354\) 0 0
\(355\) 23.0101 1.22125
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −5.04097 −0.266052 −0.133026 0.991113i \(-0.542469\pi\)
−0.133026 + 0.991113i \(0.542469\pi\)
\(360\) 0 0
\(361\) −13.7652 −0.724483
\(362\) 0 0
\(363\) −46.3318 −2.43179
\(364\) 0 0
\(365\) −11.9316 −0.624529
\(366\) 0 0
\(367\) −9.21277 −0.480902 −0.240451 0.970661i \(-0.577295\pi\)
−0.240451 + 0.970661i \(0.577295\pi\)
\(368\) 0 0
\(369\) −5.35158 −0.278592
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −4.84388 −0.250806 −0.125403 0.992106i \(-0.540022\pi\)
−0.125403 + 0.992106i \(0.540022\pi\)
\(374\) 0 0
\(375\) 22.6335 1.16879
\(376\) 0 0
\(377\) 25.6376 1.32040
\(378\) 0 0
\(379\) 15.2149 0.781537 0.390769 0.920489i \(-0.372209\pi\)
0.390769 + 0.920489i \(0.372209\pi\)
\(380\) 0 0
\(381\) 6.60130 0.338195
\(382\) 0 0
\(383\) −2.81716 −0.143950 −0.0719752 0.997406i \(-0.522930\pi\)
−0.0719752 + 0.997406i \(0.522930\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1.91599 −0.0973951
\(388\) 0 0
\(389\) 24.9136 1.26317 0.631584 0.775308i \(-0.282405\pi\)
0.631584 + 0.775308i \(0.282405\pi\)
\(390\) 0 0
\(391\) −22.8551 −1.15583
\(392\) 0 0
\(393\) −20.4606 −1.03210
\(394\) 0 0
\(395\) −1.57803 −0.0793994
\(396\) 0 0
\(397\) −35.1079 −1.76202 −0.881008 0.473101i \(-0.843135\pi\)
−0.881008 + 0.473101i \(0.843135\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 18.7806 0.937858 0.468929 0.883236i \(-0.344640\pi\)
0.468929 + 0.883236i \(0.344640\pi\)
\(402\) 0 0
\(403\) 15.6587 0.780015
\(404\) 0 0
\(405\) −18.3703 −0.912827
\(406\) 0 0
\(407\) 52.0082 2.57795
\(408\) 0 0
\(409\) −24.0529 −1.18934 −0.594671 0.803969i \(-0.702718\pi\)
−0.594671 + 0.803969i \(0.702718\pi\)
\(410\) 0 0
\(411\) 5.47401 0.270013
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 18.8783 0.926699
\(416\) 0 0
\(417\) 13.0170 0.637447
\(418\) 0 0
\(419\) 9.26529 0.452639 0.226320 0.974053i \(-0.427331\pi\)
0.226320 + 0.974053i \(0.427331\pi\)
\(420\) 0 0
\(421\) −1.53694 −0.0749059 −0.0374529 0.999298i \(-0.511924\pi\)
−0.0374529 + 0.999298i \(0.511924\pi\)
\(422\) 0 0
\(423\) 1.36743 0.0664865
\(424\) 0 0
\(425\) 12.8980 0.625647
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −48.3353 −2.33365
\(430\) 0 0
\(431\) 24.8089 1.19500 0.597501 0.801868i \(-0.296160\pi\)
0.597501 + 0.801868i \(0.296160\pi\)
\(432\) 0 0
\(433\) −3.13130 −0.150481 −0.0752404 0.997165i \(-0.523972\pi\)
−0.0752404 + 0.997165i \(0.523972\pi\)
\(434\) 0 0
\(435\) −19.8670 −0.952551
\(436\) 0 0
\(437\) 7.03313 0.336440
\(438\) 0 0
\(439\) −16.1630 −0.771417 −0.385709 0.922621i \(-0.626043\pi\)
−0.385709 + 0.922621i \(0.626043\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.72367 0.0818940 0.0409470 0.999161i \(-0.486963\pi\)
0.0409470 + 0.999161i \(0.486963\pi\)
