Properties

Label 2736.3.o.k.721.1
Level $2736$
Weight $3$
Character 2736.721
Self dual yes
Analytic conductor $74.551$
Analytic rank $0$
Dimension $4$
CM discriminant -19
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2736,3,Mod(721,2736)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2736, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2736.721");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2736.o (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(74.5506003290\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 11x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 684)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 721.1
Root \(-3.04547\) of defining polynomial
Character \(\chi\) \(=\) 2736.721

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.97368 q^{5} +13.8248 q^{7} +O(q^{10})\) \(q-9.97368 q^{5} +13.8248 q^{7} -8.29917 q^{11} -28.2465 q^{17} -19.0000 q^{19} +34.8712 q^{23} +74.4743 q^{25} -137.884 q^{35} -53.8248 q^{43} -36.6191 q^{47} +142.124 q^{49} +82.7733 q^{55} -5.12376 q^{61} -112.072 q^{73} -114.734 q^{77} +139.485 q^{83} +281.722 q^{85} +189.500 q^{95} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 10 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 10 q^{7} - 76 q^{19} + 162 q^{25} - 170 q^{43} + 342 q^{49} + 14 q^{55} + 206 q^{61} + 50 q^{73} + 538 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2736\mathbb{Z}\right)^\times\).

\(n\) \(1009\) \(1217\) \(1711\) \(2053\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −9.97368 −1.99474 −0.997368 0.0725083i \(-0.976900\pi\)
−0.997368 + 0.0725083i \(0.976900\pi\)
\(6\) 0 0
\(7\) 13.8248 1.97496 0.987482 0.157730i \(-0.0504176\pi\)
0.987482 + 0.157730i \(0.0504176\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −8.29917 −0.754470 −0.377235 0.926118i \(-0.623125\pi\)
−0.377235 + 0.926118i \(0.623125\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −28.2465 −1.66156 −0.830780 0.556601i \(-0.812105\pi\)
−0.830780 + 0.556601i \(0.812105\pi\)
\(18\) 0 0
\(19\) −19.0000 −1.00000
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 34.8712 1.51614 0.758069 0.652174i \(-0.226143\pi\)
0.758069 + 0.652174i \(0.226143\pi\)
\(24\) 0 0
\(25\) 74.4743 2.97897
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −137.884 −3.93953
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) −53.8248 −1.25174 −0.625869 0.779928i \(-0.715256\pi\)
−0.625869 + 0.779928i \(0.715256\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −36.6191 −0.779129 −0.389564 0.920999i \(-0.627374\pi\)
−0.389564 + 0.920999i \(0.627374\pi\)
\(48\) 0 0
\(49\) 142.124 2.90048
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 82.7733 1.50497
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) −5.12376 −0.0839960 −0.0419980 0.999118i \(-0.513372\pi\)
−0.0419980 + 0.999118i \(0.513372\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) −112.072 −1.53524 −0.767618 0.640907i \(-0.778558\pi\)
−0.767618 + 0.640907i \(0.778558\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −114.734 −1.49005
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 139.485 1.68054 0.840270 0.542169i \(-0.182397\pi\)
0.840270 + 0.542169i \(0.182397\pi\)
\(84\) 0 0
\(85\) 281.722 3.31437
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 189.500 1.99474
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 174.356 1.72630 0.863148 0.504950i \(-0.168489\pi\)
0.863148 + 0.504950i \(0.168489\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) −347.794 −3.02430
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −390.501 −3.28152
\(120\) 0 0
\(121\) −52.1238 −0.430775
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −493.440 −3.94752
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 108.183 0.825822 0.412911 0.910771i \(-0.364512\pi\)
0.412911 + 0.910771i \(0.364512\pi\)
\(132\) 0 0
\(133\) −262.670 −1.97496
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 270.964 1.97784 0.988919 0.148456i \(-0.0474303\pi\)
0.988919 + 0.148456i \(0.0474303\pi\)
\(138\) 0 0
\(139\) −71.3713 −0.513462 −0.256731 0.966483i \(-0.582646\pi\)
−0.256731 + 0.966483i \(0.582646\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 33.4168 0.224274 0.112137 0.993693i \(-0.464231\pi\)
0.112137 + 0.993693i \(0.464231\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −10.0000 −0.0636943 −0.0318471 0.999493i \(-0.510139\pi\)
−0.0318471 + 0.999493i \(0.510139\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 482.086 2.99432
\(162\) 0 0
\(163\) 250.000 1.53374 0.766871 0.641801i \(-0.221813\pi\)
