Properties

Label 2738.2.a.i.1.1
Level $2738$
Weight $2$
Character 2738.1
Self dual yes
Analytic conductor $21.863$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2738,2,Mod(1,2738)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2738, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2738.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2738 = 2 \cdot 37^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2738.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.8630400734\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 74)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 2738.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -2.73205 q^{3} +1.00000 q^{4} +1.73205 q^{5} -2.73205 q^{6} -2.00000 q^{7} +1.00000 q^{8} +4.46410 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} -2.73205 q^{3} +1.00000 q^{4} +1.73205 q^{5} -2.73205 q^{6} -2.00000 q^{7} +1.00000 q^{8} +4.46410 q^{9} +1.73205 q^{10} +4.73205 q^{11} -2.73205 q^{12} -3.46410 q^{13} -2.00000 q^{14} -4.73205 q^{15} +1.00000 q^{16} -7.73205 q^{17} +4.46410 q^{18} +1.26795 q^{19} +1.73205 q^{20} +5.46410 q^{21} +4.73205 q^{22} -4.73205 q^{23} -2.73205 q^{24} -2.00000 q^{25} -3.46410 q^{26} -4.00000 q^{27} -2.00000 q^{28} +8.66025 q^{29} -4.73205 q^{30} -1.26795 q^{31} +1.00000 q^{32} -12.9282 q^{33} -7.73205 q^{34} -3.46410 q^{35} +4.46410 q^{36} +1.26795 q^{38} +9.46410 q^{39} +1.73205 q^{40} -9.92820 q^{41} +5.46410 q^{42} +0.928203 q^{43} +4.73205 q^{44} +7.73205 q^{45} -4.73205 q^{46} +4.73205 q^{47} -2.73205 q^{48} -3.00000 q^{49} -2.00000 q^{50} +21.1244 q^{51} -3.46410 q^{52} +2.53590 q^{53} -4.00000 q^{54} +8.19615 q^{55} -2.00000 q^{56} -3.46410 q^{57} +8.66025 q^{58} -2.53590 q^{59} -4.73205 q^{60} -1.73205 q^{61} -1.26795 q^{62} -8.92820 q^{63} +1.00000 q^{64} -6.00000 q^{65} -12.9282 q^{66} +10.1962 q^{67} -7.73205 q^{68} +12.9282 q^{69} -3.46410 q^{70} +3.46410 q^{71} +4.46410 q^{72} -4.00000 q^{73} +5.46410 q^{75} +1.26795 q^{76} -9.46410 q^{77} +9.46410 q^{78} -13.2679 q^{79} +1.73205 q^{80} -2.46410 q^{81} -9.92820 q^{82} -5.66025 q^{83} +5.46410 q^{84} -13.3923 q^{85} +0.928203 q^{86} -23.6603 q^{87} +4.73205 q^{88} -6.80385 q^{89} +7.73205 q^{90} +6.92820 q^{91} -4.73205 q^{92} +3.46410 q^{93} +4.73205 q^{94} +2.19615 q^{95} -2.73205 q^{96} -7.73205 q^{97} -3.00000 q^{98} +21.1244 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{3} + 2 q^{4} - 2 q^{6} - 4 q^{7} + 2 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} - 2 q^{3} + 2 q^{4} - 2 q^{6} - 4 q^{7} + 2 q^{8} + 2 q^{9} + 6 q^{11} - 2 q^{12} - 4 q^{14} - 6 q^{15} + 2 q^{16} - 12 q^{17} + 2 q^{18} + 6 q^{19} + 4 q^{21} + 6 q^{22} - 6 q^{23} - 2 q^{24} - 4 q^{25} - 8 q^{27} - 4 q^{28} - 6 q^{30} - 6 q^{31} + 2 q^{32} - 12 q^{33} - 12 q^{34} + 2 q^{36} + 6 q^{38} + 12 q^{39} - 6 q^{41} + 4 q^{42} - 12 q^{43} + 6 q^{44} + 12 q^{45} - 6 q^{46} + 6 q^{47} - 2 q^{48} - 6 q^{49} - 4 q^{50} + 18 q^{51} + 12 q^{53} - 8 q^{54} + 6 q^{55} - 4 q^{56} - 12 q^{59} - 6 q^{60} - 6 q^{62} - 4 q^{63} + 2 q^{64} - 12 q^{65} - 12 q^{66} + 10 q^{67} - 12 q^{68} + 12 q^{69} + 2 q^{72} - 8 q^{73} + 4 q^{75} + 6 q^{76} - 12 q^{77} + 12 q^{78} - 30 q^{79} + 2 q^{81} - 6 q^{82} + 6 q^{83} + 4 q^{84} - 6 q^{85} - 12 q^{86} - 30 q^{87} + 6 q^{88} - 24 q^{89} + 12 q^{90} - 6 q^{92} + 6 q^{94} - 6 q^{95} - 2 q^{96} - 12 q^{97} - 6 q^{98} + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −2.73205 −1.57735 −0.788675 0.614810i \(-0.789233\pi\)
−0.788675 + 0.614810i \(0.789233\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.73205 0.774597 0.387298 0.921954i \(-0.373408\pi\)
0.387298 + 0.921954i \(0.373408\pi\)
\(6\) −2.73205 −1.11536
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 1.00000 0.353553
\(9\) 4.46410 1.48803
\(10\) 1.73205 0.547723
\(11\) 4.73205 1.42677 0.713384 0.700774i \(-0.247162\pi\)
0.713384 + 0.700774i \(0.247162\pi\)
\(12\) −2.73205 −0.788675
\(13\) −3.46410 −0.960769 −0.480384 0.877058i \(-0.659503\pi\)
−0.480384 + 0.877058i \(0.659503\pi\)
\(14\) −2.00000 −0.534522
\(15\) −4.73205 −1.22181
\(16\) 1.00000 0.250000
\(17\) −7.73205 −1.87530 −0.937649 0.347584i \(-0.887002\pi\)
−0.937649 + 0.347584i \(0.887002\pi\)
\(18\) 4.46410 1.05220
\(19\) 1.26795 0.290887 0.145444 0.989367i \(-0.453539\pi\)
0.145444 + 0.989367i \(0.453539\pi\)
\(20\) 1.73205 0.387298
\(21\) 5.46410 1.19236
\(22\) 4.73205 1.00888
\(23\) −4.73205 −0.986701 −0.493350 0.869831i \(-0.664228\pi\)
−0.493350 + 0.869831i \(0.664228\pi\)
\(24\) −2.73205 −0.557678
\(25\) −2.00000 −0.400000
\(26\) −3.46410 −0.679366
\(27\) −4.00000 −0.769800
\(28\) −2.00000 −0.377964
\(29\) 8.66025 1.60817 0.804084 0.594515i \(-0.202656\pi\)
0.804084 + 0.594515i \(0.202656\pi\)
\(30\) −4.73205 −0.863950
\(31\) −1.26795 −0.227730 −0.113865 0.993496i \(-0.536323\pi\)
−0.113865 + 0.993496i \(0.536323\pi\)
\(32\) 1.00000 0.176777
\(33\) −12.9282 −2.25051
\(34\) −7.73205 −1.32604
\(35\) −3.46410 −0.585540
\(36\) 4.46410 0.744017
\(37\) 0 0
\(38\) 1.26795 0.205689
\(39\) 9.46410 1.51547
\(40\) 1.73205 0.273861
\(41\) −9.92820 −1.55052 −0.775262 0.631639i \(-0.782382\pi\)
−0.775262 + 0.631639i \(0.782382\pi\)
\(42\) 5.46410 0.843129
\(43\) 0.928203 0.141550 0.0707748 0.997492i \(-0.477453\pi\)
