Properties

Label 2738.2.a.i.1.2
Level $2738$
Weight $2$
Character 2738.1
Self dual yes
Analytic conductor $21.863$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2738,2,Mod(1,2738)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2738, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2738.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2738 = 2 \cdot 37^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2738.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.8630400734\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 74)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 2738.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +0.732051 q^{3} +1.00000 q^{4} -1.73205 q^{5} +0.732051 q^{6} -2.00000 q^{7} +1.00000 q^{8} -2.46410 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +0.732051 q^{3} +1.00000 q^{4} -1.73205 q^{5} +0.732051 q^{6} -2.00000 q^{7} +1.00000 q^{8} -2.46410 q^{9} -1.73205 q^{10} +1.26795 q^{11} +0.732051 q^{12} +3.46410 q^{13} -2.00000 q^{14} -1.26795 q^{15} +1.00000 q^{16} -4.26795 q^{17} -2.46410 q^{18} +4.73205 q^{19} -1.73205 q^{20} -1.46410 q^{21} +1.26795 q^{22} -1.26795 q^{23} +0.732051 q^{24} -2.00000 q^{25} +3.46410 q^{26} -4.00000 q^{27} -2.00000 q^{28} -8.66025 q^{29} -1.26795 q^{30} -4.73205 q^{31} +1.00000 q^{32} +0.928203 q^{33} -4.26795 q^{34} +3.46410 q^{35} -2.46410 q^{36} +4.73205 q^{38} +2.53590 q^{39} -1.73205 q^{40} +3.92820 q^{41} -1.46410 q^{42} -12.9282 q^{43} +1.26795 q^{44} +4.26795 q^{45} -1.26795 q^{46} +1.26795 q^{47} +0.732051 q^{48} -3.00000 q^{49} -2.00000 q^{50} -3.12436 q^{51} +3.46410 q^{52} +9.46410 q^{53} -4.00000 q^{54} -2.19615 q^{55} -2.00000 q^{56} +3.46410 q^{57} -8.66025 q^{58} -9.46410 q^{59} -1.26795 q^{60} +1.73205 q^{61} -4.73205 q^{62} +4.92820 q^{63} +1.00000 q^{64} -6.00000 q^{65} +0.928203 q^{66} -0.196152 q^{67} -4.26795 q^{68} -0.928203 q^{69} +3.46410 q^{70} -3.46410 q^{71} -2.46410 q^{72} -4.00000 q^{73} -1.46410 q^{75} +4.73205 q^{76} -2.53590 q^{77} +2.53590 q^{78} -16.7321 q^{79} -1.73205 q^{80} +4.46410 q^{81} +3.92820 q^{82} +11.6603 q^{83} -1.46410 q^{84} +7.39230 q^{85} -12.9282 q^{86} -6.33975 q^{87} +1.26795 q^{88} -17.1962 q^{89} +4.26795 q^{90} -6.92820 q^{91} -1.26795 q^{92} -3.46410 q^{93} +1.26795 q^{94} -8.19615 q^{95} +0.732051 q^{96} -4.26795 q^{97} -3.00000 q^{98} -3.12436 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{3} + 2 q^{4} - 2 q^{6} - 4 q^{7} + 2 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} - 2 q^{3} + 2 q^{4} - 2 q^{6} - 4 q^{7} + 2 q^{8} + 2 q^{9} + 6 q^{11} - 2 q^{12} - 4 q^{14} - 6 q^{15} + 2 q^{16} - 12 q^{17} + 2 q^{18} + 6 q^{19} + 4 q^{21} + 6 q^{22} - 6 q^{23} - 2 q^{24} - 4 q^{25} - 8 q^{27} - 4 q^{28} - 6 q^{30} - 6 q^{31} + 2 q^{32} - 12 q^{33} - 12 q^{34} + 2 q^{36} + 6 q^{38} + 12 q^{39} - 6 q^{41} + 4 q^{42} - 12 q^{43} + 6 q^{44} + 12 q^{45} - 6 q^{46} + 6 q^{47} - 2 q^{48} - 6 q^{49} - 4 q^{50} + 18 q^{51} + 12 q^{53} - 8 q^{54} + 6 q^{55} - 4 q^{56} - 12 q^{59} - 6 q^{60} - 6 q^{62} - 4 q^{63} + 2 q^{64} - 12 q^{65} - 12 q^{66} + 10 q^{67} - 12 q^{68} + 12 q^{69} + 2 q^{72} - 8 q^{73} + 4 q^{75} + 6 q^{76} - 12 q^{77} + 12 q^{78} - 30 q^{79} + 2 q^{81} - 6 q^{82} + 6 q^{83} + 4 q^{84} - 6 q^{85} - 12 q^{86} - 30 q^{87} + 6 q^{88} - 24 q^{89} + 12 q^{90} - 6 q^{92} + 6 q^{94} - 6 q^{95} - 2 q^{96} - 12 q^{97} - 6 q^{98} + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.732051 0.422650 0.211325 0.977416i \(-0.432222\pi\)
0.211325 + 0.977416i \(0.432222\pi\)
\(4\) 1.00000 0.500000
\(5\) −1.73205 −0.774597 −0.387298 0.921954i \(-0.626592\pi\)
−0.387298 + 0.921954i \(0.626592\pi\)
\(6\) 0.732051 0.298858
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.46410 −0.821367
\(10\) −1.73205 −0.547723
\(11\) 1.26795 0.382301 0.191151 0.981561i \(-0.438778\pi\)
0.191151 + 0.981561i \(0.438778\pi\)
\(12\) 0.732051 0.211325
\(13\) 3.46410 0.960769 0.480384 0.877058i \(-0.340497\pi\)
0.480384 + 0.877058i \(0.340497\pi\)
\(14\) −2.00000 −0.534522
\(15\) −1.26795 −0.327383
\(16\) 1.00000 0.250000
\(17\) −4.26795 −1.03513 −0.517565 0.855644i \(-0.673161\pi\)
−0.517565 + 0.855644i \(0.673161\pi\)
\(18\) −2.46410 −0.580794
\(19\) 4.73205 1.08561 0.542803 0.839860i \(-0.317363\pi\)
0.542803 + 0.839860i \(0.317363\pi\)
\(20\) −1.73205 −0.387298
\(21\) −1.46410 −0.319493
\(22\) 1.26795 0.270328
\(23\) −1.26795 −0.264386 −0.132193 0.991224i \(-0.542202\pi\)
−0.132193 + 0.991224i \(0.542202\pi\)
\(24\) 0.732051 0.149429
\(25\) −2.00000 −0.400000
\(26\) 3.46410 0.679366
\(27\) −4.00000 −0.769800
\(28\) −2.00000 −0.377964
\(29\) −8.66025 −1.60817 −0.804084 0.594515i \(-0.797344\pi\)
−0.804084 + 0.594515i \(0.797344\pi\)
\(30\) −1.26795 −0.231495
\(31\) −4.73205 −0.849901 −0.424951 0.905216i \(-0.639709\pi\)
−0.424951 + 0.905216i \(0.639709\pi\)
\(32\) 1.00000 0.176777
\(33\) 0.928203 0.161579
\(34\) −4.26795 −0.731947
\(35\) 3.46410 0.585540
\(36\) −2.46410 −0.410684
\(37\) 0 0
\(38\) 4.73205 0.767640
\(39\) 2.53590 0.406069
\(40\) −1.73205 −0.273861
\(41\) 3.92820 0.613482 0.306741 0.951793i \(-0.400761\pi\)
0.306741 + 0.951793i \(0.400761\pi\)
\(42\) −1.46410 −0.225916
\(43\) −12.9282 −1.97153 −0.985766 0.168122i \(-0.946230\pi\)
−0.985766 + 0.168122i \(0.946230\pi\)