0.766871 + 0.641801i \(0.221813\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 169.000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 1029.59 5.88336
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 234.423 1.25360
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 265.794 1.39159 0.695795 0.718241i \(-0.255052\pi\)
0.695795 + 0.718241i \(0.255052\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 383.583 1.94712 0.973561 0.228426i \(-0.0733580\pi\)
0.973561 + 0.228426i \(0.0733580\pi\)
\(198\) 0 0
\(199\) −169.619 −0.852356 −0.426178 0.904639i \(-0.640140\pi\)
−0.426178 + 0.904639i \(0.640140\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 157.684 0.754470
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 536.831 2.49689
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 387.866 1.69374 0.846870 0.531800i \(-0.178484\pi\)
0.846870 + 0.531800i \(0.178484\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 387.446 1.66286 0.831428 0.555632i \(-0.187524\pi\)
0.831428 + 0.555632i \(0.187524\pi\)
\(234\) 0 0
\(235\) 365.227 1.55416
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 316.029 1.32230 0.661148 0.750255i \(-0.270070\pi\)
0.661148 + 0.750255i \(0.270070\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1417.50 −5.78570
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 274.019 1.09171 0.545855 0.837879i \(-0.316205\pi\)
0.545855 + 0.837879i \(0.316205\pi\)
\(252\) 0 0
\(253\) −289.402 −1.14388
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −518.558 −1.97170 −0.985852 0.167621i \(-0.946392\pi\)
−0.985852 + 0.167621i \(0.946392\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 142.000 0.523985 0.261993 0.965070i \(-0.415620\pi\)
0.261993 + 0.965070i \(0.415620\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −618.075 −2.24754
\(276\) 0 0
\(277\) 392.072 1.41542 0.707712 0.706501i \(-0.249728\pi\)
0.707712 + 0.706501i \(0.249728\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 548.567 1.93840 0.969200 0.246274i \(-0.0792064\pi\)
0.969200 + 0.246274i \(0.0792064\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 508.866 1.76078
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −744.114 −2.47214
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 51.1027 0.167550
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −598.494 −1.92442 −0.962209 0.272312i \(-0.912212\pi\)
−0.962209 + 0.272312i \(0.912212\pi\)
\(312\) 0 0
\(313\) 590.000 1.88498 0.942492 0.334229i \(-0.108476\pi\)
0.942492 + 0.334229i \(0.108476\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 536.684 1.66156
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −506.249 −1.53875
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 1287.41 3.75339
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −503.928 −1.45224 −0.726120 0.687568i \(-0.758678\pi\)
−0.726120 + 0.687568i \(0.758678\pi\)
\(348\) 0 0
\(349\) −659.866 −1.89073 −0.945367 0.326007i \(-0.894297\pi\)
−0.945367 + 0.326007i \(0.894297\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 488.197 1.38299 0.691497 0.722380i \(-0.256952\pi\)
0.691497 + 0.722380i \(0.256952\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −548.259 −1.52718 −0.763592 0.645699i \(-0.776566\pi\)
−0.763592 + 0.645699i \(0.776566\pi\)
\(360\) 0 0
\(361\) 361.000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1117.77 3.06239
\(366\) 0 0
\(367\) −50.0000 −0.136240 −0.0681199 0.997677i \(-0.521700\pi\)
−0.0681199 + 0.997677i \(0.521700\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 1144.32 2.97226
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −248.902 −0.639850 −0.319925 0.947443i \(-0.603658\pi\)
−0.319925 + 0.947443i \(0.603658\pi\)
\(390\) 0 0
\(391\) −984.990 −2.51916
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 610.320 1.53733 0.768665 0.639652i \(-0.220921\pi\)
0.768665 + 0.639652i \(0.220921\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −1391.18 −3.35223
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 348.712 0.832248 0.416124 0.909308i \(-0.363388\pi\)
0.416124 + 0.909308i \(0.363388\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2103.64 −4.94974
\(426\) 0 0
\(427\) −70.8347 −0.165889
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −662.553 −1.51614
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −403.457 −0.910738 −0.455369 0.890303i \(-0.650493\pi\)
−0.455369 + 0.890303i \(0.650493\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −265.062 −0.580005 −0.290003 0.957026i \(-0.593656\pi\)
