Properties

Label 2738.2.b
Level $2738$
Weight $2$
Character orbit 2738.b
Rep. character $\chi_{2738}(2737,\cdot)$
Character field $\Q$
Dimension $110$
Sturm bound $703$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2738 = 2 \cdot 37^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2738.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 37 \)
Character field: \(\Q\)
Sturm bound: \(703\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2738, [\chi])\).

Total New Old
Modular forms 390 110 280
Cusp forms 314 110 204
Eisenstein series 76 0 76

Trace form

\( 110 q + 2 q^{3} - 110 q^{4} + 8 q^{7} + 104 q^{9} + 6 q^{10} - 6 q^{11} - 2 q^{12} + 110 q^{16} - 4 q^{21} - 104 q^{25} + 6 q^{26} + 20 q^{27} - 8 q^{28} - 24 q^{30} + 24 q^{33} - 12 q^{34} - 104 q^{36}+ \cdots - 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2738, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2738, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2738, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(74, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1369, [\chi])\)\(^{\oplus 2}\)