0.0707748 + 0.997492i \(0.477453\pi\)
\(44\) 4.73205 0.713384
\(45\) 7.73205 1.15263
\(46\) −4.73205 −0.697703
\(47\) 4.73205 0.690241 0.345120 0.938558i \(-0.387838\pi\)
0.345120 + 0.938558i \(0.387838\pi\)
\(48\) −2.73205 −0.394338
\(49\) −3.00000 −0.428571
\(50\) −2.00000 −0.282843
\(51\) 21.1244 2.95800
\(52\) −3.46410 −0.480384
\(53\) 2.53590 0.348332 0.174166 0.984716i \(-0.444277\pi\)
0.174166 + 0.984716i \(0.444277\pi\)
\(54\) −4.00000 −0.544331
\(55\) 8.19615 1.10517
\(56\) −2.00000 −0.267261
\(57\) −3.46410 −0.458831
\(58\) 8.66025 1.13715
\(59\) −2.53590 −0.330146 −0.165073 0.986281i \(-0.552786\pi\)
−0.165073 + 0.986281i \(0.552786\pi\)
\(60\) −4.73205 −0.610905
\(61\) −1.73205 −0.221766 −0.110883 0.993833i \(-0.535368\pi\)
−0.110883 + 0.993833i \(0.535368\pi\)
\(62\) −1.26795 −0.161030
\(63\) −8.92820 −1.12485
\(64\) 1.00000 0.125000
\(65\) −6.00000 −0.744208
\(66\) −12.9282 −1.59135
\(67\) 10.1962 1.24566 0.622829 0.782358i \(-0.285983\pi\)
0.622829 + 0.782358i \(0.285983\pi\)
\(68\) −7.73205 −0.937649
\(69\) 12.9282 1.55637
\(70\) −3.46410 −0.414039
\(71\) 3.46410 0.411113 0.205557 0.978645i \(-0.434100\pi\)
0.205557 + 0.978645i \(0.434100\pi\)
\(72\) 4.46410 0.526099
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) 0 0
\(75\) 5.46410 0.630940
\(76\) 1.26795 0.145444
\(77\) −9.46410 −1.07853
\(78\) 9.46410 1.07160
\(79\) −13.2679 −1.49276 −0.746380 0.665520i \(-0.768210\pi\)
−0.746380 + 0.665520i \(0.768210\pi\)
\(80\) 1.73205 0.193649
\(81\) −2.46410 −0.273789
\(82\) −9.92820 −1.09639
\(83\) −5.66025 −0.621294 −0.310647 0.950525i \(-0.600546\pi\)
−0.310647 + 0.950525i \(0.600546\pi\)
\(84\) 5.46410 0.596182
\(85\) −13.3923 −1.45260
\(86\) 0.928203 0.100091
\(87\) −23.6603 −2.53665
\(88\) 4.73205 0.504438
\(89\) −6.80385 −0.721206 −0.360603 0.932719i \(-0.617429\pi\)
−0.360603 + 0.932719i \(0.617429\pi\)
\(90\) 7.73205 0.815030
\(91\) 6.92820 0.726273
\(92\) −4.73205 −0.493350
\(93\) 3.46410 0.359211
\(94\) 4.73205 0.488074
\(95\) 2.19615 0.225320
\(96\) −2.73205 −0.278839
\(97\) −7.73205 −0.785071 −0.392535 0.919737i \(-0.628402\pi\)
−0.392535 + 0.919737i \(0.628402\pi\)
\(98\) −3.00000 −0.303046
\(99\) 21.1244 2.12308
\(100\) −2.00000 −0.200000
\(101\) −12.4641 −1.24022 −0.620112 0.784513i \(-0.712913\pi\)
−0.620112 + 0.784513i \(0.712913\pi\)
\(102\) 21.1244 2.09162
\(103\) −8.53590 −0.841067 −0.420534 0.907277i \(-0.638157\pi\)
−0.420534 + 0.907277i \(0.638157\pi\)
\(104\) −3.46410 −0.339683
\(105\) 9.46410 0.923602
\(106\) 2.53590 0.246308
\(107\) −10.3923 −1.00466 −0.502331 0.864675i \(-0.667524\pi\)
−0.502331 + 0.864675i \(0.667524\pi\)
\(108\) −4.00000 −0.384900
\(109\) −2.66025 −0.254806 −0.127403 0.991851i \(-0.540664\pi\)
−0.127403 + 0.991851i \(0.540664\pi\)
\(110\) 8.19615 0.781472
\(111\) 0 0
\(112\) −2.00000 −0.188982
\(113\) −3.46410 −0.325875 −0.162938 0.986636i \(-0.552097\pi\)
−0.162938 + 0.986636i \(0.552097\pi\)
\(114\) −3.46410 −0.324443
\(115\) −8.19615 −0.764295
\(116\) 8.66025 0.804084
\(117\) −15.4641 −1.42966
\(118\) −2.53590 −0.233448
\(119\) 15.4641 1.41759
\(120\) −4.73205 −0.431975
\(121\) 11.3923 1.03566
\(122\) −1.73205 −0.156813
\(123\) 27.1244 2.44572
\(124\) −1.26795 −0.113865
\(125\) −12.1244 −1.08444
\(126\) −8.92820 −0.795388
\(127\) −7.80385 −0.692479 −0.346240 0.938146i \(-0.612542\pi\)
−0.346240 + 0.938146i \(0.612542\pi\)
\(128\) 1.00000 0.0883883
\(129\) −2.53590 −0.223273
\(130\) −6.00000 −0.526235
\(131\) 9.80385 0.856566 0.428283 0.903645i \(-0.359119\pi\)
0.428283 + 0.903645i \(0.359119\pi\)
\(132\) −12.9282 −1.12526
\(133\) −2.53590 −0.219890
\(134\) 10.1962 0.880813
\(135\) −6.92820 −0.596285
\(136\) −7.73205 −0.663018
\(137\) −1.39230 −0.118953 −0.0594763 0.998230i \(-0.518943\pi\)
−0.0594763 + 0.998230i \(0.518943\pi\)
\(138\) 12.9282 1.10052
\(139\) 20.5885 1.74629 0.873145 0.487460i \(-0.162077\pi\)
0.873145 + 0.487460i \(0.162077\pi\)
\(140\) −3.46410 −0.292770
\(141\) −12.9282 −1.08875
\(142\) 3.46410 0.290701
\(143\) −16.3923 −1.37079
\(144\) 4.46410 0.372008
\(145\) 15.0000 1.24568
\(146\) −4.00000 −0.331042
\(147\) 8.19615 0.676007
\(148\) 0 0
\(149\) −15.9282 −1.30489 −0.652445 0.757836i \(-0.726257\pi\)
−0.652445 + 0.757836i \(0.726257\pi\)
\(150\) 5.46410 0.446142
\(151\) −4.19615 −0.341478 −0.170739 0.985316i \(-0.554616\pi\)
−0.170739 + 0.985316i \(0.554616\pi\)
\(152\) 1.26795 0.102844
\(153\) −34.5167 −2.79051
\(154\) −9.46410 −0.762639
\(155\) −2.19615 −0.176399
\(156\) 9.46410 0.757735
\(157\) 1.00000 0.0798087 0.0399043 0.999204i \(-0.487295\pi\)
0.0399043 + 0.999204i \(0.487295\pi\)
\(158\) −13.2679 −1.05554
\(159\) −6.92820 −0.549442
\(160\) 1.73205 0.136931
\(161\) 9.46410 0.745876
\(162\) −2.46410 −0.193598
\(163\) 12.9282 1.01262 0.506308 0.862353i \(-0.331010\pi\)
0.506308 + 0.862353i \(0.331010\pi\)
\(164\) −9.92820 −0.775262
\(165\) −22.3923 −1.74324
\(166\) −5.66025 −0.439321
\(167\) −13.8564 −1.07224 −0.536120 0.844141i \(-0.680111\pi\)
−0.536120 + 0.844141i \(0.680111\pi\)
\(168\) 5.46410 0.421565
\(169\) −1.00000 −0.0769231
\(170\) −13.3923 −1.02714
\(171\) 5.66025 0.432850
\(172\) 0.928203 0.0707748
\(173\) −5.53590 −0.420887 −0.210443 0.977606i \(-0.567491\pi\)