\(444\) 0 0
\(445\) 3.08626 0.146303
\(446\) 0 0
\(447\) −20.3805 −0.963963
\(448\) 0 0
\(449\) −40.1162 −1.89320 −0.946600 0.322409i \(-0.895507\pi\)
−0.946600 + 0.322409i \(0.895507\pi\)
\(450\) 0 0
\(451\) −69.8792 −3.29048
\(452\) 0 0
\(453\) −23.9782 −1.12659
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −26.0053 −1.21648 −0.608238 0.793754i \(-0.708124\pi\)
−0.608238 + 0.793754i \(0.708124\pi\)
\(458\) 0 0
\(459\) −35.1376 −1.64008
\(460\) 0 0
\(461\) 15.1701 0.706544 0.353272 0.935521i \(-0.385069\pi\)
0.353272 + 0.935521i \(0.385069\pi\)
\(462\) 0 0
\(463\) −10.2124 −0.474611 −0.237305 0.971435i \(-0.576264\pi\)
−0.237305 + 0.971435i \(0.576264\pi\)
\(464\) 0 0
\(465\) −12.1342 −0.562711
\(466\) 0 0
\(467\) −25.0606 −1.15967 −0.579834 0.814734i \(-0.696883\pi\)
−0.579834 + 0.814734i \(0.696883\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −15.5943 −0.718548
\(472\) 0 0
\(473\) −25.0184 −1.15035
\(474\) 0 0
\(475\) −3.96907 −0.182114
\(476\) 0 0
\(477\) −3.75174 −0.171780
\(478\) 0 0
\(479\) 7.02203 0.320845 0.160422 0.987048i \(-0.448714\pi\)
0.160422 + 0.987048i \(0.448714\pi\)
\(480\) 0 0
\(481\) 37.6380 1.71614
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −13.0686 −0.593414
\(486\) 0 0
\(487\) 14.1674 0.641985 0.320992 0.947082i \(-0.395984\pi\)
0.320992 + 0.947082i \(0.395984\pi\)
\(488\) 0 0
\(489\) 12.6073 0.570121
\(490\) 0 0
\(491\) 1.41302 0.0637689 0.0318845 0.999492i \(-0.489849\pi\)
0.0318845 + 0.999492i \(0.489849\pi\)
\(492\) 0 0
\(493\) −43.9531 −1.97955
\(494\) 0 0
\(495\) 4.96970 0.223372
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −27.1799 −1.21674 −0.608369 0.793654i \(-0.708176\pi\)
−0.608369 + 0.793654i \(0.708176\pi\)
\(500\) 0 0
\(501\) −27.9892 −1.25047
\(502\) 0 0
\(503\) −35.6790 −1.59085 −0.795425 0.606053i \(-0.792752\pi\)
−0.795425 + 0.606053i \(0.792752\pi\)
\(504\) 0 0
\(505\) 16.8474 0.749701
\(506\) 0 0
\(507\) −10.8022 −0.479741
\(508\) 0 0
\(509\) −32.3391 −1.43341 −0.716703 0.697378i \(-0.754350\pi\)
−0.716703 + 0.697378i \(0.754350\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 10.8128 0.477396
\(514\) 0 0
\(515\) −16.0660 −0.707951
\(516\) 0 0
\(517\) 17.8554 0.785280
\(518\) 0 0
\(519\) 12.7527 0.559780
\(520\) 0 0
\(521\) −34.1031 −1.49408 −0.747042 0.664777i \(-0.768527\pi\)
−0.747042 + 0.664777i \(0.768527\pi\)
\(522\) 0 0
\(523\) 16.9588 0.741555 0.370777 0.928722i \(-0.379091\pi\)
0.370777 + 0.928722i \(0.379091\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −26.8453 −1.16940
\(528\) 0 0
\(529\) −13.5508 −0.589165
\(530\) 0 0
\(531\) −6.22653 −0.270209
\(532\) 0 0
\(533\) −50.5711 −2.19048
\(534\) 0 0
\(535\) 21.0289 0.909157
\(536\) 0 0
\(537\) −5.57486 −0.240573
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −10.8210 −0.465233 −0.232616 0.972569i \(-0.574729\pi\)