−0.290003 + 0.957026i \(0.593656\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 16.0848 0.0348911 0.0174455 0.999848i \(-0.494447\pi\)
0.0174455 + 0.999848i \(0.494447\pi\)
\(462\) 0 0
\(463\) −86.8148 −0.187505 −0.0937525 0.995596i \(-0.529886\pi\)
−0.0937525 + 0.995596i \(0.529886\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 886.130 1.89749 0.948747 0.316037i \(-0.102352\pi\)
0.948747 + 0.316037i \(0.102352\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 446.701 0.944399
\(474\) 0 0
\(475\) −1415.01 −2.97897
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −174.356 −0.364000 −0.182000 0.983299i \(-0.558257\pi\)
−0.182000 + 0.983299i \(0.558257\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 348.712 0.710208 0.355104 0.934827i \(-0.384446\pi\)
0.355104 + 0.934827i \(0.384446\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 474.609 0.951120 0.475560 0.879683i \(-0.342245\pi\)
0.475560 + 0.879683i \(0.342245\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −383.583 −0.762591 −0.381295 0.924453i \(-0.624522\pi\)
−0.381295 + 0.924453i \(0.624522\pi\)
\(504\) 0 0
\(505\) −1738.97 −3.44351
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) −1549.37 −3.03204
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 303.908 0.587830
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 687.000 1.29868
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1179.51 −2.18833
\(540\) 0 0
\(541\) −620.856 −1.14761 −0.573804 0.818992i \(-0.694533\pi\)
−0.573804 + 0.818992i \(0.694533\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1050.73 1.88641 0.943206 0.332207i \(-0.107793\pi\)
0.943206 + 0.332207i \(0.107793\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) −458.000 −0.802102 −0.401051 0.916056i \(-0.631355\pi\)
−0.401051 + 0.916056i \(0.631355\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2597.01 4.51653
\(576\) 0 0
\(577\) −447.928 −0.776305 −0.388152 0.921595i \(-0.626887\pi\)
−0.388152 + 0.921595i \(0.626887\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1928.34 3.31901
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1142.10 −1.94565 −0.972825 0.231543i \(-0.925623\pi\)
−0.972825 + 0.231543i \(0.925623\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1185.62 −1.99936 −0.999680 0.0252951i \(-0.991947\pi\)
−0.999680 + 0.0252951i \(0.991947\pi\)
\(594\) 0 0
\(595\) 3894.73 6.54577
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 519.866 0.859282
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 1178.05 1.92178 0.960891 0.276927i \(-0.0893159\pi\)
0.960891 + 0.276927i \(0.0893159\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −610.656 −0.989718 −0.494859 0.868973i \(-0.664780\pi\)
−0.494859 + 0.868973i \(0.664780\pi\)
\(618\) 0 0
\(619\) −662.000 −1.06947 −0.534733 0.845021i \(-0.679588\pi\)
−0.534733 + 0.845021i \(0.679588\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 3059.56 4.89529
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −104.361 −0.165390 −0.0826952 0.996575i \(-0.526353\pi\)
−0.0826952 + 0.996575i \(0.526353\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 2.58717 0.00402359 0.00201180 0.999998i \(-0.499360\pi\)
0.00201180 + 0.999998i \(0.499360\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −462.798 −0.715299 −0.357650 0.933856i \(-0.616422\pi\)
−0.357650 + 0.933856i \(0.616422\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 950.262 1.45522 0.727612 0.685989i \(-0.240630\pi\)
0.727612 + 0.685989i \(0.240630\pi\)
\(654\) 0 0
\(655\) −1078.98 −1.64730
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2619.79 3.93953
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 42.5229 0.0633725
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) −2702.51 −3.94526
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −1267.60 −1.83444 −0.917221 0.398380i \(-0.869573\pi\)
−0.917221 + 0.398380i \(0.869573\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 711.834 1.02422
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −871.780 −1.24362 −0.621812 0.783167i \(-0.713603\pi\)
−0.621812 + 0.783167i \(0.713603\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2410.43 3.40937
\(708\) 0 0
\(709\) −1318.00 −1.85896 −0.929478 0.368877i \(-0.879742\pi\)
−0.929478 + 0.368877i \(0.879742\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 300.017 0.417270 0.208635 0.977994i \(-0.433098\pi\)
0.208635 + 0.977994i \(0.433098\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1214.55 1.67063 0.835315 0.549772i \(-0.185285\pi\)