−0.210443 + 0.977606i \(0.567491\pi\)
\(174\) −23.6603 −1.79368
\(175\) 4.00000 0.302372
\(176\) 4.73205 0.356692
\(177\) 6.92820 0.520756
\(178\) −6.80385 −0.509970
\(179\) −9.46410 −0.707380 −0.353690 0.935363i \(-0.615073\pi\)
−0.353690 + 0.935363i \(0.615073\pi\)
\(180\) 7.73205 0.576313
\(181\) −9.39230 −0.698125 −0.349062 0.937100i \(-0.613500\pi\)
−0.349062 + 0.937100i \(0.613500\pi\)
\(182\) 6.92820 0.513553
\(183\) 4.73205 0.349803
\(184\) −4.73205 −0.348851
\(185\) 0 0
\(186\) 3.46410 0.254000
\(187\) −36.5885 −2.67561
\(188\) 4.73205 0.345120
\(189\) 8.00000 0.581914
\(190\) 2.19615 0.159326
\(191\) −2.19615 −0.158908 −0.0794540 0.996839i \(-0.525318\pi\)
−0.0794540 + 0.996839i \(0.525318\pi\)
\(192\) −2.73205 −0.197169
\(193\) −11.1962 −0.805917 −0.402958 0.915218i \(-0.632018\pi\)
−0.402958 + 0.915218i \(0.632018\pi\)
\(194\) −7.73205 −0.555129
\(195\) 16.3923 1.17388
\(196\) −3.00000 −0.214286
\(197\) 6.46410 0.460548 0.230274 0.973126i \(-0.426038\pi\)
0.230274 + 0.973126i \(0.426038\pi\)
\(198\) 21.1244 1.50124
\(199\) −10.3923 −0.736691 −0.368345 0.929689i \(-0.620076\pi\)
−0.368345 + 0.929689i \(0.620076\pi\)
\(200\) −2.00000 −0.141421
\(201\) −27.8564 −1.96484
\(202\) −12.4641 −0.876971
\(203\) −17.3205 −1.21566
\(204\) 21.1244 1.47900
\(205\) −17.1962 −1.20103
\(206\) −8.53590 −0.594724
\(207\) −21.1244 −1.46824
\(208\) −3.46410 −0.240192
\(209\) 6.00000 0.415029
\(210\) 9.46410 0.653085
\(211\) −2.39230 −0.164693 −0.0823465 0.996604i \(-0.526241\pi\)
−0.0823465 + 0.996604i \(0.526241\pi\)
\(212\) 2.53590 0.174166
\(213\) −9.46410 −0.648470
\(214\) −10.3923 −0.710403
\(215\) 1.60770 0.109644
\(216\) −4.00000 −0.272166
\(217\) 2.53590 0.172148
\(218\) −2.66025 −0.180175
\(219\) 10.9282 0.738460
\(220\) 8.19615 0.552584
\(221\) 26.7846 1.80173
\(222\) 0 0
\(223\) 16.1962 1.08457 0.542287 0.840193i \(-0.317558\pi\)
0.542287 + 0.840193i \(0.317558\pi\)
\(224\) −2.00000 −0.133631
\(225\) −8.92820 −0.595214
\(226\) −3.46410 −0.230429
\(227\) 1.26795 0.0841567 0.0420784 0.999114i \(-0.486602\pi\)
0.0420784 + 0.999114i \(0.486602\pi\)
\(228\) −3.46410 −0.229416
\(229\) 27.3923 1.81013 0.905067 0.425269i \(-0.139820\pi\)
0.905067 + 0.425269i \(0.139820\pi\)
\(230\) −8.19615 −0.540438
\(231\) 25.8564 1.70123
\(232\) 8.66025 0.568574
\(233\) −15.0000 −0.982683 −0.491341 0.870967i \(-0.663493\pi\)
−0.491341 + 0.870967i \(0.663493\pi\)
\(234\) −15.4641 −1.01092
\(235\) 8.19615 0.534658
\(236\) −2.53590 −0.165073
\(237\) 36.2487 2.35461
\(238\) 15.4641 1.00239
\(239\) 17.3205 1.12037 0.560185 0.828367i \(-0.310730\pi\)
0.560185 + 0.828367i \(0.310730\pi\)
\(240\) −4.73205 −0.305453
\(241\) 15.4641 0.996130 0.498065 0.867140i \(-0.334044\pi\)
0.498065 + 0.867140i \(0.334044\pi\)
\(242\) 11.3923 0.732325
\(243\) 18.7321 1.20166
\(244\) −1.73205 −0.110883
\(245\) −5.19615 −0.331970
\(246\) 27.1244 1.72939
\(247\) −4.39230 −0.279476
\(248\) −1.26795 −0.0805149
\(249\) 15.4641 0.979998
\(250\) −12.1244 −0.766812
\(251\) −17.3205 −1.09326 −0.546630 0.837374i \(-0.684090\pi\)
−0.546630 + 0.837374i \(0.684090\pi\)
\(252\) −8.92820 −0.562424
\(253\) −22.3923 −1.40779
\(254\) −7.80385 −0.489657
\(255\) 36.5885 2.29126
\(256\) 1.00000 0.0625000
\(257\) −6.80385 −0.424412 −0.212206 0.977225i \(-0.568065\pi\)
−0.212206 + 0.977225i \(0.568065\pi\)
\(258\) −2.53590 −0.157878
\(259\) 0 0
\(260\) −6.00000 −0.372104
\(261\) 38.6603 2.39301
\(262\) 9.80385 0.605684
\(263\) −21.4641 −1.32353 −0.661767 0.749710i \(-0.730193\pi\)
−0.661767 + 0.749710i \(0.730193\pi\)
\(264\) −12.9282 −0.795676
\(265\) 4.39230 0.269817
\(266\) −2.53590 −0.155486
\(267\) 18.5885 1.13760
\(268\) 10.1962 0.622829
\(269\) −4.39230 −0.267804 −0.133902 0.990995i \(-0.542751\pi\)
−0.133902 + 0.990995i \(0.542751\pi\)
\(270\) −6.92820 −0.421637
\(271\) −2.58846 −0.157238 −0.0786188 0.996905i \(-0.525051\pi\)
−0.0786188 + 0.996905i \(0.525051\pi\)
\(272\) −7.73205 −0.468824
\(273\) −18.9282 −1.14559
\(274\) −1.39230 −0.0841122
\(275\) −9.46410 −0.570707
\(276\) 12.9282 0.778186
\(277\) −11.1962 −0.672712 −0.336356 0.941735i \(-0.609194\pi\)
−0.336356 + 0.941735i \(0.609194\pi\)
\(278\) 20.5885 1.23481
\(279\) −5.66025 −0.338871
\(280\) −3.46410 −0.207020
\(281\) 27.5885 1.64579 0.822895 0.568194i \(-0.192358\pi\)
0.822895 + 0.568194i \(0.192358\pi\)
\(282\) −12.9282 −0.769863
\(283\) 7.85641 0.467015 0.233507 0.972355i \(-0.424980\pi\)
0.233507 + 0.972355i \(0.424980\pi\)
\(284\) 3.46410 0.205557
\(285\) −6.00000 −0.355409
\(286\) −16.3923 −0.969297
\(287\) 19.8564 1.17209
\(288\) 4.46410 0.263050
\(289\) 42.7846 2.51674
\(290\) 15.0000 0.880830
\(291\) 21.1244 1.23833
\(292\) −4.00000 −0.234082
\(293\) −1.39230 −0.0813393 −0.0406697 0.999173i \(-0.512949\pi\)
−0.0406697 + 0.999173i \(0.512949\pi\)
\(294\) 8.19615 0.478009
\(295\) −4.39230 −0.255730
\(296\) 0 0
\(297\) −18.9282 −1.09833
\(298\) −15.9282 −0.922696
\(299\) 16.3923 0.947991
\(300\) 5.46410 0.315470
\(301\) −1.85641 −0.107001
\(302\) −4.19615 −0.241461
\(303\) 34.0526 1.95627
\(304\) 1.26795 0.0727219
\(305\) −3.00000 −0.171780
\(306\) −34.5167 −1.97319
\(307\) 22.0000 1.25561 0.627803 0.778372i \(-0.283954\pi\)
0.627803 + 0.778372i \(0.283954\pi\)
\(308\) −9.46410 −0.539267