\(44\) 1.26795 0.191151
\(45\) 4.26795 0.636228
\(46\) −1.26795 −0.186949
\(47\) 1.26795 0.184949 0.0924747 0.995715i \(-0.470522\pi\)
0.0924747 + 0.995715i \(0.470522\pi\)
\(48\) 0.732051 0.105662
\(49\) −3.00000 −0.428571
\(50\) −2.00000 −0.282843
\(51\) −3.12436 −0.437497
\(52\) 3.46410 0.480384
\(53\) 9.46410 1.29999 0.649997 0.759937i \(-0.274770\pi\)
0.649997 + 0.759937i \(0.274770\pi\)
\(54\) −4.00000 −0.544331
\(55\) −2.19615 −0.296129
\(56\) −2.00000 −0.267261
\(57\) 3.46410 0.458831
\(58\) −8.66025 −1.13715
\(59\) −9.46410 −1.23212 −0.616061 0.787699i \(-0.711272\pi\)
−0.616061 + 0.787699i \(0.711272\pi\)
\(60\) −1.26795 −0.163692
\(61\) 1.73205 0.221766 0.110883 0.993833i \(-0.464632\pi\)
0.110883 + 0.993833i \(0.464632\pi\)
\(62\) −4.73205 −0.600971
\(63\) 4.92820 0.620895
\(64\) 1.00000 0.125000
\(65\) −6.00000 −0.744208
\(66\) 0.928203 0.114254
\(67\) −0.196152 −0.0239638 −0.0119819 0.999928i \(-0.503814\pi\)
−0.0119819 + 0.999928i \(0.503814\pi\)
\(68\) −4.26795 −0.517565
\(69\) −0.928203 −0.111743
\(70\) 3.46410 0.414039
\(71\) −3.46410 −0.411113 −0.205557 0.978645i \(-0.565900\pi\)
−0.205557 + 0.978645i \(0.565900\pi\)
\(72\) −2.46410 −0.290397
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) 0 0
\(75\) −1.46410 −0.169060
\(76\) 4.73205 0.542803
\(77\) −2.53590 −0.288992
\(78\) 2.53590 0.287134
\(79\) −16.7321 −1.88250 −0.941251 0.337707i \(-0.890349\pi\)
−0.941251 + 0.337707i \(0.890349\pi\)
\(80\) −1.73205 −0.193649
\(81\) 4.46410 0.496011
\(82\) 3.92820 0.433797
\(83\) 11.6603 1.27988 0.639940 0.768425i \(-0.278959\pi\)
0.639940 + 0.768425i \(0.278959\pi\)
\(84\) −1.46410 −0.159747
\(85\) 7.39230 0.801808
\(86\) −12.9282 −1.39408
\(87\) −6.33975 −0.679692
\(88\) 1.26795 0.135164
\(89\) −17.1962 −1.82279 −0.911394 0.411534i \(-0.864993\pi\)
−0.911394 + 0.411534i \(0.864993\pi\)
\(90\) 4.26795 0.449881
\(91\) −6.92820 −0.726273
\(92\) −1.26795 −0.132193
\(93\) −3.46410 −0.359211
\(94\) 1.26795 0.130779
\(95\) −8.19615 −0.840907
\(96\) 0.732051 0.0747146
\(97\) −4.26795 −0.433345 −0.216672 0.976244i \(-0.569520\pi\)
−0.216672 + 0.976244i \(0.569520\pi\)
\(98\) −3.00000 −0.303046
\(99\) −3.12436 −0.314010
\(100\) −2.00000 −0.200000
\(101\) −5.53590 −0.550842 −0.275421 0.961324i \(-0.588817\pi\)
−0.275421 + 0.961324i \(0.588817\pi\)
\(102\) −3.12436 −0.309357
\(103\) −15.4641 −1.52372 −0.761862 0.647740i \(-0.775714\pi\)
−0.761862 + 0.647740i \(0.775714\pi\)
\(104\) 3.46410 0.339683
\(105\) 2.53590 0.247478
\(106\) 9.46410 0.919235
\(107\) 10.3923 1.00466 0.502331 0.864675i \(-0.332476\pi\)
0.502331 + 0.864675i \(0.332476\pi\)
\(108\) −4.00000 −0.384900
\(109\) 14.6603 1.40420 0.702099 0.712080i \(-0.252246\pi\)
0.702099 + 0.712080i \(0.252246\pi\)
\(110\) −2.19615 −0.209395
\(111\) 0 0
\(112\) −2.00000 −0.188982
\(113\) 3.46410 0.325875 0.162938 0.986636i \(-0.447903\pi\)
0.162938 + 0.986636i \(0.447903\pi\)
\(114\) 3.46410 0.324443
\(115\) 2.19615 0.204792
\(116\) −8.66025 −0.804084
\(117\) −8.53590 −0.789144
\(118\) −9.46410 −0.871241
\(119\) 8.53590 0.782485
\(120\) −1.26795 −0.115747
\(121\) −9.39230 −0.853846
\(122\) 1.73205 0.156813
\(123\) 2.87564 0.259288
\(124\) −4.73205 −0.424951
\(125\) 12.1244 1.08444
\(126\) 4.92820 0.439039
\(127\) −18.1962 −1.61465 −0.807324 0.590109i \(-0.799085\pi\)
−0.807324 + 0.590109i \(0.799085\pi\)
\(128\) 1.00000 0.0883883
\(129\) −9.46410 −0.833268
\(130\) −6.00000 −0.526235
\(131\) 20.1962 1.76455 0.882273 0.470738i \(-0.156012\pi\)
0.882273 + 0.470738i \(0.156012\pi\)
\(132\) 0.928203 0.0807897
\(133\) −9.46410 −0.820642
\(134\) −0.196152 −0.0169450
\(135\) 6.92820 0.596285
\(136\) −4.26795 −0.365974
\(137\) 19.3923 1.65680 0.828398 0.560140i \(-0.189253\pi\)
0.828398 + 0.560140i \(0.189253\pi\)
\(138\) −0.928203 −0.0790139
\(139\) −10.5885 −0.898101 −0.449051 0.893506i \(-0.648238\pi\)
−0.449051 + 0.893506i \(0.648238\pi\)
\(140\) 3.46410 0.292770
\(141\) 0.928203 0.0781688
\(142\) −3.46410 −0.290701
\(143\) 4.39230 0.367303
\(144\) −2.46410 −0.205342
\(145\) 15.0000 1.24568
\(146\) −4.00000 −0.331042
\(147\) −2.19615 −0.181136
\(148\) 0 0
\(149\) −2.07180 −0.169728 −0.0848641 0.996393i \(-0.527046\pi\)
−0.0848641 + 0.996393i \(0.527046\pi\)
\(150\) −1.46410 −0.119543
\(151\) 6.19615 0.504236 0.252118 0.967697i \(-0.418873\pi\)
0.252118 + 0.967697i \(0.418873\pi\)
\(152\) 4.73205 0.383820
\(153\) 10.5167 0.850222
\(154\) −2.53590 −0.204349
\(155\) 8.19615 0.658331
\(156\) 2.53590 0.203034
\(157\) 1.00000 0.0798087 0.0399043 0.999204i \(-0.487295\pi\)
0.0399043 + 0.999204i \(0.487295\pi\)
\(158\) −16.7321 −1.33113
\(159\) 6.92820 0.549442
\(160\) −1.73205 −0.136931
\(161\) 2.53590 0.199857
\(162\) 4.46410 0.350733
\(163\) −0.928203 −0.0727025 −0.0363512 0.999339i \(-0.511574\pi\)
−0.0363512 + 0.999339i \(0.511574\pi\)
\(164\) 3.92820 0.306741
\(165\) −1.60770 −0.125159
\(166\) 11.6603 0.905011
\(167\) 13.8564 1.07224 0.536120 0.844141i \(-0.319889\pi\)
0.536120 + 0.844141i \(0.319889\pi\)
\(168\) −1.46410 −0.112958
\(169\) −1.00000 −0.0769231
\(170\) 7.39230 0.566964
\(171\) −11.6603 −0.891682
\(172\) −12.9282 −0.985766
\(173\) −12.4641 −0.947628 −0.473814 0.880625i \(-0.657123\pi\)
−0.473814 + 0.880625i \(0.657123\pi\)
\(174\) −6.33975 −0.480615
