Properties

Label 2736.3.i
Level $2736$
Weight $3$
Character orbit 2736.i
Rep. character $\chi_{2736}(2089,\cdot)$
Character field $\Q$
Dimension $0$
Newform subspaces $0$
Sturm bound $1440$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2736.i (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 152 \)
Character field: \(\Q\)
Newform subspaces: \( 0 \)
Sturm bound: \(1440\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(2736, [\chi])\).

Total New Old
Modular forms 976 0 976
Cusp forms 944 0 944
Eisenstein series 32 0 32

Decomposition of \(S_{3}^{\mathrm{old}}(2736, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(2736, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(152, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(456, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(1368, [\chi])\)\(^{\oplus 2}\)