\(309\) 23.3205 1.32666
\(310\) −2.19615 −0.124733
\(311\) −18.0000 −1.02069 −0.510343 0.859971i \(-0.670482\pi\)
−0.510343 + 0.859971i \(0.670482\pi\)
\(312\) 9.46410 0.535799
\(313\) −24.1244 −1.36359 −0.681795 0.731544i \(-0.738800\pi\)
−0.681795 + 0.731544i \(0.738800\pi\)
\(314\) 1.00000 0.0564333
\(315\) −15.4641 −0.871303
\(316\) −13.2679 −0.746380
\(317\) −7.39230 −0.415193 −0.207597 0.978215i \(-0.566564\pi\)
−0.207597 + 0.978215i \(0.566564\pi\)
\(318\) −6.92820 −0.388514
\(319\) 40.9808 2.29448
\(320\) 1.73205 0.0968246
\(321\) 28.3923 1.58470
\(322\) 9.46410 0.527414
\(323\) −9.80385 −0.545501
\(324\) −2.46410 −0.136895
\(325\) 6.92820 0.384308
\(326\) 12.9282 0.716027
\(327\) 7.26795 0.401919
\(328\) −9.92820 −0.548193
\(329\) −9.46410 −0.521773
\(330\) −22.3923 −1.23266
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) −5.66025 −0.310647
\(333\) 0 0
\(334\) −13.8564 −0.758189
\(335\) 17.6603 0.964883
\(336\) 5.46410 0.298091
\(337\) 32.1769 1.75279 0.876394 0.481595i \(-0.159942\pi\)
0.876394 + 0.481595i \(0.159942\pi\)
\(338\) −1.00000 −0.0543928
\(339\) 9.46410 0.514019
\(340\) −13.3923 −0.726300
\(341\) −6.00000 −0.324918
\(342\) 5.66025 0.306071
\(343\) 20.0000 1.07990
\(344\) 0.928203 0.0500454
\(345\) 22.3923 1.20556
\(346\) −5.53590 −0.297612
\(347\) 9.12436 0.489821 0.244911 0.969546i \(-0.421241\pi\)
0.244911 + 0.969546i \(0.421241\pi\)
\(348\) −23.6603 −1.26832
\(349\) 11.3923 0.609816 0.304908 0.952382i \(-0.401374\pi\)
0.304908 + 0.952382i \(0.401374\pi\)
\(350\) 4.00000 0.213809
\(351\) 13.8564 0.739600
\(352\) 4.73205 0.252219
\(353\) −19.7321 −1.05023 −0.525116 0.851031i \(-0.675978\pi\)
−0.525116 + 0.851031i \(0.675978\pi\)
\(354\) 6.92820 0.368230
\(355\) 6.00000 0.318447
\(356\) −6.80385 −0.360603
\(357\) −42.2487 −2.23604
\(358\) −9.46410 −0.500193
\(359\) 35.3205 1.86415 0.932073 0.362272i \(-0.117999\pi\)
0.932073 + 0.362272i \(0.117999\pi\)
\(360\) 7.73205 0.407515
\(361\) −17.3923 −0.915384
\(362\) −9.39230 −0.493649
\(363\) −31.1244 −1.63361
\(364\) 6.92820 0.363137
\(365\) −6.92820 −0.362639
\(366\) 4.73205 0.247348
\(367\) 12.3923 0.646873 0.323437 0.946250i \(-0.395162\pi\)
0.323437 + 0.946250i \(0.395162\pi\)
\(368\) −4.73205 −0.246675
\(369\) −44.3205 −2.30723
\(370\) 0 0
\(371\) −5.07180 −0.263315
\(372\) 3.46410 0.179605
\(373\) −7.00000 −0.362446 −0.181223 0.983442i \(-0.558006\pi\)
−0.181223 + 0.983442i \(0.558006\pi\)
\(374\) −36.5885 −1.89194
\(375\) 33.1244 1.71053
\(376\) 4.73205 0.244037
\(377\) −30.0000 −1.54508
\(378\) 8.00000 0.411476
\(379\) −34.7846 −1.78677 −0.893383 0.449297i \(-0.851675\pi\)
−0.893383 + 0.449297i \(0.851675\pi\)
\(380\) 2.19615 0.112660
\(381\) 21.3205 1.09228
\(382\) −2.19615 −0.112365
\(383\) −3.46410 −0.177007 −0.0885037 0.996076i \(-0.528208\pi\)
−0.0885037 + 0.996076i \(0.528208\pi\)
\(384\) −2.73205 −0.139419
\(385\) −16.3923 −0.835429
\(386\) −11.1962 −0.569869
\(387\) 4.14359 0.210631
\(388\) −7.73205 −0.392535
\(389\) −25.9808 −1.31728 −0.658638 0.752460i \(-0.728867\pi\)
−0.658638 + 0.752460i \(0.728867\pi\)
\(390\) 16.3923 0.830057
\(391\) 36.5885 1.85036
\(392\) −3.00000 −0.151523
\(393\) −26.7846 −1.35110
\(394\) 6.46410 0.325657
\(395\) −22.9808 −1.15629
\(396\) 21.1244 1.06154
\(397\) 23.0000 1.15434 0.577168 0.816625i \(-0.304158\pi\)
0.577168 + 0.816625i \(0.304158\pi\)
\(398\) −10.3923 −0.520919
\(399\) 6.92820 0.346844
\(400\) −2.00000 −0.100000
\(401\) −10.3923 −0.518967 −0.259483 0.965748i \(-0.583552\pi\)
−0.259483 + 0.965748i \(0.583552\pi\)
\(402\) −27.8564 −1.38935
\(403\) 4.39230 0.218796
\(404\) −12.4641 −0.620112
\(405\) −4.26795 −0.212076
\(406\) −17.3205 −0.859602
\(407\) 0 0
\(408\) 21.1244 1.04581
\(409\) 10.5167 0.520015 0.260008 0.965607i \(-0.416275\pi\)
0.260008 + 0.965607i \(0.416275\pi\)
\(410\) −17.1962 −0.849257
\(411\) 3.80385 0.187630
\(412\) −8.53590 −0.420534
\(413\) 5.07180 0.249567
\(414\) −21.1244 −1.03821
\(415\) −9.80385 −0.481252
\(416\) −3.46410 −0.169842
\(417\) −56.2487 −2.75451
\(418\) 6.00000 0.293470
\(419\) −4.14359 −0.202428 −0.101214 0.994865i \(-0.532273\pi\)
−0.101214 + 0.994865i \(0.532273\pi\)
\(420\) 9.46410 0.461801
\(421\) −12.1244 −0.590905 −0.295452 0.955357i \(-0.595470\pi\)
−0.295452 + 0.955357i \(0.595470\pi\)
\(422\) −2.39230 −0.116456
\(423\) 21.1244 1.02710
\(424\) 2.53590 0.123154
\(425\) 15.4641 0.750119
\(426\) −9.46410 −0.458537
\(427\) 3.46410 0.167640
\(428\) −10.3923 −0.502331
\(429\) 44.7846 2.16222
\(430\) 1.60770 0.0775299
\(431\) 17.6603 0.850665 0.425332 0.905037i \(-0.360157\pi\)
0.425332 + 0.905037i \(0.360157\pi\)
\(432\) −4.00000 −0.192450
\(433\) 15.7846 0.758560 0.379280 0.925282i \(-0.376172\pi\)
0.379280 + 0.925282i \(0.376172\pi\)
\(434\) 2.53590 0.121727
\(435\) −40.9808 −1.96488
\(436\) −2.66025 −0.127403
\(437\) −6.00000 −0.287019
\(438\) 10.9282 0.522170
\(439\) 18.2487 0.870963 0.435482 0.900198i \(-0.356578\pi\)
0.435482 + 0.900198i \(0.356578\pi\)
\(440\) 8.19615 0.390736
\(441\) −13.3923 −0.637729
\(442\) 26.7846 1.27401
\(443\) 14.5359 0.690621 0.345311 0.938488i \(-0.387774\pi\)
0.345311 + 0.938488i \(0.387774\pi\)
\(444\) 0 0
\(445\) −11.7846 −0.558644
\(446\) 16.1962 0.766910
\(447\) 43.5167 2.05827