−0.232616 + 0.972569i \(0.574729\pi\)
\(542\) 0 0
\(543\) −38.0515 −1.63294
\(544\) 0 0
\(545\) 16.3864 0.701917
\(546\) 0 0
\(547\) 24.0339 1.02761 0.513807 0.857906i \(-0.328235\pi\)
0.513807 + 0.857906i \(0.328235\pi\)
\(548\) 0 0
\(549\) 0.916013 0.0390945
\(550\) 0 0
\(551\) 13.5255 0.576207
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −29.1663 −1.23804
\(556\) 0 0
\(557\) −41.5717 −1.76145 −0.880725 0.473628i \(-0.842944\pi\)
−0.880725 + 0.473628i \(0.842944\pi\)
\(558\) 0 0
\(559\) −18.1056 −0.765785
\(560\) 0 0
\(561\) 82.8660 3.49861
\(562\) 0 0
\(563\) −2.36405 −0.0996329 −0.0498165 0.998758i \(-0.515864\pi\)
−0.0498165 + 0.998758i \(0.515864\pi\)
\(564\) 0 0
\(565\) 9.57678 0.402898
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3.86653 0.162093 0.0810467 0.996710i \(-0.474174\pi\)
0.0810467 + 0.996710i \(0.474174\pi\)
\(570\) 0 0
\(571\) 22.8952 0.958133 0.479066 0.877779i \(-0.340975\pi\)
0.479066 + 0.877779i \(0.340975\pi\)
\(572\) 0 0
\(573\) −31.8921 −1.33231
\(574\) 0 0
\(575\) −5.33256 −0.222383
\(576\) 0 0
\(577\) 4.70723 0.195965 0.0979823 0.995188i \(-0.468761\pi\)
0.0979823 + 0.995188i \(0.468761\pi\)
\(578\) 0 0
\(579\) 6.25231 0.259837
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −48.9890 −2.02892
\(584\) 0 0
\(585\) 3.59654 0.148698
\(586\) 0 0
\(587\) −41.8909 −1.72902 −0.864512 0.502613i \(-0.832372\pi\)
−0.864512 + 0.502613i \(0.832372\pi\)
\(588\) 0 0
\(589\) 8.26101 0.340389
\(590\) 0 0
\(591\) −3.98705 −0.164005
\(592\) 0 0
\(593\) 10.2053 0.419082 0.209541 0.977800i \(-0.432803\pi\)
0.209541 + 0.977800i \(0.432803\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −45.2092 −1.85029
\(598\) 0 0
\(599\) 32.4856 1.32732 0.663662 0.748033i \(-0.269001\pi\)
0.663662 + 0.748033i \(0.269001\pi\)
\(600\) 0 0
\(601\) 10.0289 0.409086 0.204543 0.978858i \(-0.434429\pi\)
0.204543 + 0.978858i \(0.434429\pi\)
\(602\) 0 0
\(603\) 3.53377 0.143906
\(604\) 0 0
\(605\) 45.0158 1.83015
\(606\) 0 0
\(607\) 27.6186 1.12100 0.560502 0.828153i \(-0.310608\pi\)
0.560502 + 0.828153i \(0.310608\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12.9218 0.522761
\(612\) 0 0
\(613\) 30.1649 1.21835 0.609174 0.793036i \(-0.291501\pi\)
0.609174 + 0.793036i \(0.291501\pi\)
\(614\) 0 0
\(615\) 39.1884 1.58023
\(616\) 0 0
\(617\) −29.7251 −1.19669 −0.598343 0.801240i \(-0.704174\pi\)
−0.598343 + 0.801240i \(0.704174\pi\)
\(618\) 0 0
\(619\) 38.4722 1.54633 0.773164 0.634206i \(-0.218673\pi\)
0.773164 + 0.634206i \(0.218673\pi\)
\(620\) 0 0
\(621\) 14.5273 0.582960
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −13.3169 −0.532674
\(626\) 0 0
\(627\) −25.5001 −1.01838
\(628\) 0 0
\(629\) −64.5265 −2.57284
\(630\) 0 0
\(631\) −35.3108 −1.40570 −0.702851 0.711337i \(-0.748090\pi\)