\(175\) 4.00000 0.302372
\(176\) 1.26795 0.0955753
\(177\) −6.92820 −0.520756
\(178\) −17.1962 −1.28891
\(179\) −2.53590 −0.189542 −0.0947710 0.995499i \(-0.530212\pi\)
−0.0947710 + 0.995499i \(0.530212\pi\)
\(180\) 4.26795 0.318114
\(181\) 11.3923 0.846783 0.423392 0.905947i \(-0.360839\pi\)
0.423392 + 0.905947i \(0.360839\pi\)
\(182\) −6.92820 −0.513553
\(183\) 1.26795 0.0937295
\(184\) −1.26795 −0.0934745
\(185\) 0 0
\(186\) −3.46410 −0.254000
\(187\) −5.41154 −0.395731
\(188\) 1.26795 0.0924747
\(189\) 8.00000 0.581914
\(190\) −8.19615 −0.594611
\(191\) 8.19615 0.593053 0.296526 0.955025i \(-0.404172\pi\)
0.296526 + 0.955025i \(0.404172\pi\)
\(192\) 0.732051 0.0528312
\(193\) −0.803848 −0.0578622 −0.0289311 0.999581i \(-0.509210\pi\)
−0.0289311 + 0.999581i \(0.509210\pi\)
\(194\) −4.26795 −0.306421
\(195\) −4.39230 −0.314539
\(196\) −3.00000 −0.214286
\(197\) −0.464102 −0.0330659 −0.0165329 0.999863i \(-0.505263\pi\)
−0.0165329 + 0.999863i \(0.505263\pi\)
\(198\) −3.12436 −0.222038
\(199\) 10.3923 0.736691 0.368345 0.929689i \(-0.379924\pi\)
0.368345 + 0.929689i \(0.379924\pi\)
\(200\) −2.00000 −0.141421
\(201\) −0.143594 −0.0101283
\(202\) −5.53590 −0.389504
\(203\) 17.3205 1.21566
\(204\) −3.12436 −0.218749
\(205\) −6.80385 −0.475201
\(206\) −15.4641 −1.07744
\(207\) 3.12436 0.217158
\(208\) 3.46410 0.240192
\(209\) 6.00000 0.415029
\(210\) 2.53590 0.174994
\(211\) 18.3923 1.26618 0.633089 0.774079i \(-0.281787\pi\)
0.633089 + 0.774079i \(0.281787\pi\)
\(212\) 9.46410 0.649997
\(213\) −2.53590 −0.173757
\(214\) 10.3923 0.710403
\(215\) 22.3923 1.52714
\(216\) −4.00000 −0.272166
\(217\) 9.46410 0.642465
\(218\) 14.6603 0.992918
\(219\) −2.92820 −0.197870
\(220\) −2.19615 −0.148065
\(221\) −14.7846 −0.994520
\(222\) 0 0
\(223\) 5.80385 0.388654 0.194327 0.980937i \(-0.437748\pi\)
0.194327 + 0.980937i \(0.437748\pi\)
\(224\) −2.00000 −0.133631
\(225\) 4.92820 0.328547
\(226\) 3.46410 0.230429
\(227\) 4.73205 0.314077 0.157039 0.987592i \(-0.449805\pi\)
0.157039 + 0.987592i \(0.449805\pi\)
\(228\) 3.46410 0.229416
\(229\) 6.60770 0.436649 0.218324 0.975876i \(-0.429941\pi\)
0.218324 + 0.975876i \(0.429941\pi\)
\(230\) 2.19615 0.144810
\(231\) −1.85641 −0.122143
\(232\) −8.66025 −0.568574
\(233\) −15.0000 −0.982683 −0.491341 0.870967i \(-0.663493\pi\)
−0.491341 + 0.870967i \(0.663493\pi\)
\(234\) −8.53590 −0.558009
\(235\) −2.19615 −0.143261
\(236\) −9.46410 −0.616061
\(237\) −12.2487 −0.795639
\(238\) 8.53590 0.553300
\(239\) −17.3205 −1.12037 −0.560185 0.828367i \(-0.689270\pi\)
−0.560185 + 0.828367i \(0.689270\pi\)
\(240\) −1.26795 −0.0818458
\(241\) 8.53590 0.549846 0.274923 0.961466i \(-0.411348\pi\)
0.274923 + 0.961466i \(0.411348\pi\)
\(242\) −9.39230 −0.603760
\(243\) 15.2679 0.979439
\(244\) 1.73205 0.110883
\(245\) 5.19615 0.331970
\(246\) 2.87564 0.183344
\(247\) 16.3923 1.04302
\(248\) −4.73205 −0.300486
\(249\) 8.53590 0.540941
\(250\) 12.1244 0.766812
\(251\) 17.3205 1.09326 0.546630 0.837374i \(-0.315910\pi\)
0.546630 + 0.837374i \(0.315910\pi\)
\(252\) 4.92820 0.310448
\(253\) −1.60770 −0.101075
\(254\) −18.1962 −1.14173
\(255\) 5.41154 0.338884
\(256\) 1.00000 0.0625000
\(257\) −17.1962 −1.07267 −0.536333 0.844006i \(-0.680191\pi\)
−0.536333 + 0.844006i \(0.680191\pi\)
\(258\) −9.46410 −0.589209
\(259\) 0 0
\(260\) −6.00000 −0.372104
\(261\) 21.3397 1.32090
\(262\) 20.1962 1.24772
\(263\) −14.5359 −0.896322 −0.448161 0.893953i \(-0.647921\pi\)
−0.448161 + 0.893953i \(0.647921\pi\)
\(264\) 0.928203 0.0571270
\(265\) −16.3923 −1.00697
\(266\) −9.46410 −0.580281
\(267\) −12.5885 −0.770401
\(268\) −0.196152 −0.0119819
\(269\) 16.3923 0.999456 0.499728 0.866182i \(-0.333433\pi\)
0.499728 + 0.866182i \(0.333433\pi\)
\(270\) 6.92820 0.421637
\(271\) 28.5885 1.73663 0.868313 0.496017i \(-0.165205\pi\)
0.868313 + 0.496017i \(0.165205\pi\)
\(272\) −4.26795 −0.258782
\(273\) −5.07180 −0.306959
\(274\) 19.3923 1.17153
\(275\) −2.53590 −0.152920
\(276\) −0.928203 −0.0558713
\(277\) −0.803848 −0.0482985 −0.0241493 0.999708i \(-0.507688\pi\)
−0.0241493 + 0.999708i \(0.507688\pi\)
\(278\) −10.5885 −0.635053
\(279\) 11.6603 0.698081
\(280\) 3.46410 0.207020
\(281\) −3.58846 −0.214069 −0.107035 0.994255i \(-0.534136\pi\)
−0.107035 + 0.994255i \(0.534136\pi\)
\(282\) 0.928203 0.0552737
\(283\) −19.8564 −1.18034 −0.590170 0.807279i \(-0.700939\pi\)
−0.590170 + 0.807279i \(0.700939\pi\)
\(284\) −3.46410 −0.205557
\(285\) −6.00000 −0.355409
\(286\) 4.39230 0.259722
\(287\) −7.85641 −0.463749
\(288\) −2.46410 −0.145199
\(289\) 1.21539 0.0714935
\(290\) 15.0000 0.880830
\(291\) −3.12436 −0.183153
\(292\) −4.00000 −0.234082
\(293\) 19.3923 1.13291 0.566455 0.824092i \(-0.308314\pi\)
0.566455 + 0.824092i \(0.308314\pi\)
\(294\) −2.19615 −0.128082
\(295\) 16.3923 0.954397
\(296\) 0 0
\(297\) −5.07180 −0.294295
\(298\) −2.07180 −0.120016
\(299\) −4.39230 −0.254014
\(300\) −1.46410 −0.0845299
\(301\) 25.8564 1.49034
\(302\) 6.19615 0.356549
\(303\) −4.05256 −0.232813
\(304\) 4.73205 0.271402
\(305\) −3.00000 −0.171780
\(306\) 10.5167 0.601197
\(307\) 22.0000 1.25561 0.627803 0.778372i \(-0.283954\pi\)
0.627803 + 0.778372i \(0.283954\pi\)
\(308\) −2.53590 −0.144496
\(309\) −11.3205 −0.644001
\(310\) 8.19615 0.465510