\(448\) −2.00000 −0.0944911
\(449\) 20.5359 0.969149 0.484574 0.874750i \(-0.338974\pi\)
0.484574 + 0.874750i \(0.338974\pi\)
\(450\) −8.92820 −0.420880
\(451\) −46.9808 −2.21224
\(452\) −3.46410 −0.162938
\(453\) 11.4641 0.538630
\(454\) 1.26795 0.0595078
\(455\) 12.0000 0.562569
\(456\) −3.46410 −0.162221
\(457\) −37.9808 −1.77667 −0.888333 0.459201i \(-0.848136\pi\)
−0.888333 + 0.459201i \(0.848136\pi\)
\(458\) 27.3923 1.27996
\(459\) 30.9282 1.44360
\(460\) −8.19615 −0.382148
\(461\) 39.4641 1.83803 0.919013 0.394227i \(-0.128988\pi\)
0.919013 + 0.394227i \(0.128988\pi\)
\(462\) 25.8564 1.20295
\(463\) −30.0000 −1.39422 −0.697109 0.716965i \(-0.745531\pi\)
−0.697109 + 0.716965i \(0.745531\pi\)
\(464\) 8.66025 0.402042
\(465\) 6.00000 0.278243
\(466\) −15.0000 −0.694862
\(467\) 2.53590 0.117347 0.0586737 0.998277i \(-0.481313\pi\)
0.0586737 + 0.998277i \(0.481313\pi\)
\(468\) −15.4641 −0.714828
\(469\) −20.3923 −0.941629
\(470\) 8.19615 0.378060
\(471\) −2.73205 −0.125886
\(472\) −2.53590 −0.116724
\(473\) 4.39230 0.201958
\(474\) 36.2487 1.66496
\(475\) −2.53590 −0.116355
\(476\) 15.4641 0.708796
\(477\) 11.3205 0.518330
\(478\) 17.3205 0.792222
\(479\) −9.46410 −0.432426 −0.216213 0.976346i \(-0.569371\pi\)
−0.216213 + 0.976346i \(0.569371\pi\)
\(480\) −4.73205 −0.215988
\(481\) 0 0
\(482\) 15.4641 0.704371
\(483\) −25.8564 −1.17651
\(484\) 11.3923 0.517832
\(485\) −13.3923 −0.608113
\(486\) 18.7321 0.849703
\(487\) −16.0526 −0.727411 −0.363705 0.931514i \(-0.618489\pi\)
−0.363705 + 0.931514i \(0.618489\pi\)
\(488\) −1.73205 −0.0784063
\(489\) −35.3205 −1.59725
\(490\) −5.19615 −0.234738
\(491\) 26.1962 1.18222 0.591108 0.806592i \(-0.298691\pi\)
0.591108 + 0.806592i \(0.298691\pi\)
\(492\) 27.1244 1.22286
\(493\) −66.9615 −3.01580
\(494\) −4.39230 −0.197619
\(495\) 36.5885 1.64453
\(496\) −1.26795 −0.0569326
\(497\) −6.92820 −0.310772
\(498\) 15.4641 0.692963
\(499\) 20.1962 0.904104 0.452052 0.891992i \(-0.350692\pi\)
0.452052 + 0.891992i \(0.350692\pi\)
\(500\) −12.1244 −0.542218
\(501\) 37.8564 1.69130
\(502\) −17.3205 −0.773052
\(503\) 20.1962 0.900502 0.450251 0.892902i \(-0.351335\pi\)
0.450251 + 0.892902i \(0.351335\pi\)
\(504\) −8.92820 −0.397694
\(505\) −21.5885 −0.960674
\(506\) −22.3923 −0.995459
\(507\) 2.73205 0.121335
\(508\) −7.80385 −0.346240
\(509\) 6.46410 0.286516 0.143258 0.989685i \(-0.454242\pi\)
0.143258 + 0.989685i \(0.454242\pi\)
\(510\) 36.5885 1.62016
\(511\) 8.00000 0.353899
\(512\) 1.00000 0.0441942
\(513\) −5.07180 −0.223925
\(514\) −6.80385 −0.300105
\(515\) −14.7846 −0.651488
\(516\) −2.53590 −0.111637
\(517\) 22.3923 0.984812
\(518\) 0 0
\(519\) 15.1244 0.663886
\(520\) −6.00000 −0.263117
\(521\) −5.07180 −0.222199 −0.111100 0.993809i \(-0.535437\pi\)
−0.111100 + 0.993809i \(0.535437\pi\)
\(522\) 38.6603 1.69211
\(523\) 20.4449 0.893991 0.446996 0.894536i \(-0.352494\pi\)
0.446996 + 0.894536i \(0.352494\pi\)
\(524\) 9.80385 0.428283
\(525\) −10.9282 −0.476946
\(526\) −21.4641 −0.935879
\(527\) 9.80385 0.427062
\(528\) −12.9282 −0.562628
\(529\) −0.607695 −0.0264215
\(530\) 4.39230 0.190790
\(531\) −11.3205 −0.491268
\(532\) −2.53590 −0.109945
\(533\) 34.3923 1.48970
\(534\) 18.5885 0.804401
\(535\) −18.0000 −0.778208
\(536\) 10.1962 0.440407
\(537\) 25.8564 1.11579
\(538\) −4.39230 −0.189366
\(539\) −14.1962 −0.611472
\(540\) −6.92820 −0.298142
\(541\) −19.0526 −0.819133 −0.409567 0.912280i \(-0.634320\pi\)
−0.409567 + 0.912280i \(0.634320\pi\)
\(542\) −2.58846 −0.111184
\(543\) 25.6603 1.10119
\(544\) −7.73205 −0.331509
\(545\) −4.60770 −0.197372
\(546\) −18.9282 −0.810052
\(547\) 41.6603 1.78126 0.890632 0.454725i \(-0.150262\pi\)
0.890632 + 0.454725i \(0.150262\pi\)
\(548\) −1.39230 −0.0594763
\(549\) −7.73205 −0.329996
\(550\) −9.46410 −0.403551
\(551\) 10.9808 0.467796
\(552\) 12.9282 0.550261
\(553\) 26.5359 1.12842
\(554\) −11.1962 −0.475679
\(555\) 0 0
\(556\) 20.5885 0.873145
\(557\) 23.4449 0.993391 0.496695 0.867925i \(-0.334547\pi\)
0.496695 + 0.867925i \(0.334547\pi\)
\(558\) −5.66025 −0.239618
\(559\) −3.21539 −0.135997
\(560\) −3.46410 −0.146385
\(561\) 99.9615 4.22038
\(562\) 27.5885 1.16375
\(563\) 18.5885 0.783410 0.391705 0.920091i \(-0.371885\pi\)
0.391705 + 0.920091i \(0.371885\pi\)
\(564\) −12.9282 −0.544376
\(565\) −6.00000 −0.252422
\(566\) 7.85641 0.330229
\(567\) 4.92820 0.206965
\(568\) 3.46410 0.145350
\(569\) −5.87564 −0.246320 −0.123160 0.992387i \(-0.539303\pi\)
−0.123160 + 0.992387i \(0.539303\pi\)
\(570\) −6.00000 −0.251312
\(571\) 37.3731 1.56401 0.782007 0.623270i \(-0.214196\pi\)
0.782007 + 0.623270i \(0.214196\pi\)
\(572\) −16.3923 −0.685397
\(573\) 6.00000 0.250654
\(574\) 19.8564 0.828790
\(575\) 9.46410 0.394680
\(576\) 4.46410 0.186004
\(577\) 0.928203 0.0386416 0.0193208 0.999813i \(-0.493850\pi\)
0.0193208 + 0.999813i \(0.493850\pi\)
\(578\) 42.7846 1.77961
\(579\) 30.5885 1.27121
\(580\) 15.0000 0.622841
\(581\) 11.3205 0.469654
\(582\) 21.1244 0.875633
\(583\) 12.0000 0.496989
\(584\) −4.00000 −0.165521
\(585\) −26.7846 −1.10741
\(586\) −1.39230 −0.0575156
\(587\) −33.1244 −1.36719 −0.683594 0.729862i \(-0.739584\pi\)
−0.683594 + 0.729862i \(0.739584\pi\)
\(588\) 8.19615 0.338004
\(589\) −1.60770 −0.0662439
