Properties

Label 2738.2.a.v
Level $2738$
Weight $2$
Character orbit 2738.a
Self dual yes
Analytic conductor $21.863$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2738,2,Mod(1,2738)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2738, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2738.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2738 = 2 \cdot 37^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2738.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.8630400734\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\Q(\zeta_{38})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 8x^{7} + 7x^{6} + 21x^{5} - 15x^{4} - 20x^{3} + 10x^{2} + 5x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{8}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + ( - \beta_{4} + \beta_1 - 1) q^{3} + q^{4} + (\beta_{5} + \beta_1 - 1) q^{5} + ( - \beta_{4} + \beta_1 - 1) q^{6} + (\beta_{8} - \beta_{7} + \beta_{4} + \beta_{2} - \beta_1 - 1) q^{7} + q^{8} + (\beta_{8} - 2 \beta_{5} + 2 \beta_{4} - 2 \beta_{3} + \beta_{2} - 2 \beta_1 + 2) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} + ( - \beta_{4} + \beta_1 - 1) q^{3} + q^{4} + (\beta_{5} + \beta_1 - 1) q^{5} + ( - \beta_{4} + \beta_1 - 1) q^{6} + (\beta_{8} - \beta_{7} + \beta_{4} + \beta_{2} - \beta_1 - 1) q^{7} + q^{8} + (\beta_{8} - 2 \beta_{5} + 2 \beta_{4} - 2 \beta_{3} + \beta_{2} - 2 \beta_1 + 2) q^{9} + (\beta_{5} + \beta_1 - 1) q^{10} + ( - 2 \beta_{8} + \beta_{7} + \beta_{5} - \beta_{4} + \beta_{3} - 2 \beta_{2} - 1) q^{11} + ( - \beta_{4} + \beta_1 - 1) q^{12} + (\beta_{8} - \beta_{7} + \beta_{6} + \beta_{4} + \beta_{3} - \beta_{2} - \beta_1) q^{13} + (\beta_{8} - \beta_{7} + \beta_{4} + \beta_{2} - \beta_1 - 1) q^{14} + ( - \beta_{8} + \beta_{7} - \beta_{5} + \beta_{4} - 2 \beta_1 + 2) q^{15} + q^{16} + ( - 2 \beta_{8} - \beta_{7} - \beta_{5} - \beta_{4} + \beta_{2} - \beta_1 - 1) q^{17} + (\beta_{8} - 2 \beta_{5} + 2 \beta_{4} - 2 \beta_{3} + \beta_{2} - 2 \beta_1 + 2) q^{18} + (3 \beta_{7} - 2 \beta_{6} - 2 \beta_{4} + \beta_{3} + \beta_1 - 2) q^{19} + (\beta_{5} + \beta_1 - 1) q^{20} + ( - 3 \beta_{8} + 2 \beta_{7} - \beta_{6} + \beta_{5} + 3 \beta_{3} - 2 \beta_{2} - 2) q^{21} + ( - 2 \beta_{8} + \beta_{7} + \beta_{5} - \beta_{4} + \beta_{3} - 2 \beta_{2} - 1) q^{22} + ( - \beta_{7} - 2 \beta_{5} + 2 \beta_{4} - 2 \beta_{3} - 2 \beta_{2} - \beta_1 + 1) q^{23} + ( - \beta_{4} + \beta_1 - 1) q^{24} + ( - \beta_{8} + \beta_{7} + \beta_{6} - \beta_{5} + \beta_{4} + \beta_{3} - \beta_1 - 1) q^{25} + (\beta_{8} - \beta_{7} + \beta_{6} + \beta_{4} + \beta_{3} - \beta_{2} - \beta_1) q^{26} + (\beta_{7} + 3 \beta_{5} - 3 \beta_{4} + 4 \beta_{3} - 3 \beta_{2} + 3 \beta_1 - 4) q^{27} + (\beta_{8} - \beta_{7} + \beta_{4} + \beta_{2} - \beta_1 - 1) q^{28} + (\beta_{8} + 3 \beta_{7} - \beta_{6} + \beta_{5} - 2 \beta_{4} - \beta_{2} - \beta_1 - 2) q^{29} + ( - \beta_{8} + \beta_{7} - \beta_{5} + \beta_{4} - 2 \beta_1 + 2) q^{30} + (2 \beta_{8} - 2 \beta_{7} + \beta_{6} - 3 \beta_{5} + 3 \beta_{4} - 3 \beta_{3} + 3 \beta_{2} + \cdots + 2) q^{31}+ \cdots + ( - 3 \beta_{8} + 5 \beta_{7} - 3 \beta_{6} - \beta_{4} + 7 \beta_{3} - \beta_{2} + 3 \beta_1 - 5) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 9 q^{2} - 7 