\(311\) −18.0000 −1.02069 −0.510343 0.859971i \(-0.670482\pi\)
−0.510343 + 0.859971i \(0.670482\pi\)
\(312\) 2.53590 0.143567
\(313\) 0.124356 0.00702900 0.00351450 0.999994i \(-0.498881\pi\)
0.00351450 + 0.999994i \(0.498881\pi\)
\(314\) 1.00000 0.0564333
\(315\) −8.53590 −0.480943
\(316\) −16.7321 −0.941251
\(317\) 13.3923 0.752187 0.376093 0.926582i \(-0.377267\pi\)
0.376093 + 0.926582i \(0.377267\pi\)
\(318\) 6.92820 0.388514
\(319\) −10.9808 −0.614805
\(320\) −1.73205 −0.0968246
\(321\) 7.60770 0.424620
\(322\) 2.53590 0.141320
\(323\) −20.1962 −1.12374
\(324\) 4.46410 0.248006
\(325\) −6.92820 −0.384308
\(326\) −0.928203 −0.0514084
\(327\) 10.7321 0.593484
\(328\) 3.92820 0.216899
\(329\) −2.53590 −0.139809
\(330\) −1.60770 −0.0885007
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 11.6603 0.639940
\(333\) 0 0
\(334\) 13.8564 0.758189
\(335\) 0.339746 0.0185623
\(336\) −1.46410 −0.0798733
\(337\) −30.1769 −1.64384 −0.821921 0.569602i \(-0.807097\pi\)
−0.821921 + 0.569602i \(0.807097\pi\)
\(338\) −1.00000 −0.0543928
\(339\) 2.53590 0.137731
\(340\) 7.39230 0.400904
\(341\) −6.00000 −0.324918
\(342\) −11.6603 −0.630514
\(343\) 20.0000 1.07990
\(344\) −12.9282 −0.697042
\(345\) 1.60770 0.0865554
\(346\) −12.4641 −0.670074
\(347\) −15.1244 −0.811918 −0.405959 0.913891i \(-0.633062\pi\)
−0.405959 + 0.913891i \(0.633062\pi\)
\(348\) −6.33975 −0.339846
\(349\) −9.39230 −0.502759 −0.251379 0.967889i \(-0.580884\pi\)
−0.251379 + 0.967889i \(0.580884\pi\)
\(350\) 4.00000 0.213809
\(351\) −13.8564 −0.739600
\(352\) 1.26795 0.0675819
\(353\) −16.2679 −0.865856 −0.432928 0.901429i \(-0.642519\pi\)
−0.432928 + 0.901429i \(0.642519\pi\)
\(354\) −6.92820 −0.368230
\(355\) 6.00000 0.318447
\(356\) −17.1962 −0.911394
\(357\) 6.24871 0.330717
\(358\) −2.53590 −0.134026
\(359\) 0.679492 0.0358622 0.0179311 0.999839i \(-0.494292\pi\)
0.0179311 + 0.999839i \(0.494292\pi\)
\(360\) 4.26795 0.224941
\(361\) 3.39230 0.178542
\(362\) 11.3923 0.598766
\(363\) −6.87564 −0.360878
\(364\) −6.92820 −0.363137
\(365\) 6.92820 0.362639
\(366\) 1.26795 0.0662768
\(367\) −8.39230 −0.438075 −0.219037 0.975716i \(-0.570292\pi\)
−0.219037 + 0.975716i \(0.570292\pi\)
\(368\) −1.26795 −0.0660964
\(369\) −9.67949 −0.503894
\(370\) 0 0
\(371\) −18.9282 −0.982703
\(372\) −3.46410 −0.179605
\(373\) −7.00000 −0.362446 −0.181223 0.983442i \(-0.558006\pi\)
−0.181223 + 0.983442i \(0.558006\pi\)
\(374\) −5.41154 −0.279824
\(375\) 8.87564 0.458336
\(376\) 1.26795 0.0653895
\(377\) −30.0000 −1.54508
\(378\) 8.00000 0.411476
\(379\) 6.78461 0.348502 0.174251 0.984701i \(-0.444250\pi\)
0.174251 + 0.984701i \(0.444250\pi\)
\(380\) −8.19615 −0.420454
\(381\) −13.3205 −0.682430
\(382\) 8.19615 0.419352
\(383\) 3.46410 0.177007 0.0885037 0.996076i \(-0.471792\pi\)
0.0885037 + 0.996076i \(0.471792\pi\)
\(384\) 0.732051 0.0373573
\(385\) 4.39230 0.223853
\(386\) −0.803848 −0.0409148
\(387\) 31.8564 1.61935
\(388\) −4.26795 −0.216672
\(389\) 25.9808 1.31728 0.658638 0.752460i \(-0.271133\pi\)
0.658638 + 0.752460i \(0.271133\pi\)
\(390\) −4.39230 −0.222413
\(391\) 5.41154 0.273673
\(392\) −3.00000 −0.151523
\(393\) 14.7846 0.745785
\(394\) −0.464102 −0.0233811
\(395\) 28.9808 1.45818
\(396\) −3.12436 −0.157005
\(397\) 23.0000 1.15434 0.577168 0.816625i \(-0.304158\pi\)
0.577168 + 0.816625i \(0.304158\pi\)
\(398\) 10.3923 0.520919
\(399\) −6.92820 −0.346844
\(400\) −2.00000 −0.100000
\(401\) 10.3923 0.518967 0.259483 0.965748i \(-0.416448\pi\)
0.259483 + 0.965748i \(0.416448\pi\)
\(402\) −0.143594 −0.00716179
\(403\) −16.3923 −0.816559
\(404\) −5.53590 −0.275421
\(405\) −7.73205 −0.384209
\(406\) 17.3205 0.859602
\(407\) 0 0
\(408\) −3.12436 −0.154679
\(409\) −34.5167 −1.70674 −0.853370 0.521307i \(-0.825445\pi\)
−0.853370 + 0.521307i \(0.825445\pi\)
\(410\) −6.80385 −0.336018
\(411\) 14.1962 0.700245
\(412\) −15.4641 −0.761862
\(413\) 18.9282 0.931396
\(414\) 3.12436 0.153554
\(415\) −20.1962 −0.991390
\(416\) 3.46410 0.169842
\(417\) −7.75129 −0.379582
\(418\) 6.00000 0.293470
\(419\) −31.8564 −1.55629 −0.778144 0.628086i \(-0.783838\pi\)
−0.778144 + 0.628086i \(0.783838\pi\)
\(420\) 2.53590 0.123739
\(421\) 12.1244 0.590905 0.295452 0.955357i \(-0.404530\pi\)
0.295452 + 0.955357i \(0.404530\pi\)
\(422\) 18.3923 0.895323
\(423\) −3.12436 −0.151911
\(424\) 9.46410 0.459617
\(425\) 8.53590 0.414052
\(426\) −2.53590 −0.122865
\(427\) −3.46410 −0.167640
\(428\) 10.3923 0.502331
\(429\) 3.21539 0.155241
\(430\) 22.3923 1.07985
\(431\) 0.339746 0.0163650 0.00818249 0.999967i \(-0.497395\pi\)
0.00818249 + 0.999967i \(0.497395\pi\)
\(432\) −4.00000 −0.192450
\(433\) −25.7846 −1.23913 −0.619565 0.784946i \(-0.712691\pi\)
−0.619565 + 0.784946i \(0.712691\pi\)
\(434\) 9.46410 0.454291
\(435\) 10.9808 0.526487
\(436\) 14.6603 0.702099
\(437\) −6.00000 −0.287019
\(438\) −2.92820 −0.139915
\(439\) −30.2487 −1.44369 −0.721846 0.692054i \(-0.756706\pi\)
−0.721846 + 0.692054i \(0.756706\pi\)
\(440\) −2.19615 −0.104697
\(441\) 7.39230 0.352015
\(442\) −14.7846 −0.703232
\(443\) 21.4641 1.01979 0.509895 0.860237i \(-0.329684\pi\)
0.509895 + 0.860237i \(0.329684\pi\)
\(444\) 0 0
\(445\) 29.7846 1.41193
\(446\) 5.80385 0.274820
\(447\) −1.51666 −0.0717356
