Properties

Label 2738.2.l
Level $2738$
Weight $2$
Character orbit 2738.l
Rep. character $\chi_{2738}(47,\cdot)$
Character field $\Q(\zeta_{111})$
Dimension $8568$
Sturm bound $703$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2738 = 2 \cdot 37^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2738.l (of order \(111\) and degree \(72\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1369 \)
Character field: \(\Q(\zeta_{111})\)
Sturm bound: \(703\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2738, [\chi])\).

Total New Old
Modular forms 25416 8568 16848
Cusp forms 25128 8568 16560
Eisenstein series 288 0 288

Trace form

\( 8568 q + q^{2} + 119 q^{4} + 3 q^{5} - 4 q^{7} - 2 q^{8} + 123 q^{9} + 2 q^{10} + 2 q^{13} - 8 q^{14} - 4 q^{15} + 119 q^{16} + 3 q^{17} - 180 q^{18} + 12 q^{19} + 3 q^{20} - 8 q^{21} + 8 q^{22} - 16 q^{23}+ \cdots + 38 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2738, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2738, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2738, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(1369, [\chi])\)\(^{\oplus 2}\)