Defining parameters
| Level: | \( N \) | \(=\) | \( 2738 = 2 \cdot 37^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2738.b (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 37 \) |
| Character field: | \(\Q\) | ||
| Sturm bound: | \(703\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2738, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 390 | 110 | 280 |
| Cusp forms | 314 | 110 | 204 |
| Eisenstein series | 76 | 0 | 76 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2738, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2738, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2738, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(74, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1369, [\chi])\)\(^{\oplus 2}\)