\(448\) −2.00000 −0.0944911
\(449\) 27.4641 1.29611 0.648056 0.761593i \(-0.275582\pi\)
0.648056 + 0.761593i \(0.275582\pi\)
\(450\) 4.92820 0.232318
\(451\) 4.98076 0.234535
\(452\) 3.46410 0.162938
\(453\) 4.53590 0.213115
\(454\) 4.73205 0.222086
\(455\) 12.0000 0.562569
\(456\) 3.46410 0.162221
\(457\) 13.9808 0.653992 0.326996 0.945026i \(-0.393964\pi\)
0.326996 + 0.945026i \(0.393964\pi\)
\(458\) 6.60770 0.308757
\(459\) 17.0718 0.796843
\(460\) 2.19615 0.102396
\(461\) 32.5359 1.51535 0.757674 0.652633i \(-0.226336\pi\)
0.757674 + 0.652633i \(0.226336\pi\)
\(462\) −1.85641 −0.0863678
\(463\) −30.0000 −1.39422 −0.697109 0.716965i \(-0.745531\pi\)
−0.697109 + 0.716965i \(0.745531\pi\)
\(464\) −8.66025 −0.402042
\(465\) 6.00000 0.278243
\(466\) −15.0000 −0.694862
\(467\) 9.46410 0.437946 0.218973 0.975731i \(-0.429729\pi\)
0.218973 + 0.975731i \(0.429729\pi\)
\(468\) −8.53590 −0.394572
\(469\) 0.392305 0.0181150
\(470\) −2.19615 −0.101301
\(471\) 0.732051 0.0337311
\(472\) −9.46410 −0.435621
\(473\) −16.3923 −0.753719
\(474\) −12.2487 −0.562602
\(475\) −9.46410 −0.434243
\(476\) 8.53590 0.391242
\(477\) −23.3205 −1.06777
\(478\) −17.3205 −0.792222
\(479\) −2.53590 −0.115868 −0.0579341 0.998320i \(-0.518451\pi\)
−0.0579341 + 0.998320i \(0.518451\pi\)
\(480\) −1.26795 −0.0578737
\(481\) 0 0
\(482\) 8.53590 0.388800
\(483\) 1.85641 0.0844694
\(484\) −9.39230 −0.426923
\(485\) 7.39230 0.335667
\(486\) 15.2679 0.692568
\(487\) 22.0526 0.999297 0.499648 0.866228i \(-0.333463\pi\)
0.499648 + 0.866228i \(0.333463\pi\)
\(488\) 1.73205 0.0784063
\(489\) −0.679492 −0.0307277
\(490\) 5.19615 0.234738
\(491\) 15.8038 0.713218 0.356609 0.934254i \(-0.383933\pi\)
0.356609 + 0.934254i \(0.383933\pi\)
\(492\) 2.87564 0.129644
\(493\) 36.9615 1.66466
\(494\) 16.3923 0.737525
\(495\) 5.41154 0.243231
\(496\) −4.73205 −0.212475
\(497\) 6.92820 0.310772
\(498\) 8.53590 0.382503
\(499\) 9.80385 0.438880 0.219440 0.975626i \(-0.429577\pi\)
0.219440 + 0.975626i \(0.429577\pi\)
\(500\) 12.1244 0.542218
\(501\) 10.1436 0.453182
\(502\) 17.3205 0.773052
\(503\) 9.80385 0.437132 0.218566 0.975822i \(-0.429862\pi\)
0.218566 + 0.975822i \(0.429862\pi\)
\(504\) 4.92820 0.219520
\(505\) 9.58846 0.426681
\(506\) −1.60770 −0.0714708
\(507\) −0.732051 −0.0325115
\(508\) −18.1962 −0.807324
\(509\) −0.464102 −0.0205709 −0.0102855 0.999947i \(-0.503274\pi\)
−0.0102855 + 0.999947i \(0.503274\pi\)
\(510\) 5.41154 0.239627
\(511\) 8.00000 0.353899
\(512\) 1.00000 0.0441942
\(513\) −18.9282 −0.835701
\(514\) −17.1962 −0.758490
\(515\) 26.7846 1.18027
\(516\) −9.46410 −0.416634
\(517\) 1.60770 0.0707064
\(518\) 0 0
\(519\) −9.12436 −0.400515
\(520\) −6.00000 −0.263117
\(521\) −18.9282 −0.829260 −0.414630 0.909990i \(-0.636089\pi\)
−0.414630 + 0.909990i \(0.636089\pi\)
\(522\) 21.3397 0.934015
\(523\) −38.4449 −1.68108 −0.840538 0.541752i \(-0.817761\pi\)
−0.840538 + 0.541752i \(0.817761\pi\)
\(524\) 20.1962 0.882273
\(525\) 2.92820 0.127797
\(526\) −14.5359 −0.633795
\(527\) 20.1962 0.879758
\(528\) 0.928203 0.0403949
\(529\) −21.3923 −0.930100
\(530\) −16.3923 −0.712036
\(531\) 23.3205 1.01202
\(532\) −9.46410 −0.410321
\(533\) 13.6077 0.589415
\(534\) −12.5885 −0.544756
\(535\) −18.0000 −0.778208
\(536\) −0.196152 −0.00847249
\(537\) −1.85641 −0.0801099
\(538\) 16.3923 0.706722
\(539\) −3.80385 −0.163843
\(540\) 6.92820 0.298142
\(541\) 19.0526 0.819133 0.409567 0.912280i \(-0.365680\pi\)
0.409567 + 0.912280i \(0.365680\pi\)
\(542\) 28.5885 1.22798
\(543\) 8.33975 0.357893
\(544\) −4.26795 −0.182987
\(545\) −25.3923 −1.08769
\(546\) −5.07180 −0.217053
\(547\) 24.3397 1.04069 0.520346 0.853955i \(-0.325803\pi\)
0.520346 + 0.853955i \(0.325803\pi\)
\(548\) 19.3923 0.828398
\(549\) −4.26795 −0.182152
\(550\) −2.53590 −0.108131
\(551\) −40.9808 −1.74584
\(552\) −0.928203 −0.0395070
\(553\) 33.4641 1.42304
\(554\) −0.803848 −0.0341522
\(555\) 0 0
\(556\) −10.5885 −0.449051
\(557\) −35.4449 −1.50185 −0.750924 0.660389i \(-0.770391\pi\)
−0.750924 + 0.660389i \(0.770391\pi\)
\(558\) 11.6603 0.493618
\(559\) −44.7846 −1.89419
\(560\) 3.46410 0.146385
\(561\) −3.96152 −0.167256
\(562\) −3.58846 −0.151370
\(563\) −12.5885 −0.530540 −0.265270 0.964174i \(-0.585461\pi\)
−0.265270 + 0.964174i \(0.585461\pi\)
\(564\) 0.928203 0.0390844
\(565\) −6.00000 −0.252422
\(566\) −19.8564 −0.834627
\(567\) −8.92820 −0.374949
\(568\) −3.46410 −0.145350
\(569\) −30.1244 −1.26288 −0.631439 0.775425i \(-0.717536\pi\)
−0.631439 + 0.775425i \(0.717536\pi\)
\(570\) −6.00000 −0.251312
\(571\) −35.3731 −1.48032 −0.740158 0.672433i \(-0.765249\pi\)
−0.740158 + 0.672433i \(0.765249\pi\)
\(572\) 4.39230 0.183651
\(573\) 6.00000 0.250654
\(574\) −7.85641 −0.327920
\(575\) 2.53590 0.105754
\(576\) −2.46410 −0.102671
\(577\) −12.9282 −0.538208 −0.269104 0.963111i \(-0.586728\pi\)
−0.269104 + 0.963111i \(0.586728\pi\)
\(578\) 1.21539 0.0505536
\(579\) −0.588457 −0.0244554
\(580\) 15.0000 0.622841
\(581\) −23.3205 −0.967498
\(582\) −3.12436 −0.129509
\(583\) 12.0000 0.496989
\(584\) −4.00000 −0.165521
\(585\) 14.7846 0.611268
\(586\) 19.3923 0.801089
\(587\) −8.87564 −0.366337 −0.183169 0.983082i \(-0.558635\pi\)
−0.183169 + 0.983082i \(0.558635\pi\)
\(588\) −2.19615 −0.0905678
\(589\) −22.3923 −0.922659