−0.702851 + 0.711337i \(0.748090\pi\)
\(632\) 0 0
\(633\) −8.40628 −0.334119
\(634\) 0 0
\(635\) −6.41381 −0.254524
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 5.84405 0.231187
\(640\) 0 0
\(641\) −5.36875 −0.212053 −0.106026 0.994363i \(-0.533813\pi\)
−0.106026 + 0.994363i \(0.533813\pi\)
\(642\) 0 0
\(643\) 36.6161 1.44400 0.721999 0.691894i \(-0.243224\pi\)
0.721999 + 0.691894i \(0.243224\pi\)
\(644\) 0 0
\(645\) 14.0304 0.552445
\(646\) 0 0
\(647\) 4.38291 0.172310 0.0861551 0.996282i \(-0.472542\pi\)
0.0861551 + 0.996282i \(0.472542\pi\)
\(648\) 0 0
\(649\) −81.3041 −3.19147
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −30.4512 −1.19165 −0.595824 0.803115i \(-0.703175\pi\)
−0.595824 + 0.803115i \(0.703175\pi\)
\(654\) 0 0
\(655\) 19.8794 0.776754
\(656\) 0 0
\(657\) −3.03036 −0.118226
\(658\) 0 0
\(659\) −25.6971 −1.00102 −0.500509 0.865731i \(-0.666854\pi\)
−0.500509 + 0.865731i \(0.666854\pi\)
\(660\) 0 0
\(661\) 22.4626 0.873695 0.436848 0.899536i \(-0.356095\pi\)
0.436848 + 0.899536i \(0.356095\pi\)
\(662\) 0 0
\(663\) 59.9695 2.32902
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 18.1719 0.703620
\(668\) 0 0
\(669\) 4.11839 0.159226
\(670\) 0 0
\(671\) 11.9610 0.461750
\(672\) 0 0
\(673\) −50.3231 −1.93981 −0.969906 0.243481i \(-0.921711\pi\)
−0.969906 + 0.243481i \(0.921711\pi\)
\(674\) 0 0
\(675\) −8.19832 −0.315553
\(676\) 0 0
\(677\) 4.17199 0.160343 0.0801714 0.996781i \(-0.474453\pi\)
0.0801714 + 0.996781i \(0.474453\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 41.2800 1.58185
\(682\) 0 0
\(683\) −13.8619 −0.530412 −0.265206 0.964192i \(-0.585440\pi\)
−0.265206 + 0.964192i \(0.585440\pi\)
\(684\) 0 0
\(685\) −5.31853 −0.203211
\(686\) 0 0
\(687\) −27.1512 −1.03588
\(688\) 0 0
\(689\) −35.4530 −1.35065
\(690\) 0 0
\(691\) 9.04806 0.344205 0.172102 0.985079i \(-0.444944\pi\)
0.172102 + 0.985079i \(0.444944\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −12.6473 −0.479740
\(696\) 0 0
\(697\) 86.6991 3.28396
\(698\) 0 0
\(699\) 47.7877 1.80750
\(700\) 0 0
\(701\) 21.7922 0.823080 0.411540 0.911392i \(-0.364991\pi\)
0.411540 + 0.911392i \(0.364991\pi\)
\(702\) 0 0
\(703\) 19.8565 0.748904
\(704\) 0 0
\(705\) −10.0134 −0.377125
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −45.0178 −1.69068 −0.845340 0.534229i \(-0.820602\pi\)
−0.845340 + 0.534229i \(0.820602\pi\)
\(710\) 0 0
\(711\) −0.400785 −0.0150306
\(712\) 0 0
\(713\) 11.0989 0.415657
\(714\) 0 0
\(715\) 46.9624 1.75630
\(716\) 0 0
\(717\) 29.8933 1.11638
\(718\) 0 0
\(719\) −50.0423 −1.86626 −0.933132 0.359535i \(-0.882935\pi\)
−0.933132 + 0.359535i \(0.882935\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 3.89335 0.144795
\(724\) 0 0
\(725\) −10.2551 −0.380866
\(726\) 0 0
