Properties

Label 2736.3.o.k.721.3
Level $2736$
Weight $3$
Character 2736.721
Self dual yes
Analytic conductor $74.551$
Analytic rank $0$
Dimension $4$
CM discriminant -19
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2736,3,Mod(721,2736)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2736, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2736.721");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2736.o (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(74.5506003290\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 11x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 684)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 721.3
Root \(-1.31342\) of defining polynomial
Character \(\chi\) \(=\) 2736.721

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.61478 q^{5} -8.82475 q^{7} +O(q^{10})\) \(q+5.61478 q^{5} -8.82475 q^{7} -13.4953 q^{11} -2.26577 q^{17} -19.0000 q^{19} +34.8712 q^{23} +6.52575 q^{25} -49.5490 q^{35} -31.1752 q^{43} +93.2847 q^{47} +28.8762 q^{49} -75.7733 q^{55} +108.124 q^{61} +137.072 q^{73} +119.093 q^{77} +139.485 q^{83} -12.7218 q^{85} -106.681 q^{95} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 10 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 10 q^{7} - 76 q^{19} + 162 q^{25} - 170 q^{43} + 342 q^{49} + 14 q^{55} + 206 q^{61} + 50 q^{73} + 538 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2736\mathbb{Z}\right)^\times\).

\(n\) \(1009\) \(1217\) \(1711\) \(2053\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 5.61478 1.12296 0.561478 0.827492i \(-0.310233\pi\)
0.561478 + 0.827492i \(0.310233\pi\)
\(6\) 0 0
\(7\) −8.82475 −1.26068 −0.630339 0.776320i \(-0.717084\pi\)
−0.630339 + 0.776320i \(0.717084\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −13.4953 −1.22685 −0.613424 0.789754i \(-0.710208\pi\)
−0.613424 + 0.789754i \(0.710208\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.26577 −0.133280 −0.0666402 0.997777i \(-0.521228\pi\)
−0.0666402 + 0.997777i \(0.521228\pi\)
\(18\) 0 0
\(19\) −19.0000 −1.00000
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 34.8712 1.51614 0.758069 0.652174i \(-0.226143\pi\)
0.758069 + 0.652174i \(0.226143\pi\)
\(24\) 0 0
\(25\) 6.52575 0.261030
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −49.5490 −1.41569
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) −31.1752 −0.725006 −0.362503 0.931983i \(-0.618078\pi\)
−0.362503 + 0.931983i \(0.618078\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 93.2847 1.98478 0.992391 0.123127i \(-0.0392922\pi\)
0.992391 + 0.123127i \(0.0392922\pi\)
\(48\) 0 0
\(49\) 28.8762 0.589311
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) −75.7733 −1.37770
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 108.124 1.77252 0.886260 0.463187i \(-0.153294\pi\)
0.886260 + 0.463187i \(0.153294\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 137.072 1.87770 0.938851 0.344323i \(-0.111892\pi\)
0.938851 + 0.344323i \(0.111892\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 119.093 1.54666
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 139.485 1.68054 0.840270 0.542169i \(-0.182397\pi\)
0.840270 + 0.542169i \(0.182397\pi\)
\(84\) 0 0
\(85\) −12.7218 −0.149668
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −106.681 −1.12296
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 174.356 1.72630 0.863148 0.504950i \(-0.168489\pi\)
0.863148 + 0.504950i \(0.168489\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 195.794 1.70256
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 19.9948 0.168024
\(120\) 0 0
\(121\) 61.1238 0.505155
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −103.729 −0.829831
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −260.744 −1.99041 −0.995207 0.0977943i \(-0.968821\pi\)
−0.995207 + 0.0977943i \(0.968821\pi\)
\(132\) 0 0
\(133\) 167.670 1.26068
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −170.709 −1.24605 −0.623026 0.782201i \(-0.714097\pi\)
−0.623026 + 0.782201i \(0.714097\pi\)
\(138\) 0 0
\(139\) 268.371 1.93073 0.965364 0.260906i \(-0.0840212\pi\)
0.965364 + 0.260906i \(0.0840212\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −273.156 −1.83326 −0.916632 0.399733i \(-0.869103\pi\)
−0.916632 + 0.399733i \(0.869103\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −10.0000 −0.0636943 −0.0318471 0.999493i \(-0.510139\pi\)
−0.0318471 + 0.999493i \(0.510139\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −307.730 −1.91136
\(162\) 0 0
\(163\) 250.000 1.53374 0.766871 0.641801i \(-0.221813\pi\)