\(590\) −4.39230 −0.180828
\(591\) −17.6603 −0.726446
\(592\) 0 0
\(593\) 43.6410 1.79212 0.896061 0.443931i \(-0.146417\pi\)
0.896061 + 0.443931i \(0.146417\pi\)
\(594\) −18.9282 −0.776634
\(595\) 26.7846 1.09806
\(596\) −15.9282 −0.652445
\(597\) 28.3923 1.16202
\(598\) 16.3923 0.670331
\(599\) 47.6603 1.94735 0.973673 0.227951i \(-0.0732026\pi\)
0.973673 + 0.227951i \(0.0732026\pi\)
\(600\) 5.46410 0.223071
\(601\) −12.6077 −0.514279 −0.257139 0.966374i \(-0.582780\pi\)
−0.257139 + 0.966374i \(0.582780\pi\)
\(602\) −1.85641 −0.0756615
\(603\) 45.5167 1.85358
\(604\) −4.19615 −0.170739
\(605\) 19.7321 0.802222
\(606\) 34.0526 1.38329
\(607\) −23.9090 −0.970435 −0.485217 0.874394i \(-0.661260\pi\)
−0.485217 + 0.874394i \(0.661260\pi\)
\(608\) 1.26795 0.0514221
\(609\) 47.3205 1.91752
\(610\) −3.00000 −0.121466
\(611\) −16.3923 −0.663162
\(612\) −34.5167 −1.39525
\(613\) −7.78461 −0.314417 −0.157209 0.987565i \(-0.550250\pi\)
−0.157209 + 0.987565i \(0.550250\pi\)
\(614\) 22.0000 0.887848
\(615\) 46.9808 1.89445
\(616\) −9.46410 −0.381320
\(617\) −12.6795 −0.510457 −0.255229 0.966881i \(-0.582151\pi\)
−0.255229 + 0.966881i \(0.582151\pi\)
\(618\) 23.3205 0.938088
\(619\) −30.3923 −1.22157 −0.610785 0.791797i \(-0.709146\pi\)
−0.610785 + 0.791797i \(0.709146\pi\)
\(620\) −2.19615 −0.0881996
\(621\) 18.9282 0.759563
\(622\) −18.0000 −0.721734
\(623\) 13.6077 0.545181
\(624\) 9.46410 0.378867
\(625\) −11.0000 −0.440000
\(626\) −24.1244 −0.964203
\(627\) −16.3923 −0.654646
\(628\) 1.00000 0.0399043
\(629\) 0 0
\(630\) −15.4641 −0.616105
\(631\) −34.9808 −1.39256 −0.696281 0.717769i \(-0.745163\pi\)
−0.696281 + 0.717769i \(0.745163\pi\)
\(632\) −13.2679 −0.527771
\(633\) 6.53590 0.259779
\(634\) −7.39230 −0.293586
\(635\) −13.5167 −0.536392
\(636\) −6.92820 −0.274721
\(637\) 10.3923 0.411758
\(638\) 40.9808 1.62244
\(639\) 15.4641 0.611750
\(640\) 1.73205 0.0684653
\(641\) 1.14359 0.0451692 0.0225846 0.999745i \(-0.492810\pi\)
0.0225846 + 0.999745i \(0.492810\pi\)
\(642\) 28.3923 1.12055
\(643\) −13.2679 −0.523237 −0.261618 0.965171i \(-0.584256\pi\)
−0.261618 + 0.965171i \(0.584256\pi\)
\(644\) 9.46410 0.372938
\(645\) −4.39230 −0.172947
\(646\) −9.80385 −0.385727
\(647\) −23.0718 −0.907046 −0.453523 0.891245i \(-0.649833\pi\)
−0.453523 + 0.891245i \(0.649833\pi\)
\(648\) −2.46410 −0.0967991
\(649\) −12.0000 −0.471041
\(650\) 6.92820 0.271746
\(651\) −6.92820 −0.271538
\(652\) 12.9282 0.506308
\(653\) 43.9808 1.72110 0.860550 0.509366i \(-0.170120\pi\)
0.860550 + 0.509366i \(0.170120\pi\)
\(654\) 7.26795 0.284199
\(655\) 16.9808 0.663493
\(656\) −9.92820 −0.387631
\(657\) −17.8564 −0.696645
\(658\) −9.46410 −0.368949
\(659\) 9.46410 0.368669 0.184335 0.982864i \(-0.440987\pi\)
0.184335 + 0.982864i \(0.440987\pi\)
\(660\) −22.3923 −0.871619
\(661\) −1.73205 −0.0673690 −0.0336845 0.999433i \(-0.510724\pi\)
−0.0336845 + 0.999433i \(0.510724\pi\)
\(662\) 0 0
\(663\) −73.1769 −2.84196
\(664\) −5.66025 −0.219660
\(665\) −4.39230 −0.170326
\(666\) 0 0
\(667\) −40.9808 −1.58678
\(668\) −13.8564 −0.536120
\(669\) −44.2487 −1.71075
\(670\) 17.6603 0.682275
\(671\) −8.19615 −0.316409
\(672\) 5.46410 0.210782
\(673\) 16.0000 0.616755 0.308377 0.951264i \(-0.400214\pi\)
0.308377 + 0.951264i \(0.400214\pi\)
\(674\) 32.1769 1.23941
\(675\) 8.00000 0.307920
\(676\) −1.00000 −0.0384615
\(677\) −33.9282 −1.30397 −0.651983 0.758233i \(-0.726063\pi\)
−0.651983 + 0.758233i \(0.726063\pi\)
\(678\) 9.46410 0.363467
\(679\) 15.4641 0.593458
\(680\) −13.3923 −0.513571
\(681\) −3.46410 −0.132745
\(682\) −6.00000 −0.229752
\(683\) 20.5359 0.785784 0.392892 0.919585i \(-0.371475\pi\)
0.392892 + 0.919585i \(0.371475\pi\)
\(684\) 5.66025 0.216425
\(685\) −2.41154 −0.0921403
\(686\) 20.0000 0.763604
\(687\) −74.8372 −2.85522
\(688\) 0.928203 0.0353874
\(689\) −8.78461 −0.334667
\(690\) 22.3923 0.852460
\(691\) −26.9808 −1.02640 −0.513198 0.858270i \(-0.671539\pi\)
−0.513198 + 0.858270i \(0.671539\pi\)
\(692\) −5.53590 −0.210443
\(693\) −42.2487 −1.60490
\(694\) 9.12436 0.346356
\(695\) 35.6603 1.35267
\(696\) −23.6603 −0.896840
\(697\) 76.7654 2.90770
\(698\) 11.3923 0.431205
\(699\) 40.9808 1.55003
\(700\) 4.00000 0.151186
\(701\) −18.9282 −0.714908 −0.357454 0.933931i \(-0.616355\pi\)
−0.357454 + 0.933931i \(0.616355\pi\)
\(702\) 13.8564 0.522976
\(703\) 0 0
\(704\) 4.73205 0.178346
\(705\) −22.3923 −0.843343
\(706\) −19.7321 −0.742626
\(707\) 24.9282 0.937522
\(708\) 6.92820 0.260378
\(709\) 9.71281 0.364772 0.182386 0.983227i \(-0.441618\pi\)
0.182386 + 0.983227i \(0.441618\pi\)
\(710\) 6.00000 0.225176
\(711\) −59.2295 −2.22128
\(712\) −6.80385 −0.254985
\(713\) 6.00000 0.224702
\(714\) −42.2487 −1.58112
\(715\) −28.3923 −1.06181
\(716\) −9.46410 −0.353690
\(717\) −47.3205 −1.76722
\(718\) 35.3205 1.31815
\(719\) 37.2679 1.38986 0.694930 0.719077i \(-0.255435\pi\)
0.694930 + 0.719077i \(0.255435\pi\)
\(720\) 7.73205 0.288157
\(721\) 17.0718 0.635787
\(722\) −17.3923 −0.647275
\(723\) −42.2487 −1.57125
\(724\) −9.39230 −0.349062
\(725\) −17.3205 −0.643268
\(726\) −31.1244 −1.15513
\(727\) −39.7128 −1.47287 −0.736433 0.676510i \(-0.763492\pi\)
−0.736433 + 0.676510i \(0.763492\pi\)
\(728\) 6.92820 0.256776
\(729\) −43.7846 −1.62165