\(727\) 21.8461 0.810229 0.405114 0.914266i \(-0.367232\pi\)
0.405114 + 0.914266i \(0.367232\pi\)
\(728\) 0 0
\(729\) 21.7025 0.803796
\(730\) 0 0
\(731\) 31.0403 1.14807
\(732\) 0 0
\(733\) 43.9598 1.62369 0.811847 0.583871i \(-0.198463\pi\)
0.811847 + 0.583871i \(0.198463\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 46.1428 1.69969
\(738\) 0 0
\(739\) −8.13544 −0.299267 −0.149634 0.988742i \(-0.547809\pi\)
−0.149634 + 0.988742i \(0.547809\pi\)
\(740\) 0 0
\(741\) −18.4542 −0.677933
\(742\) 0 0
\(743\) 13.5187 0.495953 0.247976 0.968766i \(-0.420234\pi\)
0.247976 + 0.968766i \(0.420234\pi\)
\(744\) 0 0
\(745\) 19.8016 0.725475
\(746\) 0 0
\(747\) 4.79466 0.175427
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −20.0653 −0.732194 −0.366097 0.930577i \(-0.619306\pi\)
−0.366097 + 0.930577i \(0.619306\pi\)
\(752\) 0 0
\(753\) −8.64682 −0.315107
\(754\) 0 0
\(755\) 23.2971 0.847870
\(756\) 0 0
\(757\) 50.2545 1.82653 0.913265 0.407367i \(-0.133553\pi\)
0.913265 + 0.407367i \(0.133553\pi\)
\(758\) 0 0
\(759\) −34.2601 −1.24356
\(760\) 0 0
\(761\) 6.35552 0.230387 0.115194 0.993343i \(-0.463251\pi\)
0.115194 + 0.993343i \(0.463251\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −6.16590 −0.222929
\(766\) 0 0
\(767\) −58.8392 −2.12456
\(768\) 0 0
\(769\) 8.69774 0.313649 0.156824 0.987627i \(-0.449874\pi\)
0.156824 + 0.987627i \(0.449874\pi\)
\(770\) 0 0
\(771\) −51.9337 −1.87035
\(772\) 0 0
\(773\) −6.44577 −0.231838 −0.115919 0.993259i \(-0.536981\pi\)
−0.115919 + 0.993259i \(0.536981\pi\)
\(774\) 0 0
\(775\) −6.26355 −0.224993
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −26.6796 −0.955897
\(780\) 0 0
\(781\) 76.3098 2.73058
\(782\) 0 0
\(783\) 27.9377 0.998411
\(784\) 0 0
\(785\) 15.1514 0.540777
\(786\) 0 0
\(787\) 7.45869 0.265874 0.132937 0.991125i \(-0.457559\pi\)
0.132937 + 0.991125i \(0.457559\pi\)
\(788\) 0 0
\(789\) 6.38282 0.227234
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 8.65609 0.307387
\(794\) 0 0
\(795\) 27.4731 0.974372
\(796\) 0 0
\(797\) 4.38199 0.155218 0.0776090 0.996984i \(-0.475271\pi\)
0.0776090 + 0.996984i \(0.475271\pi\)
\(798\) 0 0
\(799\) −22.1532 −0.783724
\(800\) 0 0
\(801\) 0.783841 0.0276956
\(802\) 0 0
\(803\) −39.5695 −1.39638
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 10.7710 0.379158
\(808\) 0 0
\(809\) 18.5226 0.651221 0.325610 0.945504i \(-0.394430\pi\)
0.325610 + 0.945504i \(0.394430\pi\)
\(810\) 0 0
\(811\) 11.8480 0.416040 0.208020 0.978125i \(-0.433298\pi\)
0.208020 + 0.978125i \(0.433298\pi\)
\(812\) 0 0
\(813\) −10.3832 −0.364154
\(814\) 0 0
\(815\) −12.2492 −0.429071
\(816\) 0 0
\(817\) −9.55192 −0.334179
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −51.0377 −1.78123 −0.890615 0.454759i \(-0.849726\pi\)
−0.890615 + 0.454759i \(0.849726\pi\)
\(822\) 0 0