0.766871 + 0.641801i \(0.221813\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 169.000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) −57.5881 −0.329075
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 30.5772 0.163515
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 104.713 0.548235 0.274117 0.961696i \(-0.411614\pi\)
0.274117 + 0.961696i \(0.411614\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 383.583 1.94712 0.973561 0.228426i \(-0.0733580\pi\)
0.973561 + 0.228426i \(0.0733580\pi\)
\(198\) 0 0
\(199\) 396.619 1.99306 0.996530 0.0832388i \(-0.0265264\pi\)
0.996530 + 0.0832388i \(0.0265264\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 256.411 1.22685
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −175.042 −0.814149
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) −404.866 −1.76798 −0.883988 0.467510i \(-0.845151\pi\)
−0.883988 + 0.467510i \(0.845151\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −417.958 −1.79381 −0.896905 0.442222i \(-0.854190\pi\)
−0.896905 + 0.442222i \(0.854190\pi\)
\(234\) 0 0
\(235\) 523.773 2.22882
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −468.590 −1.96063 −0.980314 0.197443i \(-0.936736\pi\)
−0.980314 + 0.197443i \(0.936736\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 162.134 0.661770
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 227.254 0.905394 0.452697 0.891664i \(-0.350462\pi\)
0.452697 + 0.891664i \(0.350462\pi\)
\(252\) 0 0
\(253\) −470.598 −1.86007
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 182.923 0.695523 0.347762 0.937583i \(-0.386942\pi\)
0.347762 + 0.937583i \(0.386942\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 142.000 0.523985 0.261993 0.965070i \(-0.415620\pi\)
0.261993 + 0.965070i \(0.415620\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −88.0670 −0.320244
\(276\) 0 0
\(277\) 142.928 0.515985 0.257992 0.966147i \(-0.416939\pi\)
0.257992 + 0.966147i \(0.416939\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) −153.567 −0.542641 −0.271320 0.962489i \(-0.587460\pi\)
−0.271320 + 0.962489i \(0.587460\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −283.866 −0.982236
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 275.114 0.913999
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 607.091 1.99046
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 445.933 1.43387 0.716933 0.697142i \(-0.245545\pi\)
0.716933 + 0.697142i \(0.245545\pi\)
\(312\) 0 0
\(313\) 590.000 1.88498 0.942492 0.334229i \(-0.108476\pi\)
0.942492 + 0.334229i \(0.108476\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 43.0495 0.133280
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −823.215 −2.50217
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 177.587 0.517747
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 665.207 1.91702 0.958511 0.285055i \(-0.0920118\pi\)
0.958511 + 0.285055i \(0.0920118\pi\)
\(348\) 0 0
\(349\) 132.866 0.380706 0.190353 0.981716i \(-0.439037\pi\)
0.190353 + 0.981716i \(0.439037\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 488.197 1.38299 0.691497 0.722380i \(-0.256952\pi\)
0.691497 + 0.722380i \(0.256952\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −127.370 −0.354792 −0.177396 0.984140i \(-0.556767\pi\)
−0.177396 + 0.984140i \(0.556767\pi\)
\(360\) 0 0
\(361\) 361.000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 769.631 2.10858
\(366\) 0 0
\(367\) −50.0000 −0.136240 −0.0681199 0.997677i \(-0.521700\pi\)
−0.0681199 + 0.997677i \(0.521700\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 668.680 1.73683
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −513.906 −1.32109 −0.660547 0.750785i \(-0.729676\pi\)
−0.660547 + 0.750785i \(0.729676\pi\)
\(390\) 0 0
\(391\) −79.0099 −0.202071
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 134.680 0.339245 0.169622 0.985509i \(-0.445745\pi\)
0.169622 + 0.985509i \(0.445745\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 783.176 1.88717
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 348.712 0.832248 0.416124 0.909308i \(-0.363388\pi\)
0.416124 + 0.909308i \(0.363388\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −14.7858 −0.0347901
\(426\) 0 0
\(427\) −954.165 −2.23458
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −662.553 −1.51614
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −481.399 −1.08668 −0.543340 0.839513i \(-0.682841\pi\)
−0.543340 + 0.839513i \(0.682841\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 890.062 1.94762 0.973810 0.227363i \(-0.0730105\pi\)