\(590\) 16.3923 0.674861
\(591\) −0.339746 −0.0139753
\(592\) 0 0
\(593\) −25.6410 −1.05295 −0.526475 0.850191i \(-0.676487\pi\)
−0.526475 + 0.850191i \(0.676487\pi\)
\(594\) −5.07180 −0.208098
\(595\) −14.7846 −0.606110
\(596\) −2.07180 −0.0848641
\(597\) 7.60770 0.311362
\(598\) −4.39230 −0.179615
\(599\) 30.3397 1.23965 0.619824 0.784741i \(-0.287204\pi\)
0.619824 + 0.784741i \(0.287204\pi\)
\(600\) −1.46410 −0.0597717
\(601\) −33.3923 −1.36210 −0.681050 0.732237i \(-0.738476\pi\)
−0.681050 + 0.732237i \(0.738476\pi\)
\(602\) 25.8564 1.05383
\(603\) 0.483340 0.0196831
\(604\) 6.19615 0.252118
\(605\) 16.2679 0.661386
\(606\) −4.05256 −0.164624
\(607\) 41.9090 1.70103 0.850516 0.525949i \(-0.176290\pi\)
0.850516 + 0.525949i \(0.176290\pi\)
\(608\) 4.73205 0.191910
\(609\) 12.6795 0.513799
\(610\) −3.00000 −0.121466
\(611\) 4.39230 0.177694
\(612\) 10.5167 0.425111
\(613\) 33.7846 1.36455 0.682274 0.731097i \(-0.260991\pi\)
0.682274 + 0.731097i \(0.260991\pi\)
\(614\) 22.0000 0.887848
\(615\) −4.98076 −0.200844
\(616\) −2.53590 −0.102174
\(617\) −47.3205 −1.90505 −0.952526 0.304457i \(-0.901525\pi\)
−0.952526 + 0.304457i \(0.901525\pi\)
\(618\) −11.3205 −0.455378
\(619\) −9.60770 −0.386166 −0.193083 0.981182i \(-0.561849\pi\)
−0.193083 + 0.981182i \(0.561849\pi\)
\(620\) 8.19615 0.329165
\(621\) 5.07180 0.203524
\(622\) −18.0000 −0.721734
\(623\) 34.3923 1.37790
\(624\) 2.53590 0.101517
\(625\) −11.0000 −0.440000
\(626\) 0.124356 0.00497025
\(627\) 4.39230 0.175412
\(628\) 1.00000 0.0399043
\(629\) 0 0
\(630\) −8.53590 −0.340078
\(631\) 16.9808 0.675993 0.337997 0.941147i \(-0.390251\pi\)
0.337997 + 0.941147i \(0.390251\pi\)
\(632\) −16.7321 −0.665565
\(633\) 13.4641 0.535150
\(634\) 13.3923 0.531876
\(635\) 31.5167 1.25070
\(636\) 6.92820 0.274721
\(637\) −10.3923 −0.411758
\(638\) −10.9808 −0.434733
\(639\) 8.53590 0.337675
\(640\) −1.73205 −0.0684653
\(641\) 28.8564 1.13976 0.569880 0.821728i \(-0.306990\pi\)
0.569880 + 0.821728i \(0.306990\pi\)
\(642\) 7.60770 0.300252
\(643\) −16.7321 −0.659848 −0.329924 0.944008i \(-0.607023\pi\)
−0.329924 + 0.944008i \(0.607023\pi\)
\(644\) 2.53590 0.0999284
\(645\) 16.3923 0.645446
\(646\) −20.1962 −0.794607
\(647\) −36.9282 −1.45180 −0.725899 0.687802i \(-0.758576\pi\)
−0.725899 + 0.687802i \(0.758576\pi\)
\(648\) 4.46410 0.175366
\(649\) −12.0000 −0.471041
\(650\) −6.92820 −0.271746
\(651\) 6.92820 0.271538
\(652\) −0.928203 −0.0363512
\(653\) −7.98076 −0.312311 −0.156156 0.987732i \(-0.549910\pi\)
−0.156156 + 0.987732i \(0.549910\pi\)
\(654\) 10.7321 0.419656
\(655\) −34.9808 −1.36681
\(656\) 3.92820 0.153371
\(657\) 9.85641 0.384535
\(658\) −2.53590 −0.0988596
\(659\) 2.53590 0.0987846 0.0493923 0.998779i \(-0.484272\pi\)
0.0493923 + 0.998779i \(0.484272\pi\)
\(660\) −1.60770 −0.0625794
\(661\) 1.73205 0.0673690 0.0336845 0.999433i \(-0.489276\pi\)
0.0336845 + 0.999433i \(0.489276\pi\)
\(662\) 0 0
\(663\) −10.8231 −0.420334
\(664\) 11.6603 0.452506
\(665\) 16.3923 0.635666
\(666\) 0 0
\(667\) 10.9808 0.425177
\(668\) 13.8564 0.536120
\(669\) 4.24871 0.164265
\(670\) 0.339746 0.0131255
\(671\) 2.19615 0.0847815
\(672\) −1.46410 −0.0564789
\(673\) 16.0000 0.616755 0.308377 0.951264i \(-0.400214\pi\)
0.308377 + 0.951264i \(0.400214\pi\)
\(674\) −30.1769 −1.16237
\(675\) 8.00000 0.307920
\(676\) −1.00000 −0.0384615
\(677\) −20.0718 −0.771422 −0.385711 0.922620i \(-0.626044\pi\)
−0.385711 + 0.922620i \(0.626044\pi\)
\(678\) 2.53590 0.0973906
\(679\) 8.53590 0.327578
\(680\) 7.39230 0.283482
\(681\) 3.46410 0.132745
\(682\) −6.00000 −0.229752
\(683\) 27.4641 1.05088 0.525442 0.850829i \(-0.323900\pi\)
0.525442 + 0.850829i \(0.323900\pi\)
\(684\) −11.6603 −0.445841
\(685\) −33.5885 −1.28335
\(686\) 20.0000 0.763604
\(687\) 4.83717 0.184549
\(688\) −12.9282 −0.492883
\(689\) 32.7846 1.24899
\(690\) 1.60770 0.0612039
\(691\) 24.9808 0.950313 0.475156 0.879901i \(-0.342391\pi\)
0.475156 + 0.879901i \(0.342391\pi\)
\(692\) −12.4641 −0.473814
\(693\) 6.24871 0.237369
\(694\) −15.1244 −0.574113
\(695\) 18.3397 0.695666
\(696\) −6.33975 −0.240307
\(697\) −16.7654 −0.635034
\(698\) −9.39230 −0.355504
\(699\) −10.9808 −0.415331
\(700\) 4.00000 0.151186
\(701\) −5.07180 −0.191559 −0.0957796 0.995403i \(-0.530534\pi\)
−0.0957796 + 0.995403i \(0.530534\pi\)
\(702\) −13.8564 −0.522976
\(703\) 0 0
\(704\) 1.26795 0.0477876
\(705\) −1.60770 −0.0605493
\(706\) −16.2679 −0.612252
\(707\) 11.0718 0.416398
\(708\) −6.92820 −0.260378
\(709\) −45.7128 −1.71678 −0.858390 0.512997i \(-0.828535\pi\)
−0.858390 + 0.512997i \(0.828535\pi\)
\(710\) 6.00000 0.225176
\(711\) 41.2295 1.54623
\(712\) −17.1962 −0.644453
\(713\) 6.00000 0.224702
\(714\) 6.24871 0.233852
\(715\) −7.60770 −0.284512
\(716\) −2.53590 −0.0947710
\(717\) −12.6795 −0.473524
\(718\) 0.679492 0.0253584
\(719\) 40.7321 1.51905 0.759525 0.650479i \(-0.225432\pi\)
0.759525 + 0.650479i \(0.225432\pi\)
\(720\) 4.26795 0.159057
\(721\) 30.9282 1.15183
\(722\) 3.39230 0.126249
\(723\) 6.24871 0.232392
\(724\) 11.3923 0.423392
\(725\) 17.3205 0.643268
\(726\) −6.87564 −0.255179
\(727\) 15.7128 0.582756 0.291378 0.956608i \(-0.405886\pi\)
0.291378 + 0.956608i \(0.405886\pi\)
\(728\) −6.92820 −0.256776
\(729\) −2.21539 −0.0820515