\(823\) −26.4789 −0.922997 −0.461498 0.887141i \(-0.652688\pi\)
−0.461498 + 0.887141i \(0.652688\pi\)
\(824\) 0 0
\(825\) 19.3343 0.673135
\(826\) 0 0
\(827\) 1.94521 0.0676417 0.0338209 0.999428i \(-0.489232\pi\)
0.0338209 + 0.999428i \(0.489232\pi\)
\(828\) 0 0
\(829\) −45.0435 −1.56443 −0.782213 0.623011i \(-0.785909\pi\)
−0.782213 + 0.623011i \(0.785909\pi\)
\(830\) 0 0
\(831\) −4.03386 −0.139933
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 27.1943 0.941096
\(836\) 0 0
\(837\) 17.0635 0.589802
\(838\) 0 0
\(839\) −20.5499 −0.709461 −0.354731 0.934969i \(-0.615427\pi\)
−0.354731 + 0.934969i \(0.615427\pi\)
\(840\) 0 0
\(841\) 5.94677 0.205061
\(842\) 0 0
\(843\) 15.9621 0.549765
\(844\) 0 0
\(845\) 10.4954 0.361052
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −0.482284 −0.0165520
\(850\) 0 0
\(851\) 26.6778 0.914504
\(852\) 0 0
\(853\) −4.22587 −0.144691 −0.0723455 0.997380i \(-0.523048\pi\)
−0.0723455 + 0.997380i \(0.523048\pi\)
\(854\) 0 0
\(855\) 1.89741 0.0648902
\(856\) 0 0
\(857\) −16.2188 −0.554024 −0.277012 0.960867i \(-0.589344\pi\)
−0.277012 + 0.960867i \(0.589344\pi\)
\(858\) 0 0
\(859\) −15.8641 −0.541277 −0.270639 0.962681i \(-0.587235\pi\)
−0.270639 + 0.962681i \(0.587235\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −37.6467 −1.28151 −0.640754 0.767747i \(-0.721378\pi\)
−0.640754 + 0.767747i \(0.721378\pi\)
\(864\) 0 0
\(865\) −12.3905 −0.421288
\(866\) 0 0
\(867\) −71.1948 −2.41790
\(868\) 0 0
\(869\) −5.23332 −0.177528
\(870\) 0 0
\(871\) 33.3932 1.13149
\(872\) 0 0
\(873\) −3.31913 −0.112335
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −37.4564 −1.26481 −0.632406 0.774637i \(-0.717933\pi\)
−0.632406 + 0.774637i \(0.717933\pi\)
\(878\) 0 0
\(879\) −54.9230 −1.85251
\(880\) 0 0
\(881\) −11.0901 −0.373634 −0.186817 0.982395i \(-0.559817\pi\)
−0.186817 + 0.982395i \(0.559817\pi\)
\(882\) 0 0
\(883\) −30.4606 −1.02508 −0.512540 0.858663i \(-0.671295\pi\)
−0.512540 + 0.858663i \(0.671295\pi\)
\(884\) 0 0
\(885\) 45.5956 1.53268
\(886\) 0 0
\(887\) −33.6377 −1.12944 −0.564721 0.825282i \(-0.691016\pi\)
−0.564721 + 0.825282i \(0.691016\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −60.9225 −2.04098
\(892\) 0 0
\(893\) 6.81713 0.228127
\(894\) 0 0
\(895\) 5.41652 0.181054
\(896\) 0 0
\(897\) −24.7938 −0.827839
\(898\) 0 0
\(899\) 21.3445 0.711879
\(900\) 0 0
\(901\) 60.7806 2.02489
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 36.9707 1.22895
\(906\) 0 0
\(907\) 25.0860 0.832967 0.416484 0.909143i \(-0.363262\pi\)
0.416484 + 0.909143i \(0.363262\pi\)
\(908\) 0 0
\(909\) 4.27887 0.141921
\(910\) 0 0
\(911\) 59.4501 1.96967 0.984834 0.173498i \(-0.0555069\pi\)
0.984834 + 0.173498i \(0.0555069\pi\)
\(912\) 0 0
\(913\) 62.6072 2.07200
\(914\) 0 0
\(915\) −6.70776 −0.221752