0.973810 + 0.227363i \(0.0730105\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 790.312 1.71434 0.857171 0.515032i \(-0.172220\pi\)
0.857171 + 0.515032i \(0.172220\pi\)
\(462\) 0 0
\(463\) 841.815 1.81817 0.909087 0.416606i \(-0.136780\pi\)
0.909087 + 0.416606i \(0.136780\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −698.697 −1.49614 −0.748070 0.663620i \(-0.769019\pi\)
−0.748070 + 0.663620i \(0.769019\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 420.720 0.889472
\(474\) 0 0
\(475\) −123.989 −0.261030
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −174.356 −0.364000 −0.182000 0.983299i \(-0.558257\pi\)
−0.182000 + 0.983299i \(0.558257\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 348.712 0.710208 0.355104 0.934827i \(-0.384446\pi\)
0.355104 + 0.934827i \(0.384446\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −997.609 −1.99922 −0.999608 0.0279946i \(-0.991088\pi\)
−0.999608 + 0.0279946i \(0.991088\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −383.583 −0.762591 −0.381295 0.924453i \(-0.624522\pi\)
−0.381295 + 0.924453i \(0.624522\pi\)
\(504\) 0 0
\(505\) 978.970 1.93855
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) −1209.63 −2.36718
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −1258.91 −2.43502
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 687.000 1.29868
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −389.694 −0.722995
\(540\) 0 0
\(541\) 1077.86 1.99234 0.996170 0.0874330i \(-0.0278664\pi\)
0.996170 + 0.0874330i \(0.0278664\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −845.864 −1.51861 −0.759303 0.650737i \(-0.774460\pi\)
−0.759303 + 0.650737i \(0.774460\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) −458.000 −0.802102 −0.401051 0.916056i \(-0.631355\pi\)
−0.401051 + 0.916056i \(0.631355\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 227.561 0.395757
\(576\) 0 0
\(577\) −697.072 −1.20810 −0.604049 0.796947i \(-0.706447\pi\)
−0.604049 + 0.796947i \(0.706447\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1230.92 −2.11862
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 806.461 1.37387 0.686934 0.726719i \(-0.258956\pi\)
0.686934 + 0.726719i \(0.258956\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1185.62 −1.99936 −0.999680 0.0252951i \(-0.991947\pi\)
−0.999680 + 0.0252951i \(0.991947\pi\)
\(594\) 0 0
\(595\) 112.266 0.188683
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 343.196 0.567267
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −883.052 −1.44054 −0.720271 0.693693i \(-0.755983\pi\)
−0.720271 + 0.693693i \(0.755983\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1233.98 1.99996 0.999982 0.00592639i \(-0.00188644\pi\)
0.999982 + 0.00592639i \(0.00188644\pi\)
\(618\) 0 0
\(619\) −662.000 −1.06947 −0.534733 0.845021i \(-0.679588\pi\)
−0.534733 + 0.845021i \(0.679588\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −745.558 −1.19289
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 1141.36 1.80881 0.904407 0.426671i \(-0.140314\pi\)
0.904407 + 0.426671i \(0.140314\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 1112.41 1.73004 0.865018 0.501741i \(-0.167307\pi\)
0.865018 + 0.501741i \(0.167307\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1277.91 1.97514 0.987568 0.157194i \(-0.0502449\pi\)
0.987568 + 0.157194i \(0.0502449\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 300.742 0.460555 0.230278 0.973125i \(-0.426037\pi\)
0.230278 + 0.973125i \(0.426037\pi\)
\(654\) 0 0
\(655\) −1464.02 −2.23515
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 941.432 1.41569
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1459.17 −2.17461
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) −958.494 −1.39926
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 1110.60 1.60723 0.803617 0.595147i \(-0.202906\pi\)
0.803617 + 0.595147i \(0.202906\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1506.85 2.16812
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −871.780 −1.24362 −0.621812 0.783167i \(-0.713603\pi\)
−0.621812 + 0.783167i \(0.713603\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1538.65 −2.17631
\(708\) 0 0
\(709\) −1318.00 −1.85896 −0.929478 0.368877i \(-0.879742\pi\)
−0.929478 + 0.368877i \(0.879742\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1367.95 −1.90257 −0.951285 0.308313i \(-0.900235\pi\)
−0.951285 + 0.308313i \(0.900235\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −1299.55 −1.78755 −0.893774 0.448518i \(-0.851952\pi\)