\(730\) −6.92820 −0.256424
\(731\) −7.17691 −0.265448
\(732\) 4.73205 0.174902
\(733\) 33.5692 1.23991 0.619954 0.784638i \(-0.287151\pi\)
0.619954 + 0.784638i \(0.287151\pi\)
\(734\) 12.3923 0.457408
\(735\) 14.1962 0.523633
\(736\) −4.73205 −0.174426
\(737\) 48.2487 1.77726
\(738\) −44.3205 −1.63146
\(739\) −32.5885 −1.19879 −0.599393 0.800455i \(-0.704591\pi\)
−0.599393 + 0.800455i \(0.704591\pi\)
\(740\) 0 0
\(741\) 12.0000 0.440831
\(742\) −5.07180 −0.186192
\(743\) −1.51666 −0.0556409 −0.0278204 0.999613i \(-0.508857\pi\)
−0.0278204 + 0.999613i \(0.508857\pi\)
\(744\) 3.46410 0.127000
\(745\) −27.5885 −1.01076
\(746\) −7.00000 −0.256288
\(747\) −25.2679 −0.924506
\(748\) −36.5885 −1.33781
\(749\) 20.7846 0.759453
\(750\) 33.1244 1.20953
\(751\) −29.6077 −1.08040 −0.540200 0.841537i \(-0.681651\pi\)
−0.540200 + 0.841537i \(0.681651\pi\)
\(752\) 4.73205 0.172560
\(753\) 47.3205 1.72446
\(754\) −30.0000 −1.09254
\(755\) −7.26795 −0.264508
\(756\) 8.00000 0.290957
\(757\) −17.1962 −0.625005 −0.312502 0.949917i \(-0.601167\pi\)
−0.312502 + 0.949917i \(0.601167\pi\)
\(758\) −34.7846 −1.26343
\(759\) 61.1769 2.22058
\(760\) 2.19615 0.0796628
\(761\) 2.32051 0.0841184 0.0420592 0.999115i \(-0.486608\pi\)
0.0420592 + 0.999115i \(0.486608\pi\)
\(762\) 21.3205 0.772361
\(763\) 5.32051 0.192615
\(764\) −2.19615 −0.0794540
\(765\) −59.7846 −2.16152
\(766\) −3.46410 −0.125163
\(767\) 8.78461 0.317194
\(768\) −2.73205 −0.0985844
\(769\) 13.6077 0.490706 0.245353 0.969434i \(-0.421096\pi\)
0.245353 + 0.969434i \(0.421096\pi\)
\(770\) −16.3923 −0.590738
\(771\) 18.5885 0.669447
\(772\) −11.1962 −0.402958
\(773\) 33.9282 1.22031 0.610156 0.792281i \(-0.291107\pi\)
0.610156 + 0.792281i \(0.291107\pi\)
\(774\) 4.14359 0.148938
\(775\) 2.53590 0.0910922
\(776\) −7.73205 −0.277564
\(777\) 0 0
\(778\) −25.9808 −0.931455
\(779\) −12.5885 −0.451028
\(780\) 16.3923 0.586939
\(781\) 16.3923 0.586563
\(782\) 36.5885 1.30840
\(783\) −34.6410 −1.23797
\(784\) −3.00000 −0.107143
\(785\) 1.73205 0.0618195
\(786\) −26.7846 −0.955375
\(787\) −41.1769 −1.46780 −0.733899 0.679258i \(-0.762302\pi\)
−0.733899 + 0.679258i \(0.762302\pi\)
\(788\) 6.46410 0.230274
\(789\) 58.6410 2.08768
\(790\) −22.9808 −0.817619
\(791\) 6.92820 0.246339
\(792\) 21.1244 0.750621
\(793\) 6.00000 0.213066
\(794\) 23.0000 0.816239
\(795\) −12.0000 −0.425596
\(796\) −10.3923 −0.368345
\(797\) 8.78461 0.311167 0.155583 0.987823i \(-0.450274\pi\)
0.155583 + 0.987823i \(0.450274\pi\)
\(798\) 6.92820 0.245256
\(799\) −36.5885 −1.29441
\(800\) −2.00000 −0.0707107
\(801\) −30.3731 −1.07318
\(802\) −10.3923 −0.366965
\(803\) −18.9282 −0.667962
\(804\) −27.8564 −0.982420
\(805\) 16.3923 0.577753
\(806\) 4.39230 0.154712
\(807\) 12.0000 0.422420
\(808\) −12.4641 −0.438486
\(809\) −15.7128 −0.552433 −0.276217 0.961095i \(-0.589081\pi\)
−0.276217 + 0.961095i \(0.589081\pi\)
\(810\) −4.26795 −0.149960
\(811\) 20.3923 0.716071 0.358035 0.933708i \(-0.383447\pi\)
0.358035 + 0.933708i \(0.383447\pi\)
\(812\) −17.3205 −0.607831
\(813\) 7.07180 0.248019
\(814\) 0 0
\(815\) 22.3923 0.784368
\(816\) 21.1244 0.739500
\(817\) 1.17691 0.0411750
\(818\) 10.5167 0.367706
\(819\) 30.9282 1.08072
\(820\) −17.1962 −0.600516
\(821\) 2.53590 0.0885035 0.0442517 0.999020i \(-0.485910\pi\)
0.0442517 + 0.999020i \(0.485910\pi\)
\(822\) 3.80385 0.132674
\(823\) 23.8038 0.829750 0.414875 0.909878i \(-0.363825\pi\)
0.414875 + 0.909878i \(0.363825\pi\)
\(824\) −8.53590 −0.297362
\(825\) 25.8564 0.900205
\(826\) 5.07180 0.176470
\(827\) −1.85641 −0.0645536 −0.0322768 0.999479i \(-0.510276\pi\)
−0.0322768 + 0.999479i \(0.510276\pi\)
\(828\) −21.1244 −0.734122
\(829\) 10.3923 0.360940 0.180470 0.983581i \(-0.442238\pi\)
0.180470 + 0.983581i \(0.442238\pi\)
\(830\) −9.80385 −0.340297
\(831\) 30.5885 1.06110
\(832\) −3.46410 −0.120096
\(833\) 23.1962 0.803699
\(834\) −56.2487 −1.94773
\(835\) −24.0000 −0.830554
\(836\) 6.00000 0.207514
\(837\) 5.07180 0.175307
\(838\) −4.14359 −0.143138
\(839\) 52.9808 1.82910 0.914550 0.404474i \(-0.132545\pi\)
0.914550 + 0.404474i \(0.132545\pi\)
\(840\) 9.46410 0.326543
\(841\) 46.0000 1.58621
\(842\) −12.1244 −0.417833
\(843\) −75.3731 −2.59599
\(844\) −2.39230 −0.0823465
\(845\) −1.73205 −0.0595844
\(846\) 21.1244 0.726270
\(847\) −22.7846 −0.782888
\(848\) 2.53590 0.0870831
\(849\) −21.4641 −0.736646
\(850\) 15.4641 0.530414
\(851\) 0 0
\(852\) −9.46410 −0.324235
\(853\) −10.2679 −0.351568 −0.175784 0.984429i \(-0.556246\pi\)
−0.175784 + 0.984429i \(0.556246\pi\)
\(854\) 3.46410 0.118539
\(855\) 9.80385 0.335285
\(856\) −10.3923 −0.355202
\(857\) −2.66025 −0.0908725 −0.0454363 0.998967i \(-0.514468\pi\)
−0.0454363 + 0.998967i \(0.514468\pi\)
\(858\) 44.7846 1.52892
\(859\) −30.0000 −1.02359 −0.511793 0.859109i \(-0.671019\pi\)
−0.511793 + 0.859109i \(0.671019\pi\)
\(860\) 1.60770 0.0548219
\(861\) −54.2487 −1.84879
\(862\) 17.6603 0.601511
\(863\) 4.39230 0.149516 0.0747579 0.997202i \(-0.476182\pi\)
0.0747579 + 0.997202i \(0.476182\pi\)
\(864\) −4.00000 −0.136083
\(865\) −9.58846 −0.326017
\(866\) 15.7846 0.536383
\(867\) −116.890 −3.96978
\(868\) 2.53590 0.0860740
\(869\) −62.7846 −2.12982
\(870\) −40.9808 −1.38938
\(871\) −35.3205 −1.19679