0.835315 + 0.549772i \(0.185285\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1520.36 2.07984
\(732\) 0 0
\(733\) −1270.00 −1.73261 −0.866303 0.499519i \(-0.833510\pi\)
−0.866303 + 0.499519i \(0.833510\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 915.599 1.23897 0.619485 0.785008i \(-0.287341\pi\)
0.619485 + 0.785008i \(0.287341\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) −333.288 −0.447367
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 728.650 0.962550 0.481275 0.876570i \(-0.340174\pi\)
0.481275 + 0.876570i \(0.340174\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1421.51 −1.86794 −0.933972 0.357345i \(-0.883682\pi\)
−0.933972 + 0.357345i \(0.883682\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −431.104 −0.560603 −0.280302 0.959912i \(-0.590434\pi\)
−0.280302 + 0.959912i \(0.590434\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 99.7368 0.127053
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 1034.36 1.29457
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 930.107 1.15829
\(804\) 0 0
\(805\) −4808.17 −5.97288
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1521.24 1.88040 0.940199 0.340624i \(-0.110638\pi\)
0.940199 + 0.340624i \(0.110638\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2493.42 −3.05941
\(816\) 0 0
\(817\) 1022.67 1.25174
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 433.098 0.527524 0.263762 0.964588i \(-0.415037\pi\)
0.263762 + 0.964588i \(0.415037\pi\)
\(822\) 0 0
\(823\) 340.835 0.414137 0.207068 0.978326i \(-0.433608\pi\)
0.207068 + 0.978326i \(0.433608\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −4014.50 −4.81933
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 841.000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1685.55 −1.99474
\(846\) 0 0
\(847\) −720.598 −0.850765
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −1030.00 −1.20750 −0.603751 0.797173i \(-0.706328\pi\)
−0.603751 + 0.797173i \(0.706328\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 1482.61 1.72597 0.862985 0.505229i \(-0.168592\pi\)
0.862985 + 0.505229i \(0.168592\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −6821.69 −7.79622
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1304.14 −1.48030 −0.740150 0.672442i \(-0.765245\pi\)
−0.740150 + 0.672442i \(0.765245\pi\)
\(882\) 0 0
\(883\) −1765.15 −1.99903 −0.999516 0.0311055i \(-0.990097\pi\)
−0.999516 + 0.0311055i \(0.990097\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 695.762 0.779129
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) −1157.61 −1.26792
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1495.60 1.63097
\(918\) 0 0
\(919\) 1762.00 1.91730 0.958651 0.284585i \(-0.0918559\pi\)
0.958651 + 0.284585i \(0.0918559\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1743.56 1.87681 0.938407 0.345533i \(-0.112302\pi\)
0.938407 + 0.345533i \(0.112302\pi\)
\(930\) 0 0
\(931\) −2700.35 −2.90048
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −2338.06 −2.50060
\(936\) 0 0
\(937\) 1429.29 1.52539 0.762695 0.646759i \(-0.223876\pi\)
0.762695 + 0.646759i \(0.223876\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −488.197 −0.515519 −0.257760 0.966209i \(-0.582984\pi\)
−0.257760 + 0.966209i \(0.582984\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) −2650.94 −2.77585
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3746.01 3.90616
\(960\) 0 0
\(961\) 961.000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1790.00 −1.85109 −0.925543 0.378643i \(-0.876391\pi\)
−0.925543 + 0.378643i \(0.876391\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) −986.690 −1.01407
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) −3825.73 −3.88399
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1876.93 −1.89781
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1691.72 1.70022
\(996\) 0 0
\(997\) 749.680 0.751936 0.375968 0.926633i \(-0.377310\pi\)
0.375968 + 0.926633i \(0.377310\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2736.3.o.k.721.1 4
3.2 odd 2 inner 2736.3.o.k.721.4 4
4.3 odd 2 684.3.h.d.37.1 4
12.11 even 2 684.3.h.d.37.4 yes 4
19.18 odd 2 CM 2736.3.o.k.721.1 4
57.56 even 2 inner 2736.3.o.k.721.4 4
76.75 even 2 684.3.h.d.37.1 4
228.227 odd 2 684.3.h.d.37.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
684.3.h.d.37.1 4 4.3 odd 2
684.3.h.d.37.1 4 76.75 even 2
684.3.h.d.37.4 yes 4 12.11 even 2
684.3.h.d.37.4 yes 4 228.227 odd 2
2736.3.o.k.721.1 4 1.1 even 1 trivial
2736.3.o.k.721.1 4 19.18 odd 2 CM
2736.3.o.k.721.4 4 3.2 odd 2 inner
2736.3.o.k.721.4 4 57.56 even 2 inner