q^{3} + 9 q^{4} - 7 q^{5} - 7 q^{6} - 14 q^{7} + 9 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 9 q + 9 q^{2} - 7 q^{3} + 9 q^{4} - 7 q^{5} - 7 q^{6} - 14 q^{7} + 9 q^{8} + 8 q^{9} - 7 q^{10} - q^{11} - 7 q^{12} - 3 q^{13} - 14 q^{14} + 16 q^{15} + 9 q^{16} - 10 q^{17} + 8 q^{18} - 9 q^{19} - 7 q^{20} - 6 q^{21} - q^{22} + 3 q^{23} - 7 q^{24} - 10 q^{25} - 3 q^{26} - 19 q^{27} - 14 q^{28} - 12 q^{29} + 16 q^{30} - 2 q^{31} + 9 q^{32} - 14 q^{33} - 10 q^{34} + 13 q^{35} + 8 q^{36} - 9 q^{38} - 23 q^{39} - 7 q^{40} - 16 q^{41} - 6 q^{42} + 6 q^{43} - q^{44} - 40 q^{45} + 3 q^{46} - 15 q^{47} - 7 q^{48} + q^{49} - 10 q^{50} + 12 q^{51} - 3 q^{52} - 7 q^{53} - 19 q^{54} - 14 q^{55} - 14 q^{56} + 26 q^{57} - 12 q^{58} - q^{59} + 16 q^{60} - 7 q^{61} - 2 q^{62} - 4 q^{63} + 9 q^{64} - 4 q^{65} - 14 q^{66} - 66 q^{67} - 10 q^{68} - 34 q^{69} + 13 q^{70} - 15 q^{71} + 8 q^{72} - 50 q^{73} - 26 q^{75} - 9 q^{76} - 28 q^{77} - 23 q^{78} + 29 q^{79} - 7 q^{80} + 33 q^{81} - 16 q^{82} - 43 q^{83} - 6 q^{84} - 26 q^{85} + 6 q^{86} + 3 q^{87} - q^{88} - 6 q^{89} - 40 q^{90} + 30 q^{91} + 3 q^{92} - 28 q^{93} - 15 q^{94} - 12 q^{95} - 7 q^{96} - 50 q^{97} + q^{98} - 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{38} + \zeta_{38}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 3\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 4\nu^{2} + 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - 5\nu^{3} + 5\nu \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( \nu^{6} - 6\nu^{4} + 9\nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( \nu^{7} - 7\nu^{5} + 14\nu^{3} - 7\nu \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( \nu^{8} - 8\nu^{6} + 20\nu^{4} - 16\nu^{2} + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 3\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 4\beta_{2} + 6 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} + 5\beta_{3} + 10\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( \beta_{6} + 6\beta_{4} + 15\beta_{2} + 20 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( \beta_{7} + 7\beta_{5} + 21\beta_{3} + 35\beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( \beta_{8} + 8\beta_{6} + 28\beta_{4} + 56\beta_{2} + 70 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.89163
0.165159
−0.490971
−1.57828
−1.09390
1.97272
0.803391
1.75895
1.35456
1.00000 −3.38261 1.00000 −2.72648 −3.38261 −0.152624 1.00000 8.44202 −2.72648
1.2 1.00000 −2.72648 1.00000 −0.0314505 −2.72648 1.42593 1.00000 4.43367 −0.0314505
1.3 1.00000 −2.58487 1.00000 −3.38261 −2.58487 −3.95019 1.00000 3.68154 −3.38261
1.4 1.00000 −0.819334 1.00000 −0.605558 −0.819334 0.239042 1.00000 −2.32869 −0.605558
1.5 1.00000 −0.739333 1.00000 −2.58487 −0.739333 −0.650935 1.00000 −2.45339 −2.58487
1.6 1.00000 −0.605558 1.00000 2.32729 −0.605558 0.184773 1.00000 −2.63330 2.32729
1.7 1.00000 −0.0314505 1.00000 1.56234 −0.0314505 −4.80486 1.00000 −2.99901 1.56234
1.8 1.00000 1.56234 1.00000 −0.819334 1.56234 −1.93137 1.00000 −0.559099 −0.819334
1.9 1.00000 2.32729 1.00000 −0.739333 2.32729 −4.35976 1.00000 2.41626 −0.739333
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.9
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(37\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2738.2.a.v yes 9