\(872\) −2.66025 −0.0900876
\(873\) −34.5167 −1.16821
\(874\) −6.00000 −0.202953
\(875\) 24.2487 0.819756
\(876\) 10.9282 0.369230
\(877\) 38.1769 1.28914 0.644571 0.764544i \(-0.277036\pi\)
0.644571 + 0.764544i \(0.277036\pi\)
\(878\) 18.2487 0.615864
\(879\) 3.80385 0.128301
\(880\) 8.19615 0.276292
\(881\) −28.6077 −0.963818 −0.481909 0.876221i \(-0.660056\pi\)
−0.481909 + 0.876221i \(0.660056\pi\)
\(882\) −13.3923 −0.450942
\(883\) 16.0526 0.540212 0.270106 0.962831i \(-0.412941\pi\)
0.270106 + 0.962831i \(0.412941\pi\)
\(884\) 26.7846 0.900864
\(885\) 12.0000 0.403376
\(886\) 14.5359 0.488343
\(887\) 46.0526 1.54629 0.773147 0.634227i \(-0.218682\pi\)
0.773147 + 0.634227i \(0.218682\pi\)
\(888\) 0 0
\(889\) 15.6077 0.523465
\(890\) −11.7846 −0.395021
\(891\) −11.6603 −0.390633
\(892\) 16.1962 0.542287
\(893\) 6.00000 0.200782
\(894\) 43.5167 1.45541
\(895\) −16.3923 −0.547934
\(896\) −2.00000 −0.0668153
\(897\) −44.7846 −1.49531
\(898\) 20.5359 0.685292
\(899\) −10.9808 −0.366229
\(900\) −8.92820 −0.297607
\(901\) −19.6077 −0.653227
\(902\) −46.9808 −1.56429
\(903\) 5.07180 0.168779
\(904\) −3.46410 −0.115214
\(905\) −16.2679 −0.540765
\(906\) 11.4641 0.380869
\(907\) 11.4115 0.378914 0.189457 0.981889i \(-0.439327\pi\)
0.189457 + 0.981889i \(0.439327\pi\)
\(908\) 1.26795 0.0420784
\(909\) −55.6410 −1.84550
\(910\) 12.0000 0.397796
\(911\) −35.6603 −1.18148 −0.590738 0.806863i \(-0.701163\pi\)
−0.590738 + 0.806863i \(0.701163\pi\)
\(912\) −3.46410 −0.114708
\(913\) −26.7846 −0.886441
\(914\) −37.9808 −1.25629
\(915\) 8.19615 0.270956
\(916\) 27.3923 0.905067
\(917\) −19.6077 −0.647503
\(918\) 30.9282 1.02078
\(919\) −21.1244 −0.696828 −0.348414 0.937341i \(-0.613280\pi\)
−0.348414 + 0.937341i \(0.613280\pi\)
\(920\) −8.19615 −0.270219
\(921\) −60.1051 −1.98053
\(922\) 39.4641 1.29968
\(923\) −12.0000 −0.394985
\(924\) 25.8564 0.850613
\(925\) 0 0
\(926\) −30.0000 −0.985861
\(927\) −38.1051 −1.25154
\(928\) 8.66025 0.284287
\(929\) 25.3923 0.833094 0.416547 0.909114i \(-0.363240\pi\)
0.416547 + 0.909114i \(0.363240\pi\)
\(930\) 6.00000 0.196748
\(931\) −3.80385 −0.124666
\(932\) −15.0000 −0.491341
\(933\) 49.1769 1.60998
\(934\) 2.53590 0.0829771
\(935\) −63.3731 −2.07252
\(936\) −15.4641 −0.505460
\(937\) 27.3923 0.894868 0.447434 0.894317i \(-0.352338\pi\)
0.447434 + 0.894317i \(0.352338\pi\)
\(938\) −20.3923 −0.665832
\(939\) 65.9090 2.15086
\(940\) 8.19615 0.267329
\(941\) 29.7846 0.970951 0.485475 0.874250i \(-0.338647\pi\)
0.485475 + 0.874250i \(0.338647\pi\)
\(942\) −2.73205 −0.0890150
\(943\) 46.9808 1.52990
\(944\) −2.53590 −0.0825365
\(945\) 13.8564 0.450749
\(946\) 4.39230 0.142806
\(947\) −37.1769 −1.20809 −0.604044 0.796951i \(-0.706445\pi\)
−0.604044 + 0.796951i \(0.706445\pi\)
\(948\) 36.2487 1.17730
\(949\) 13.8564 0.449798
\(950\) −2.53590 −0.0822754
\(951\) 20.1962 0.654905
\(952\) 15.4641 0.501194
\(953\) −19.8564 −0.643212 −0.321606 0.946874i \(-0.604223\pi\)
−0.321606 + 0.946874i \(0.604223\pi\)
\(954\) 11.3205 0.366515
\(955\) −3.80385 −0.123090
\(956\) 17.3205 0.560185
\(957\) −111.962 −3.61920
\(958\) −9.46410 −0.305771
\(959\) 2.78461 0.0899197
\(960\) −4.73205 −0.152726
\(961\) −29.3923 −0.948139
\(962\) 0 0
\(963\) −46.3923 −1.49497
\(964\) 15.4641 0.498065
\(965\) −19.3923 −0.624260
\(966\) −25.8564 −0.831916
\(967\) −48.0000 −1.54358 −0.771788 0.635880i \(-0.780637\pi\)
−0.771788 + 0.635880i \(0.780637\pi\)
\(968\) 11.3923 0.366163
\(969\) 26.7846 0.860446
\(970\) −13.3923 −0.430001
\(971\) −7.01924 −0.225258 −0.112629 0.993637i \(-0.535927\pi\)
−0.112629 + 0.993637i \(0.535927\pi\)
\(972\) 18.7321 0.600831
\(973\) −41.1769 −1.32007
\(974\) −16.0526 −0.514357
\(975\) −18.9282 −0.606188
\(976\) −1.73205 −0.0554416
\(977\) −3.46410 −0.110826 −0.0554132 0.998464i \(-0.517648\pi\)
−0.0554132 + 0.998464i \(0.517648\pi\)
\(978\) −35.3205 −1.12943
\(979\) −32.1962 −1.02899
\(980\) −5.19615 −0.165985
\(981\) −11.8756 −0.379160
\(982\) 26.1962 0.835953
\(983\) −45.1244 −1.43924 −0.719622 0.694366i \(-0.755685\pi\)
−0.719622 + 0.694366i \(0.755685\pi\)
\(984\) 27.1244 0.864693
\(985\) 11.1962 0.356739
\(986\) −66.9615 −2.13249
\(987\) 25.8564 0.823018
\(988\) −4.39230 −0.139738
\(989\) −4.39230 −0.139667
\(990\) 36.5885 1.16286
\(991\) −16.6410 −0.528619 −0.264310 0.964438i \(-0.585144\pi\)
−0.264310 + 0.964438i \(0.585144\pi\)
\(992\) −1.26795 −0.0402574
\(993\) 0 0
\(994\) −6.92820 −0.219749
\(995\) −18.0000 −0.570638
\(996\) 15.4641 0.489999
\(997\) 10.3923 0.329128 0.164564 0.986366i \(-0.447378\pi\)
0.164564 + 0.986366i \(0.447378\pi\)
\(998\) 20.1962 0.639298
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2738.2.a.i.1.1 2
37.8 odd 12 74.2.e.b.27.2 yes 4
37.14 odd 12 74.2.e.b.11.2 4
37.36 even 2 2738.2.a.e.1.1 2
111.8 even 12 666.2.s.a.397.1 4
111.14 even 12 666.2.s.a.307.1 4
148.51 even 12 592.2.w.e.529.2 4
148.119 even 12 592.2.w.e.545.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
74.2.e.b.11.2 4 37.14 odd 12
74.2.e.b.27.2 yes 4 37.8 odd 12
592.2.w.e.529.2 4 148.51 even 12
592.2.w.e.545.2 4 148.119 even 12
666.2.s.a.307.1 4 111.14 even 12
666.2.s.a.397.1 4 111.8 even 12
2738.2.a.e.1.1 2 37.36 even 2
2738.2.a.i.1.1 2 1.1 even 1 trivial