Properties

Label 2736.3.o.i
Level $2736$
Weight $3$
Character orbit 2736.o
Analytic conductor $74.551$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2736.o (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(74.5506003290\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-29}) \)
Defining polynomial: \(x^{2} + 29\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 76)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 3\sqrt{-29}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 q^{5} + q^{7} +O(q^{10})\) \( q + 4 q^{5} + q^{7} + 14 q^{11} + \beta q^{13} -23 q^{17} + ( -10 - \beta ) q^{19} - q^{23} -9 q^{25} + 3 \beta q^{29} + 2 \beta q^{31} + 4 q^{35} + 2 \beta q^{37} -2 \beta q^{41} -68 q^{43} + 26 q^{47} -48 q^{49} + 5 \beta q^{53} + 56 q^{55} + \beta q^{59} -40 q^{61} + 4 \beta q^{65} + \beta q^{67} -2 \beta q^{71} -7 q^{73} + 14 q^{77} -6 \beta q^{79} + 32 q^{83} -92 q^{85} + 8 \beta q^{89} + \beta q^{91} + ( -40 - 4 \beta ) q^{95} -6 \beta q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 8q^{5} + 2q^{7} + O(q^{10}) \) \( 2q + 8q^{5} + 2q^{7} + 28q^{11} - 46q^{17} - 20q^{19} - 2q^{23} - 18q^{25} + 8q^{35} - 136q^{43} + 52q^{47} - 96q^{49} + 112q^{55} - 80q^{61} - 14q^{73} + 28q^{77} + 64q^{83} - 184q^{85} - 80q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2736\mathbb{Z}\right)^\times\).

\(n\) \(1009\) \(1217\) \(1711\) \(2053\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
721.1
5.38516i
5.38516i
0 0 0 4.00000 0 1.00000 0 0 0
721.2 0 0 0 4.00000 0 1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2736.3.o.i 2
3.b odd 2 1 304.3.e.b 2
4.b odd 2 1 684.3.h.c 2
12.b even 2 1 76.3.c.a 2
19.b odd 2 1 inner 2736.3.o.i 2
24.f even 2 1 1216.3.e.k 2
24.h odd 2 1 1216.3.e.l 2
57.d even 2 1 304.3.e.b 2
60.h even 2 1 1900.3.e.b 2
60.l odd 4 2 1900.3.g.b 4
76.d even 2 1 684.3.h.c 2
228.b odd 2 1 76.3.c.a 2
456.l odd 2 1 1216.3.e.k 2
456.p even 2 1 1216.3.e.l 2
1140.p odd 2 1 1900.3.e.b 2
1140.w even 4 2 1900.3.g.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
76.3.c.a 2 12.b even 2 1
76.3.c.a 2 228.b odd 2 1
304.3.e.b 2 3.b odd 2 1
304.3.e.b 2 57.d even 2 1
684.3.h.c 2 4.b odd 2 1
684.3.h.c 2 76.d even 2 1
1216.3.e.k 2 24.f even 2 1
1216.3.e.k 2 456.l odd 2 1
1216.3.e.l 2 24.h odd 2 1
1216.3.e.l 2 456.p even 2 1
1900.3.e.b 2 60.h even 2 1
1900.3.e.b 2 1140.p odd 2 1
1900.3.g.b 4 60.l odd 4 2
1900.3.g.b 4 1140.w even 4 2
2736.3.o.i 2 1.a even 1 1 trivial
2736.3.o.i 2 19.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(2736, [\chi])\):

\( T_{5} - 4 \)
\( T_{7} - 1 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( T^{2} \)
$5$ \( ( -4 + T )^{2} \)
$7$ \( ( -1 + T )^{2} \)
$11$ \( ( -14 + T )^{2} \)
$13$ \( 261 + T^{2} \)
$17$ \( ( 23 + T )^{2} \)
$19$ \( 361 + 20 T + T^{2} \)
$23$ \( ( 1 + T )^{2} \)
$29$ \( 2349 + T^{2} \)
$31$ \( 1044 + T^{2} \)
$37$ \( 1044 + T^{2} \)
$41$ \( 1044 + T^{2} \)
$43$ \( ( 68 + T )^{2} \)
$47$ \( ( -26 + T )^{2} \)
$53$ \( 6525 + T^{2} \)
$59$ \( 261 + T^{2} \)
$61$ \( ( 40 + T )^{2} \)
$67$ \( 261 + T^{2} \)
$71$ \( 1044 + T^{2} \)
$73$ \( ( 7 + T )^{2} \)
$79$ \( 9396 + T^{2} \)
$83$ \( ( -32 + T )^{2} \)
$89$ \( 16704 + T^{2} \)
$97$ \( 9396 + T^{2} \)
show more
show less