37.b even 2 1 2738.2.a.u 9
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2738.2.a.u 9 37.b even 2 1
2738.2.a.v yes 9 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2738))\):

\( T_{3}^{9} + 7T_{3}^{8} + 7T_{3}^{7} - 45T_{3}^{6} - 100T_{3}^{5} + 13T_{3}^{4} + 170T_{3}^{3} + 139T_{3}^{2} + 36T_{3} + 1 \) Copy content Toggle raw display
\( T_{5}^{9} + 7T_{5}^{8} + 7T_{5}^{7} - 45T_{5}^{6} - 100T_{5}^{5} + 13T_{5}^{4} + 170T_{5}^{3} + 139T_{5}^{2} + 36T_{5} + 1 \) Copy content Toggle raw display
\( T_{7}^{9} + 14T_{7}^{8} + 66T_{7}^{7} + 96T_{7}^{6} - 99T_{7}^{5} - 287T_{7}^{4} - 64T_{7}^{3} + 46T_{7}^{2} + T_{7} - 1 \) Copy content Toggle raw display
\( T_{13}^{9} + 3 T_{13}^{8} - 53 T_{13}^{7} - 170 T_{13}^{6} + 732 T_{13}^{5} + 2334 T_{13}^{4} - 2040 T_{13}^{3} - 5321 T_{13}^{2} - 46 T_{13} + 379 \) Copy content Toggle raw display
\( T_{17}^{9} + 10 T_{17}^{8} - 40 T_{17}^{7} - 540 T_{17}^{6} + 202 T_{17}^{5} + 8595 T_{17}^{4} + 5594 T_{17}^{3} - 37295 T_{17}^{2} - 52545 T_{17} - 12769 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{9} \) Copy content Toggle raw display
$3$ \( T^{9} + 7 T^{8} + 7 T^{7} - 45 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{9} + 7 T^{8} + 7 T^{7} - 45 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{9} + 14 T^{8} + 66 T^{7} + 96 T^{6} + \cdots - 1 \) Copy content Toggle raw display
$11$ \( T^{9} + T^{8} - 46 T^{7} - 83 T^{6} + \cdots + 1901 \) Copy content Toggle raw display
$13$ \( T^{9} + 3 T^{8} - 53 T^{7} - 170 T^{6} + \cdots + 379 \) Copy content Toggle raw display
$17$ \( T^{9} + 10 T^{8} - 40 T^{7} + \cdots - 12769 \) Copy content Toggle raw display
$19$ \( T^{9} + 9 T^{8} - 59 T^{7} + \cdots - 1481 \) Copy content Toggle raw display
$23$ \( T^{9} - 3 T^{8} - 129 T^{7} + \cdots - 379 \) Copy content Toggle raw display
$29$ \( T^{9} + 12 T^{8} - 69 T^{7} + \cdots + 154697 \) Copy content Toggle raw display
$31$ \( T^{9} + 2 T^{8} - 89 T^{7} + \cdots + 1747 \) Copy content Toggle raw display
$37$ \( T^{9} \) Copy content Toggle raw display
$41$ \( T^{9} + 16 T^{8} - 15 T^{7} + \cdots + 60041 \) Copy content Toggle raw display
$43$ \( T^{9} - 6 T^{8} - 193 T^{7} + \cdots + 289103 \) Copy content Toggle raw display
$47$ \( T^{9} + 15 T^{8} - 185 T^{7} + \cdots + 9187069 \) Copy content Toggle raw display
$53$ \( T^{9} + 7 T^{8} - 297 T^{7} + \cdots + 47107043 \) Copy content Toggle raw display
$59$ \( T^{9} + T^{8} - 312 T^{7} + \cdots - 565249 \) Copy content Toggle raw display
$61$ \( T^{9} + 7 T^{8} - 297 T^{7} + \cdots - 47151197 \) Copy content Toggle raw display
$67$ \( T^{9} + 66 T^{8} + 1727 T^{7} + \cdots - 30468247 \) Copy content Toggle raw display
$71$ \( T^{9} + 15 T^{8} - 128 T^{7} + \cdots - 453683 \) Copy content Toggle raw display
$73$ \( T^{9} + 50 T^{8} + \cdots - 393016331 \) Copy content Toggle raw display
$79$ \( T^{9} - 29 T^{8} + 36 T^{7} + \cdots + 11315299 \) Copy content Toggle raw display
$83$ \( T^{9} + 43 T^{8} + 427 T^{7} + \cdots - 99198581 \) Copy content Toggle raw display
$89$ \( T^{9} + 6 T^{8} - 345 T^{7} + \cdots + 11018443 \) Copy content Toggle raw display
$97$ \( T^{9} + 50 T^{8} + 881 T^{7} + \cdots - 18092827 \) Copy content Toggle raw display
show more
show less