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 53.6904 1.77108 0.885541 0.464562i \(-0.153788\pi\)
0.885541 + 0.464562i \(0.153788\pi\)
\(920\) 0 0
\(921\) −40.7633 −1.34320
\(922\) 0 0
\(923\) 55.2248 1.81775
\(924\) 0 0
\(925\) −15.0553 −0.495017
\(926\) 0 0
\(927\) −4.08040 −0.134018
\(928\) 0 0
\(929\) −21.7460 −0.713462 −0.356731 0.934207i \(-0.616109\pi\)
−0.356731 + 0.934207i \(0.616109\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 20.2125 0.661728
\(934\) 0 0
\(935\) −80.5124 −2.63304
\(936\) 0 0
\(937\) −54.1910 −1.77034 −0.885171 0.465266i \(-0.845959\pi\)
−0.885171 + 0.465266i \(0.845959\pi\)
\(938\) 0 0
\(939\) 15.2893 0.498947
\(940\) 0 0
\(941\) 52.4405 1.70951 0.854755 0.519031i \(-0.173707\pi\)
0.854755 + 0.519031i \(0.173707\pi\)
\(942\) 0 0
\(943\) −35.8448 −1.16727
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.74171 −0.0565979 −0.0282990 0.999600i \(-0.509009\pi\)
−0.0282990 + 0.999600i \(0.509009\pi\)
\(948\) 0 0
\(949\) −28.6361 −0.929569
\(950\) 0 0
\(951\) 37.9195 1.22962
\(952\) 0 0
\(953\) 21.6701 0.701965 0.350982 0.936382i \(-0.385848\pi\)
0.350982 + 0.936382i \(0.385848\pi\)
\(954\) 0 0
\(955\) 30.9863 1.00269
\(956\) 0 0
\(957\) −65.8862 −2.12980
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −17.9634 −0.579464
\(962\) 0 0
\(963\) 5.34086 0.172107
\(964\) 0 0
\(965\) −6.07473 −0.195552
\(966\) 0 0
\(967\) −0.774832 −0.0249169 −0.0124585 0.999922i \(-0.503966\pi\)
−0.0124585 + 0.999922i \(0.503966\pi\)
\(968\) 0 0
\(969\) 31.6379 1.01636
\(970\) 0 0
\(971\) 50.9273 1.63434 0.817168 0.576400i \(-0.195543\pi\)
0.817168 + 0.576400i \(0.195543\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 13.9921 0.448106
\(976\) 0 0
\(977\) 10.1187 0.323727 0.161864 0.986813i \(-0.448249\pi\)
0.161864 + 0.986813i \(0.448249\pi\)
\(978\) 0 0
\(979\) 10.2351 0.327117
\(980\) 0 0
\(981\) 4.16178 0.132875
\(982\) 0 0
\(983\) −46.4718 −1.48222 −0.741111 0.671383i \(-0.765701\pi\)
−0.741111 + 0.671383i \(0.765701\pi\)
\(984\) 0 0
\(985\) 3.87381 0.123430
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −12.8333 −0.408074
\(990\) 0 0
\(991\) 12.3035 0.390833 0.195416 0.980720i \(-0.437394\pi\)
0.195416 + 0.980720i \(0.437394\pi\)
\(992\) 0 0
\(993\) 42.8070 1.35844
\(994\) 0 0
\(995\) 43.9252 1.39252
\(996\) 0 0
\(997\) 27.3745 0.866958 0.433479 0.901164i \(-0.357286\pi\)
0.433479 + 0.901164i \(0.357286\pi\)
\(998\) 0 0
\(999\) 41.0147 1.29765
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2744.2.a.h.1.4 12
4.3 odd 2 5488.2.a.w.1.9 12
7.6 odd 2 inner 2744.2.a.h.1.9 yes 12
28.27 even 2 5488.2.a.w.1.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2744.2.a.h.1.4 12 1.1 even 1 trivial
2744.2.a.h.1.9 yes 12 7.6 odd 2 inner
5488.2.a.w.1.4 12 28.27 even 2
5488.2.a.w.1.9 12 4.3 odd 2