−0.893774 + 0.448518i \(0.851952\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 70.6358 0.0966290
\(732\) 0 0
\(733\) −1270.00 −1.73261 −0.866303 0.499519i \(-0.833510\pi\)
−0.866303 + 0.499519i \(0.833510\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −1462.60 −1.97916 −0.989580 0.143986i \(-0.954008\pi\)
−0.989580 + 0.143986i \(0.954008\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) −1533.71 −2.05867
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1513.65 −1.99954 −0.999769 0.0214884i \(-0.993160\pi\)
−0.999769 + 0.0214884i \(0.993160\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1181.77 1.55291 0.776456 0.630171i \(-0.217015\pi\)
0.776456 + 0.630171i \(0.217015\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 1494.10 1.94292 0.971459 0.237208i \(-0.0762322\pi\)
0.971459 + 0.237208i \(0.0762322\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −56.1478 −0.0715258
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) −211.361 −0.264532
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1849.83 −2.30365
\(804\) 0 0
\(805\) −1727.83 −2.14638
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1237.91 −1.53018 −0.765089 0.643924i \(-0.777305\pi\)
−0.765089 + 0.643924i \(0.777305\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1403.69 1.72232
\(816\) 0 0
\(817\) 592.330 0.725006
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1588.21 −1.93448 −0.967239 0.253869i \(-0.918297\pi\)
−0.967239 + 0.253869i \(0.918297\pi\)
\(822\) 0 0
\(823\) 1224.17 1.48744 0.743721 0.668490i \(-0.233059\pi\)
0.743721 + 0.668490i \(0.233059\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −65.4268 −0.0785436
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 841.000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 948.898 1.12296
\(846\) 0 0
\(847\) −539.402 −0.636838
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −1030.00 −1.20750 −0.603751 0.797173i \(-0.706328\pi\)
−0.603751 + 0.797173i \(0.706328\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 10.3911 0.0120968 0.00604839 0.999982i \(-0.498075\pi\)
0.00604839 + 0.999982i \(0.498075\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 915.381 1.04615
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −374.032 −0.424554 −0.212277 0.977209i \(-0.568088\pi\)
−0.212277 + 0.977209i \(0.568088\pi\)
\(882\) 0 0
\(883\) 930.145 1.05339 0.526696 0.850054i \(-0.323431\pi\)
0.526696 + 0.850054i \(0.323431\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1772.41 −1.98478
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) −1882.39 −2.06177
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2301.00 2.50927
\(918\) 0 0
\(919\) 1762.00 1.91730 0.958651 0.284585i \(-0.0918559\pi\)
0.958651 + 0.284585i \(0.0918559\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1743.56 1.87681 0.938407 0.345533i \(-0.112302\pi\)
0.938407 + 0.345533i \(0.112302\pi\)
\(930\) 0 0
\(931\) −548.649 −0.589311
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 171.684 0.183620
\(936\) 0 0
\(937\) −1764.29 −1.88291 −0.941457 0.337134i \(-0.890543\pi\)
−0.941457 + 0.337134i \(0.890543\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −488.197 −0.515519 −0.257760 0.966209i \(-0.582984\pi\)
−0.257760 + 0.966209i \(0.582984\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 587.939 0.615643
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1506.47 1.57087
\(960\) 0 0
\(961\) 961.000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1790.00 −1.85109 −0.925543 0.378643i \(-0.876391\pi\)
−0.925543 + 0.378643i \(0.876391\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) −2368.31 −2.43403
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 2153.73 2.18653
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1087.12 −1.09921
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 2226.93 2.23812
\(996\) 0 0
\(997\) 1225.32 1.22901 0.614503 0.788914i \(-0.289356\pi\)
0.614503 + 0.788914i \(0.289356\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2736.3.o.k.721.3 4
3.2 odd 2 inner 2736.3.o.k.721.2 4
4.3 odd 2 684.3.h.d.37.3 yes 4
12.11 even 2 684.3.h.d.37.2 4
19.18 odd 2 CM 2736.3.o.k.721.3 4
57.56 even 2 inner 2736.3.o.k.721.2 4
76.75 even 2 684.3.h.d.37.3 yes 4
228.227 odd 2 684.3.h.d.37.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
684.3.h.d.37.2 4 12.11 even 2
684.3.h.d.37.2 4 228.227 odd 2
684.3.h.d.37.3 yes 4 4.3 odd 2
684.3.h.d.37.3 yes 4 76.75 even 2
2736.3.o.k.721.2 4 3.2 odd 2 inner
2736.3.o.k.721.2 4 57.56 even 2 inner
2736.3.o.k.721.3 4 1.1 even 1 trivial
2736.3.o.k.721.3 4 19.18 odd 2 CM