\(730\) 6.92820 0.256424
\(731\) 55.1769 2.04079
\(732\) 1.26795 0.0468648
\(733\) −49.5692 −1.83088 −0.915440 0.402453i \(-0.868158\pi\)
−0.915440 + 0.402453i \(0.868158\pi\)
\(734\) −8.39230 −0.309766
\(735\) 3.80385 0.140307
\(736\) −1.26795 −0.0467372
\(737\) −0.248711 −0.00916140
\(738\) −9.67949 −0.356307
\(739\) −1.41154 −0.0519244 −0.0259622 0.999663i \(-0.508265\pi\)
−0.0259622 + 0.999663i \(0.508265\pi\)
\(740\) 0 0
\(741\) 12.0000 0.440831
\(742\) −18.9282 −0.694876
\(743\) 43.5167 1.59647 0.798236 0.602345i \(-0.205767\pi\)
0.798236 + 0.602345i \(0.205767\pi\)
\(744\) −3.46410 −0.127000
\(745\) 3.58846 0.131471
\(746\) −7.00000 −0.256288
\(747\) −28.7321 −1.05125
\(748\) −5.41154 −0.197866
\(749\) −20.7846 −0.759453
\(750\) 8.87564 0.324093
\(751\) −50.3923 −1.83884 −0.919421 0.393276i \(-0.871342\pi\)
−0.919421 + 0.393276i \(0.871342\pi\)
\(752\) 1.26795 0.0462373
\(753\) 12.6795 0.462066
\(754\) −30.0000 −1.09254
\(755\) −10.7321 −0.390579
\(756\) 8.00000 0.290957
\(757\) −6.80385 −0.247290 −0.123645 0.992327i \(-0.539458\pi\)
−0.123645 + 0.992327i \(0.539458\pi\)
\(758\) 6.78461 0.246428
\(759\) −1.17691 −0.0427193
\(760\) −8.19615 −0.297306
\(761\) −32.3205 −1.17162 −0.585809 0.810449i \(-0.699223\pi\)
−0.585809 + 0.810449i \(0.699223\pi\)
\(762\) −13.3205 −0.482551
\(763\) −29.3205 −1.06147
\(764\) 8.19615 0.296526
\(765\) −18.2154 −0.658579
\(766\) 3.46410 0.125163
\(767\) −32.7846 −1.18378
\(768\) 0.732051 0.0264156
\(769\) 34.3923 1.24022 0.620109 0.784516i \(-0.287088\pi\)
0.620109 + 0.784516i \(0.287088\pi\)
\(770\) 4.39230 0.158288
\(771\) −12.5885 −0.453362
\(772\) −0.803848 −0.0289311
\(773\) 20.0718 0.721932 0.360966 0.932579i \(-0.382447\pi\)
0.360966 + 0.932579i \(0.382447\pi\)
\(774\) 31.8564 1.14505
\(775\) 9.46410 0.339961
\(776\) −4.26795 −0.153210
\(777\) 0 0
\(778\) 25.9808 0.931455
\(779\) 18.5885 0.666001
\(780\) −4.39230 −0.157270
\(781\) −4.39230 −0.157169
\(782\) 5.41154 0.193516
\(783\) 34.6410 1.23797
\(784\) −3.00000 −0.107143
\(785\) −1.73205 −0.0618195
\(786\) 14.7846 0.527350
\(787\) 21.1769 0.754875 0.377438 0.926035i \(-0.376805\pi\)
0.377438 + 0.926035i \(0.376805\pi\)
\(788\) −0.464102 −0.0165329
\(789\) −10.6410 −0.378830
\(790\) 28.9808 1.03109
\(791\) −6.92820 −0.246339
\(792\) −3.12436 −0.111019
\(793\) 6.00000 0.213066
\(794\) 23.0000 0.816239
\(795\) −12.0000 −0.425596
\(796\) 10.3923 0.368345
\(797\) −32.7846 −1.16129 −0.580645 0.814157i \(-0.697200\pi\)
−0.580645 + 0.814157i \(0.697200\pi\)
\(798\) −6.92820 −0.245256
\(799\) −5.41154 −0.191447
\(800\) −2.00000 −0.0707107
\(801\) 42.3731 1.49718
\(802\) 10.3923 0.366965
\(803\) −5.07180 −0.178980
\(804\) −0.143594 −0.00506415
\(805\) −4.39230 −0.154808
\(806\) −16.3923 −0.577394
\(807\) 12.0000 0.422420
\(808\) −5.53590 −0.194752
\(809\) 39.7128 1.39623 0.698114 0.715987i \(-0.254023\pi\)
0.698114 + 0.715987i \(0.254023\pi\)
\(810\) −7.73205 −0.271677
\(811\) −0.392305 −0.0137757 −0.00688784 0.999976i \(-0.502192\pi\)
−0.00688784 + 0.999976i \(0.502192\pi\)
\(812\) 17.3205 0.607831
\(813\) 20.9282 0.733984
\(814\) 0 0
\(815\) 1.60770 0.0563151
\(816\) −3.12436 −0.109374
\(817\) −61.1769 −2.14031
\(818\) −34.5167 −1.20685
\(819\) 17.0718 0.596537
\(820\) −6.80385 −0.237601
\(821\) 9.46410 0.330299 0.165150 0.986269i \(-0.447189\pi\)
0.165150 + 0.986269i \(0.447189\pi\)
\(822\) 14.1962 0.495148
\(823\) 34.1962 1.19200 0.596001 0.802983i \(-0.296755\pi\)
0.596001 + 0.802983i \(0.296755\pi\)
\(824\) −15.4641 −0.538718
\(825\) −1.85641 −0.0646318
\(826\) 18.9282 0.658596
\(827\) 25.8564 0.899115 0.449558 0.893251i \(-0.351582\pi\)
0.449558 + 0.893251i \(0.351582\pi\)
\(828\) 3.12436 0.108579
\(829\) −10.3923 −0.360940 −0.180470 0.983581i \(-0.557762\pi\)
−0.180470 + 0.983581i \(0.557762\pi\)
\(830\) −20.1962 −0.701019
\(831\) −0.588457 −0.0204134
\(832\) 3.46410 0.120096
\(833\) 12.8038 0.443627
\(834\) −7.75129 −0.268405
\(835\) −24.0000 −0.830554
\(836\) 6.00000 0.207514
\(837\) 18.9282 0.654254
\(838\) −31.8564 −1.10046
\(839\) 1.01924 0.0351880 0.0175940 0.999845i \(-0.494399\pi\)
0.0175940 + 0.999845i \(0.494399\pi\)
\(840\) 2.53590 0.0874968
\(841\) 46.0000 1.58621
\(842\) 12.1244 0.417833
\(843\) −2.62693 −0.0904764
\(844\) 18.3923 0.633089
\(845\) 1.73205 0.0595844
\(846\) −3.12436 −0.107418
\(847\) 18.7846 0.645447
\(848\) 9.46410 0.324999
\(849\) −14.5359 −0.498871
\(850\) 8.53590 0.292779
\(851\) 0 0
\(852\) −2.53590 −0.0868784
\(853\) −13.7321 −0.470176 −0.235088 0.971974i \(-0.575538\pi\)
−0.235088 + 0.971974i \(0.575538\pi\)
\(854\) −3.46410 −0.118539
\(855\) 20.1962 0.690694
\(856\) 10.3923 0.355202
\(857\) 14.6603 0.500785 0.250392 0.968144i \(-0.419440\pi\)
0.250392 + 0.968144i \(0.419440\pi\)
\(858\) 3.21539 0.109772
\(859\) −30.0000 −1.02359 −0.511793 0.859109i \(-0.671019\pi\)
−0.511793 + 0.859109i \(0.671019\pi\)
\(860\) 22.3923 0.763571
\(861\) −5.75129 −0.196003
\(862\) 0.339746 0.0115718
\(863\) −16.3923 −0.558001 −0.279000 0.960291i \(-0.590003\pi\)
−0.279000 + 0.960291i \(0.590003\pi\)
\(864\) −4.00000 −0.136083
\(865\) 21.5885 0.734030
\(866\) −25.7846 −0.876197
\(867\) 0.889727 0.0302167
\(868\) 9.46410 0.321233
\(869\) −21.2154 −0.719683
\(870\) 10.9808 0.372283
\(871\) −0.679492 −0.0230237
