Properties

Label 2736.3.o.h
Level $2736$
Weight $3$
Character orbit 2736.o
Analytic conductor $74.551$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2736.o (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(74.5506003290\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
Defining polynomial: \(x^{2} + 2\)
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: no (minimal twist has level 38)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 6\sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{5} -5 q^{7} +O(q^{10})\) \( q + q^{5} -5 q^{7} + 5 q^{11} -2 \beta q^{13} + 25 q^{17} -19 q^{19} -10 q^{23} -24 q^{25} -5 \beta q^{29} + 5 \beta q^{31} -5 q^{35} -3 \beta q^{37} + 5 \beta q^{41} -5 q^{43} + 5 q^{47} -24 q^{49} + 3 \beta q^{53} + 5 q^{55} + 10 \beta q^{59} + 95 q^{61} -2 \beta q^{65} -13 \beta q^{67} -25 q^{73} -25 q^{77} -5 \beta q^{79} -130 q^{83} + 25 q^{85} + 15 \beta q^{89} + 10 \beta q^{91} -19 q^{95} + 2 \beta q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{5} - 10q^{7} + O(q^{10}) \) \( 2q + 2q^{5} - 10q^{7} + 10q^{11} + 50q^{17} - 38q^{19} - 20q^{23} - 48q^{25} - 10q^{35} - 10q^{43} + 10q^{47} - 48q^{49} + 10q^{55} + 190q^{61} - 50q^{73} - 50q^{77} - 260q^{83} + 50q^{85} - 38q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2736\mathbb{Z}\right)^\times\).

\(n\) \(1009\) \(1217\) \(1711\) \(2053\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
721.1
1.41421i
1.41421i
0 0 0 1.00000 0 −5.00000 0 0 0
721.2 0 0 0 1.00000 0 −5.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2736.3.o.h 2
3.b odd 2 1 304.3.e.c 2
4.b odd 2 1 342.3.d.a 2
12.b even 2 1 38.3.b.a 2
19.b odd 2 1 inner 2736.3.o.h 2
24.f even 2 1 1216.3.e.j 2
24.h odd 2 1 1216.3.e.i 2
57.d even 2 1 304.3.e.c 2
60.h even 2 1 950.3.c.a 2
60.l odd 4 2 950.3.d.a 4
76.d even 2 1 342.3.d.a 2
228.b odd 2 1 38.3.b.a 2
456.l odd 2 1 1216.3.e.j 2
456.p even 2 1 1216.3.e.i 2
1140.p odd 2 1 950.3.c.a 2
1140.w even 4 2 950.3.d.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
38.3.b.a 2 12.b even 2 1
38.3.b.a 2 228.b odd 2 1
304.3.e.c 2 3.b odd 2 1
304.3.e.c 2 57.d even 2 1
342.3.d.a 2 4.b odd 2 1
342.3.d.a 2 76.d even 2 1
950.3.c.a 2 60.h even 2 1
950.3.c.a 2 1140.p odd 2 1
950.3.d.a 4 60.l odd 4 2
950.3.d.a 4 1140.w even 4 2
1216.3.e.i 2 24.h odd 2 1
1216.3.e.i 2 456.p even 2 1
1216.3.e.j 2 24.f even 2 1
1216.3.e.j 2 456.l odd 2 1
2736.3.o.h 2 1.a even 1 1 trivial
2736.3.o.h 2 19.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(2736, [\chi])\):

\( T_{5} - 1 \)
\( T_{7} + 5 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( T^{2} \)
$5$ \( ( -1 + T )^{2} \)
$7$ \( ( 5 + T )^{2} \)
$11$ \( ( -5 + T )^{2} \)
$13$ \( 288 + T^{2} \)
$17$ \( ( -25 + T )^{2} \)
$19$ \( ( 19 + T )^{2} \)
$23$ \( ( 10 + T )^{2} \)
$29$ \( 1800 + T^{2} \)
$31$ \( 1800 + T^{2} \)
$37$ \( 648 + T^{2} \)
$41$ \( 1800 + T^{2} \)
$43$ \( ( 5 + T )^{2} \)
$47$ \( ( -5 + T )^{2} \)
$53$ \( 648 + T^{2} \)
$59$ \( 7200 + T^{2} \)
$61$ \( ( -95 + T )^{2} \)
$67$ \( 12168 + T^{2} \)
$71$ \( T^{2} \)
$73$ \( ( 25 + T )^{2} \)
$79$ \( 1800 + T^{2} \)
$83$ \( ( 130 + T )^{2} \)
$89$ \( 16200 + T^{2} \)
$97$ \( 288 + T^{2} \)
show more
show less