\(872\) 14.6603 0.496459
\(873\) 10.5167 0.355935
\(874\) −6.00000 −0.202953
\(875\) −24.2487 −0.819756
\(876\) −2.92820 −0.0989348
\(877\) −24.1769 −0.816396 −0.408198 0.912893i \(-0.633843\pi\)
−0.408198 + 0.912893i \(0.633843\pi\)
\(878\) −30.2487 −1.02084
\(879\) 14.1962 0.478824
\(880\) −2.19615 −0.0740323
\(881\) −49.3923 −1.66407 −0.832035 0.554724i \(-0.812824\pi\)
−0.832035 + 0.554724i \(0.812824\pi\)
\(882\) 7.39230 0.248912
\(883\) −22.0526 −0.742128 −0.371064 0.928607i \(-0.621007\pi\)
−0.371064 + 0.928607i \(0.621007\pi\)
\(884\) −14.7846 −0.497260
\(885\) 12.0000 0.403376
\(886\) 21.4641 0.721101
\(887\) 7.94744 0.266849 0.133424 0.991059i \(-0.457403\pi\)
0.133424 + 0.991059i \(0.457403\pi\)
\(888\) 0 0
\(889\) 36.3923 1.22056
\(890\) 29.7846 0.998382
\(891\) 5.66025 0.189626
\(892\) 5.80385 0.194327
\(893\) 6.00000 0.200782
\(894\) −1.51666 −0.0507247
\(895\) 4.39230 0.146819
\(896\) −2.00000 −0.0668153
\(897\) −3.21539 −0.107359
\(898\) 27.4641 0.916489
\(899\) 40.9808 1.36678
\(900\) 4.92820 0.164273
\(901\) −40.3923 −1.34566
\(902\) 4.98076 0.165841
\(903\) 18.9282 0.629891
\(904\) 3.46410 0.115214
\(905\) −19.7321 −0.655916
\(906\) 4.53590 0.150695
\(907\) 42.5885 1.41413 0.707063 0.707150i \(-0.250020\pi\)
0.707063 + 0.707150i \(0.250020\pi\)
\(908\) 4.73205 0.157039
\(909\) 13.6410 0.452444
\(910\) 12.0000 0.397796
\(911\) −18.3397 −0.607623 −0.303811 0.952732i \(-0.598259\pi\)
−0.303811 + 0.952732i \(0.598259\pi\)
\(912\) 3.46410 0.114708
\(913\) 14.7846 0.489299
\(914\) 13.9808 0.462443
\(915\) −2.19615 −0.0726026
\(916\) 6.60770 0.218324
\(917\) −40.3923 −1.33387
\(918\) 17.0718 0.563453
\(919\) 3.12436 0.103063 0.0515315 0.998671i \(-0.483590\pi\)
0.0515315 + 0.998671i \(0.483590\pi\)
\(920\) 2.19615 0.0724050
\(921\) 16.1051 0.530682
\(922\) 32.5359 1.07151
\(923\) −12.0000 −0.394985
\(924\) −1.85641 −0.0610713
\(925\) 0 0
\(926\) −30.0000 −0.985861
\(927\) 38.1051 1.25154
\(928\) −8.66025 −0.284287
\(929\) 4.60770 0.151174 0.0755868 0.997139i \(-0.475917\pi\)
0.0755868 + 0.997139i \(0.475917\pi\)
\(930\) 6.00000 0.196748
\(931\) −14.1962 −0.465260
\(932\) −15.0000 −0.491341
\(933\) −13.1769 −0.431393
\(934\) 9.46410 0.309675
\(935\) 9.37307 0.306532
\(936\) −8.53590 −0.279005
\(937\) 6.60770 0.215864 0.107932 0.994158i \(-0.465577\pi\)
0.107932 + 0.994158i \(0.465577\pi\)
\(938\) 0.392305 0.0128092
\(939\) 0.0910347 0.00297080
\(940\) −2.19615 −0.0716306
\(941\) −11.7846 −0.384167 −0.192084 0.981379i \(-0.561524\pi\)
−0.192084 + 0.981379i \(0.561524\pi\)
\(942\) 0.732051 0.0238515
\(943\) −4.98076 −0.162196
\(944\) −9.46410 −0.308030
\(945\) −13.8564 −0.450749
\(946\) −16.3923 −0.532960
\(947\) 25.1769 0.818140 0.409070 0.912503i \(-0.365853\pi\)
0.409070 + 0.912503i \(0.365853\pi\)
\(948\) −12.2487 −0.397820
\(949\) −13.8564 −0.449798
\(950\) −9.46410 −0.307056
\(951\) 9.80385 0.317912
\(952\) 8.53590 0.276650
\(953\) 7.85641 0.254494 0.127247 0.991871i \(-0.459386\pi\)
0.127247 + 0.991871i \(0.459386\pi\)
\(954\) −23.3205 −0.755029
\(955\) −14.1962 −0.459377
\(956\) −17.3205 −0.560185
\(957\) −8.03848 −0.259847
\(958\) −2.53590 −0.0819312
\(959\) −38.7846 −1.25242
\(960\) −1.26795 −0.0409229
\(961\) −8.60770 −0.277668
\(962\) 0 0
\(963\) −25.6077 −0.825196
\(964\) 8.53590 0.274923
\(965\) 1.39230 0.0448199
\(966\) 1.85641 0.0597289
\(967\) −48.0000 −1.54358 −0.771788 0.635880i \(-0.780637\pi\)
−0.771788 + 0.635880i \(0.780637\pi\)
\(968\) −9.39230 −0.301880
\(969\) −14.7846 −0.474950
\(970\) 7.39230 0.237353
\(971\) −58.9808 −1.89278 −0.946391 0.323022i \(-0.895301\pi\)
−0.946391 + 0.323022i \(0.895301\pi\)
\(972\) 15.2679 0.489720
\(973\) 21.1769 0.678901
\(974\) 22.0526 0.706610
\(975\) −5.07180 −0.162427
\(976\) 1.73205 0.0554416
\(977\) 3.46410 0.110826 0.0554132 0.998464i \(-0.482352\pi\)
0.0554132 + 0.998464i \(0.482352\pi\)
\(978\) −0.679492 −0.0217278
\(979\) −21.8038 −0.696854
\(980\) 5.19615 0.165985
\(981\) −36.1244 −1.15336
\(982\) 15.8038 0.504321
\(983\) −20.8756 −0.665830 −0.332915 0.942957i \(-0.608032\pi\)
−0.332915 + 0.942957i \(0.608032\pi\)
\(984\) 2.87564 0.0916722
\(985\) 0.803848 0.0256127
\(986\) 36.9615 1.17709
\(987\) −1.85641 −0.0590901
\(988\) 16.3923 0.521509
\(989\) 16.3923 0.521245
\(990\) 5.41154 0.171990
\(991\) 52.6410 1.67220 0.836098 0.548579i \(-0.184831\pi\)
0.836098 + 0.548579i \(0.184831\pi\)
\(992\) −4.73205 −0.150243
\(993\) 0 0
\(994\) 6.92820 0.219749
\(995\) −18.0000 −0.570638
\(996\) 8.53590 0.270470
\(997\) −10.3923 −0.329128 −0.164564 0.986366i \(-0.552622\pi\)
−0.164564 + 0.986366i \(0.552622\pi\)
\(998\) 9.80385 0.310335
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2738.2.a.i.1.2 2
37.23 odd 12 74.2.e.b.11.1 4
37.29 odd 12 74.2.e.b.27.1 yes 4
37.36 even 2 2738.2.a.e.1.2 2
111.23 even 12 666.2.s.a.307.2 4
111.29 even 12 666.2.s.a.397.2 4
148.23 even 12 592.2.w.e.529.1 4
148.103 even 12 592.2.w.e.545.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
74.2.e.b.11.1 4 37.23 odd 12
74.2.e.b.27.1 yes 4 37.29 odd 12
592.2.w.e.529.1 4 148.23 even 12
592.2.w.e.545.1 4 148.103 even 12
666.2.s.a.307.2 4 111.23 even 12
666.2.s.a.397.2 4 111.29 even 12
2738.2.a.e.1.2 2 37.36 even 2
2738.2.a.i.1.2 2 1.1 even 1 trivial